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Abstract. Mountain resort development is having increasing effects on ecological functions 
in the intermountain West.  High-resolution remote sensing has the potential to assist in 
monitoring this development.  We evaluated classification of mountain resort development in 
the Big Sky, Montana, watershed using Quickbird 2.4-m multispectral imagery with an 
object-oriented classification.  Quickbird imagery, however, has limited spectral resolution; 
we therefore also evaluated the benefits of fusing Quickbird imagery with LiDAR bare 
ground and surface model data in an object-oriented approach.  Classification accuracies with 
the fused data increased approximately 1% and were not statistically significantly different 
based on a 1735 point sample.  The classified objects, however, demonstrated more spatial 
coherency, with more realistically defined shapes and edges. 
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1 INTRODUCTION 
Mountain resort development (MRD) is rapidly increasing throughout the intermountain West 
[1].  MRD generally results in land use and land cover (LULC) change, which can affect 
ecosystems within the developed area, adjoining undeveloped areas, and downstream and 
riparian systems.  The location of MRD relative to wild and semi-wild areas can have 
important effects on ecological processes and wildlife diversity [2].   
 MRD has been found to be spurred by the creation of transportation networks [3], which 
can negatively affect watershed processes [4,5].  Roads and wilderness trails have been found 
to affect species composition and increase habitat fragmentation [6,7], which in turn is an 
important predictor of species distribution and abundance [8].   
 MRD needs to be accurately mapped in order to assess and monitor its quantity and extent.  
The use of object-oriented classification and analysis of high-resolution imagery is 
advantageous for mapping land use/land cover (LULC) associated with MRD.  High-
resolution imagery provides a detailed view of the land’s surface and is important for 
mapping local areas [9].  Traditional pixel-based classification of high-resolution imagery has 
been difficult due the lack of spectral depth of most high-resolution sensors and high spatial 
heterogeneity of the imaged scene [10,11].  Object-oriented classification and analysis can 
overcome pixel-based classification limitations by allowing users to classify based on 
contextual information extracted from an image in addition to spectral characteristics [12].  
Many recent studies have investigated the use of object-oriented analysis for LULC 
classification, including, for example, distinguishing burned and shadowed areas [13], 
monitoring vegetation changes in the southwestern United States [14], and identifying woody 
vegetation in urban areas [15].   
 Image fusion might also increase the accuracy of object-oriented classification and 
analysis.  The purpose of image fusion is to combine information from different sensors in 
order to increase the information extracted [16].  The fusion of LiDAR and multispectral 
images has been shown to increase the accuracy of forest parameter estimations as compared 
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to single sensors [17,18], map vegetation species composition and distribution [19], and 
extract buildings and trees from urban environments [20].   
 Our objective was to evaluate the utility of high-spatial-resolution imagery fused with 
LiDAR data to map LULC associated with MRD using object-oriented analysis.  Results 
were compared with object-oriented analysis in the absence of LiDAR data. 

2 METHODS 
Our study was the West Fork of the Gallatin River watershed near Big Sky, Montana, 
including a 0.5-km buffer around the watershed (Fig. 1).  Big Sky is surrounded by the 
Gallatin National Forest in southwestern Montana and is located within the Greater 
Yellowstone Ecosystem [21].  Elevation ranges more than 2000 m and is an important 
predictor of climate and vegetation species distribution [21].  Vegetation is composed of 
coniferous forests, shrublands, and grasslands.  Frost free days range from 60-90 and decrease 
with increased altitude [21,22].     
  

 
Fig. 1. Study area, showing the Big Sky, Montana, watershed, consisting of the West Fork of the 
Gallatin River. 

 
 Imagery used included an 11-tile Quickbird image with 2.4-m spatial resolution.  A tile 
represents the 16.5 km x 16.5 km footprint of the sensor containing only the portion of the 
scene related to the study area with all outlying areas containing no data.  The Quickbird 
image contained 4 bands in the visible and near infrared (NIR) portion of the electromagnetic 
spectrum including blue (450-520 nm), green (520-600 nm), red (630-690 nm), and NIR 
(760-900 nm).  The 11 tiles were mosiacked to create one master image.   
 1-m airborne laser swath mapping, herein referred to as LiDAR, bare earth and surface 
models created from point clouds were also used.  The bare earth model was created through 
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triangulation of the last returns in a 55-m window.  The surface model was created using a 
linear Kriging algorithm to interpolate first returns in a 5-m window.  The surface model 
represented surface land cover, such as the top of tree canopies and the roofs of buildings.  
The bare earth model estimated elevation with all land cover (e.g., vegetation and buildings) 
removed.  The LiDAR images were resampled to 2 m using nearest neighbor resampling.  All 
images were acquired in the summer of 2005 and registered to a UTM NAD 83 Zone 12 
projection with an RMSE of 0.06.  
 The original 11 tiles of Quickbird imagery were used to create a six image subset.  
Subsetting was necessary due to data processing limitations within the object-oriented 
software.  The six subsets were then used to create matching subsets of the resampled LiDAR 
bare earth and surface models.  The subsets were individually imported into the Definiens 
Professional 5: Large Data Handling (LDH) software [23].  The Quickbird and LiDAR fused 
data created data sets with multispectral, bare-earth elevation, and surface information for 
each pixel.   
 The subsets were initially segmented using a Multi-Resolution Segmentation (MRS) 
algorithm [23].  Separate segmentations were created for each subset with and without 
LiDAR data.  The MRS algorithm is a heuristically applied algorithm that creates objects by 
minimizing internal object heterogeneity.  Object heterogeneity is calculated as a weighted 
average across all input bands with the total weight summing to one.  Object heterogeneity is 
controlled by selecting an arbitrary scale factor, which determines the amount of 
heterogeneity acceptable and is resolution dependant.  The scale factor required to create 
objects for individual houses will be different than the scale factor required to create objects 
representing a neighborhood or subdivision, for example.  The appropriate object is one that 
is "as large as possible and as fine as necessary" and thus will vary depending on the desired 
output [23].  The segmentation process resulted in vector based "objects" with attributes 
corresponding to the mean and standard deviation values of the pixels within the object for 
each input layer.  Additional contextual metrics can then calculated and used in the 
classification process.  The appropriate MRS was determined if objects borders did not 
overlap different LULC classes by visual inspection.   
 The creation of objects is also influenced by weighting layer pixel values and spatial 
homogeneity.  The default was a pixel value weight of 0.9 and a spatial weight of 0.1 [23].  A 
decrease in pixel input value weight and a corresponding increase in spatial weight results in 
objects with less similarity in their pixel values.  The default spectral and spatial weights were 
chosen because they provided objects that followed spectral contrast lines for different land 
cover by visual inspection.   
 A Spectral Difference Segmentation (SDS) was performed after the appropriate MRS was 
identified [23].  SDS is a merging algorithm designed to merge spectrally similar objects 
produced in previous segmentations.  Objects were merged if their standard deviation was 
below a user defined threshold.  The threshold is used to determine the amount of object 
aggregation.  The appropriate SDS was identified if most or all adjacent objects were merged 
without creating mixed land cover objects.  This resulted in larger objects, which were more 
semantically meaningful.    
 The classification scheme was developed based on common MRD cover types and 
included roads, buildings, rock, bare soil, golf course, non-treed vegetation, lakes/ponds, 
sewer ponds, shadow, snow trees, and rivers/streams.  This study was part of a larger study 
examining the effect of MRD on stream nitrogen levels, which required distinguishing 
isolated waste water holding ponds and golf courses.  These types were manually digitized at 
the end of the classification process.   
 Classification of objects was conducted using the nearest neighbor (NN) algorithm in 
Definiens Professional.  The NN algorithm classifies objects based on user identified sample 
objects utilizing user selected metrics.  Metric selection, which increases efficiency, was 
determined using Definiens’ Feature Space Optimization tool (FSO).  FSO works by 
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examining any number of input variables and identifying the variables that contain the 
greatest distance between samples to be applied to the NN classifier.     
 The following pixel derived metrics were selected by FSO: object mean and standard 
deviation of all input bands excluding blue (green, red, NIR, NDVI, surface, and bare earth).  
NDVI is a commonly used vegetation index that is calculated as (NIR-red)/(NIR+red) [24].  
NDVI is a unitless measure with a positive correlation to vegetation amount or health.  The 
following contextual metrics were used:  length/width, asymmetry, density, compactness, and 
rectangular fit.  
 Training samples were chosen by selecting objects in each image that represented their 
class.  Definiens Professional allowed the sample metrics collected in one image to be applied 
to subsequent images.  This allowed the sample metrics collected in the first subset to be 
applied in the classification of subsequent subsets.  Once all 12 subsets were classified, they 
were mosaicked to create two final classifications, a Quickbird classification and a fused 
LiDAR and Quickbird classification.   
 The fused classification required additional post processing due to missing data values 
within the LiDAR image.  This was overcome by applying the Quickbird classified values to 
the missing data. 
 The vector based classification was converted to a raster image with 2.4-m pixel resolution 
to retain the spatial properties of the original Quickbird data. A total of 1126 accuracy 
assessment points were generated using a stratified random sample from the Quickbird 
classification.  An additional 609 stratified random sample points were obtained from the 
fused classification.  The two sets of points were merged and used to assess the accuracy of 
both classifications.  Producer’s and user’s accuracies for each class and the Kappa statistics 
were calculated for each classification [25].  Overall accuracy was calculated using the 
methods outlined in Carrao et al., 2007 [26].  This method differs from the traditional overall 
accuracy, in that it is calculated based on the relative proportion of each class to the total 
number of classified pixels. 

3 RESULTS 
The overall accuracy for the Quickbird classification was 90% with a Kappa statistic of 0.76 
(Table 1).  The bare soil class had low user’s and producer’s accuracy and was often confused 
with impervious surfaces.  Grass had a high error of commission rate with 35% and was often 
confused with impervious surfaces and trees.  The river, shadow, and snow classes each 
preformed similarly with a low producer’s accuracy and high user’s accuracy.  The building 
class had a low error of commission as seen in the high user’s accuracy but also had higher 
error of omission as seen in the low producer’s accuracy.  The road class had a higher error of 
commission than omission.  The rock class had a high error of commission with 35% and a 
moderate error of omission with 11%.  

The fused classification had an overall accuracy of 91% and a Kappa statistic of 0.78 
(Table 2).  Bare soil had had similar error rates to the Quickbird classification (Table 2).  The 
error of omission for bare soil, however, increased over the Quickbird classification.  All 
other individual user’s and producer’s accuracy were generally higher than the Quickbird 
classification resulting in reduced errors of omission and commission.  The building class 
improved substantially compared to the Quickbird classification, with a 16% decreases in 
error of omission and a slight 1% decrease in error of commission.  The road class had a 5% 
decrease in error of commission with the fused classification and no increase in the error of 
omission. The rock class had slight decreases in both errors of omission and commission than 
in the Quickbird classification.   
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Table 2. Error matrix for Quickbird classification. 
 

  Reference Data 
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Bare Soil 35 1 2 0 0 10 1 0 0 4 53 66% 

Building 0 131 0 0 0 4 1 0 0 0 136 96% 

Grass 45 11 168 1 1 12 9 0 0 12 258 86% 

Lake 0 0 0 47 1 0 1 0 0 0 49 94% 

River 0 0 0 0 17 0 0 0 0 0 17 100% 

Road 20 48 0 0 0 202 3 0 0 1 274 74% 

Rock 19 5 8 0 0 13 181 12 30 7 275 66% 

Shadow 0 0 0 0 0 0 0 52 0 0 52 100% 

Snow 2 1 0 1 0 0 2 0 73 2 81 90% 

Tree 6 19 11 4 6 7 5 5 2 474 539 88% 

 TOTALS 127 216 189 53 25 248 203 69 105 500 1735  

 Producer’s 

Accuracy 
28% 61% 89% 88% 68% 81% 89% 75% 70% 95% 

 
 

Overall Classification Accuracy = 90%  Overall Kappa Statistics = 0.76 

 
The classifications were compared in order to determine if there was any statistical 

difference between the two classifications.  We were not able to detect any statistical 
differences in Kappa statistics based on our sample of 1735 points [25].  The z statistic was 
1.06 (p-values = 0.02), below the critical value of 1.96 at an alpha of 0.05. 

4 DISCUSSION 

4.1 Object Segmentation 
The segmentation process was successful in the creation of semantically meaningful objects.  
Houses were easily identified in both segmentations and generally resulted in independent 
objects. This allowed contextual information in addition to spectral and elevation information 
to be used in classification.  The key for the segmentation process was the creation of 
homogeneous objects.  This was achieved through the heuristic nature and application of the 
MRS and SDS segmentation algorithms.  The results were objects that represented their land 
cover class spectrally and contextually.   
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Table 3. Error matrix for fused Quickbird/LiDAR classification. 
 

  Reference Data 
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Bare Soil 19 1 0 0 0 1 0 0 0 0 21 90% 

Building 1 166 0 2 0 4 0 0 0 0 173 96% 

Grass 45 12 172 10 0 18 7 0 4 19 287 87% 

Lake 0 0 0 37 1 0 1 0 0 0 39 94% 

River 0 0 0 0 19 0 0 0 0 0 19 100% 

Road 24 27 0 1 0 202 1 0 1 0 256 79% 

Rock 32 4 5 0 0 20 184 2 13 10 270 68% 

Shadow 0 0 0 2 1 0 0 62 0 0 65 97% 

Snow 2 1 1 0 0 0 5 0 86 2 97 89% 

Tree 4 5 11 1 4 3 5 5 1 469 508 93% 

 TOTALS 127 216 189 53 25 248 203 69 105 500 1735  

 Producer’s 

Accuracy 

15% 77% 91% 90% 84% 81% 91% 90% 82% 94%   

Overall Classification Accuracy = 91%  Overall Kappa Statistics = 0.78 

 
 The use of LiDAR resulted in objects that appeared to better reflect surface features 
compared to using Quickbird imagery alone (Fig. 2).  The addition of elevation information in 
the fused classification resulted in many more objects than the Quickbird classification.  This 
allowed objects to have a much more distinguishable shape and helped avoid situations where 
separate objects were spatially merged.  Dense housing, for example, in the Quickbird 
classification was block shaped, while the same area in the fused classification had individual 
houses that were shaped similar to their architecture (Fig. 2).    
 The issue of scale presented a problem for the segmentation process.  Previous studies 
have focused on the use of homogenous landscape regions such as primarily urban or natural 
areas [14,15,27,28).  These studies have shown the successful use of object-oriented 
classification and analysis, but have not explored the use for heterogeneous landscapes.  
There were two major land cover types within our study area, developed and undeveloped.  
Developed consisted of road networks and buildings.  Undeveloped consisted of grassland, 
river/stream, lake/pond, and forested areas.  These types have different levels of appropriate 
segmentation.  The appropriate level of segmentation to create an object representing a house 
will be smaller than the level needed for forests or grass lands.  An intermediate segmentation 
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scale was used as a compromise in order to create objects "as large as possible and as fine as 
necessary" [23].   
 

 

 
Fig. 2.  Example of Quickbird classification on the left and fused Quickbird/LiDAR classification on the 
right.  The fused classification shows more spatially distinct and realistic object boundaries with, for 
example, buildings that are more separated and rectangular and roads of more even width. 
 
 

 
 Mixed land cover objects caused difficulty in the selection of class samples.  Samples that 
represented their class while still capturing the variability of their class were selected.  This 
required the selection of some mixed land cover objects as samples of the dominant land 
cover they contained.  The spectral attributes of an object were the means of all pixels it 
comprised for each input.  Mixed land cover objects, therefore, skew the distribution of the 
response for the dominate land cover they represent.  This is a likely explanation 
misclassification rates (Fig. 3).  Objects that were predominately impervious also tended to 
have small patches of vegetation, for example.   
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Fig. 3. Comparison of Quickbird image and fused classifications showing mixed land cover objects and 
how they were discretely segmented. 
 

 
 Point based accuracy assessment does not account for mixed land cover objects.  Thus true 
accuracy is unknown.  Point based accuracy only accounts for what is on the ground at one 
particular point.  Points located on the edges of objects or part of mixed land cover objects 
could inflate error rates and lead lower accuracies.   
 Transition zones created issues in both classifications.  Bare earth and grass are not 
discrete land cover types, for example.  They often flow between each other with varying 
intensity.  This caused difficulty with the creation of distinct boundaries and resulted in the 
low accuracy for the bare soil class.   
 The object-oriented software was memory intensive and had data processing limitations.  
High-spatial-resolution images contain large numbers of pixels for small areas.  The 
Quickbird full image was 64 MB and the LiDAR image was 1.7 GB.  The software used 
could not handle the file sizes and therefore required subsetting the data and resampling the 
LiDAR data.  This created objects that did not always flow between subsets (Fig. 4).  A study 
that mapped benthic habitat on the gulf coast of Texas also needed to resample 1-m aerial 
photographs and subset the study into several smaller portions [29].  Other studies have 
focused on the use of small, less computationally demanding areas [12,14,15,27,28].  
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Fig. 4. Fused classification showing effects of subsetting images due to memory limitations. 
 

4.2 The Quickbird Classification 
Overall accuracy for the Quickbird classification was high at 90%.  Previous studies have 
found the lack of spectral depth of high-resolution sensor make pixel based classification 
difficult [9].  Classes such as roads, shadows, and water bodies have had high 
misclassification rates with traditional pixel-based classification [9,30].  Object-oriented 
classification in our study was able to overcome this through the addition of the contextual 
metrics to the classification process.  This can be seen in the low amount of confusion among 
the three classes.   
 The Quickbird classification had problems with several classes.  The bare ground class, 
for example, was often misclassified as an impervious surface or grass.  This was a result of 
the continuous nature of bare soil and the creation of discrete boundaries.  Small patches of 
bare soil were often contained in larger objects of impervious surface or grass.  The 
impervious surface classes were also confused with forest and grass.  Similar to the bare 
ground class, misclassification can be attributed to small patches not being identified.   
 Previous studies on the use of object-oriented classification have found similar results.  
One study mapped densely populated areas of Santa Barbara, California with an overall 
accuracy of 79% [30].  Another study mapped an area of mixed residential and agriculture 
land cover with an overall accuracy of 74% [31]. Both studies found that roads or building 
classes had confusion [30,31].  This was mostly a result of the two classes not being separated 
in the segmentation process, as seen in our classification.  Our classification had confusion 
with bare soil and grass.  This was overcome in one study by the use of broad classes such as 
non-photosynthetic vegetation/bare soil and general vegetation [30].  
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4.3 The Fused Classification 
The accuracy of the fused classification was slightly higher than the Quickbird classification, 
but no statistically significant differences were found.  The additional information resulted in 
the segmentation creating objects that better reflect surface objects by adding contrast in areas 
of spectrally low contrast (Fig. 5).  This can be seen in the creation of objects representing 
small groups of trees and small patches of bare soil.  The Kappa statistic did not have a 
statistically significant increase, but the estimated overall accuracy and Kappa statistic were 
higher.  This is consistent with our observations that the differences were represented by more 
accurate delineation of objects, although the total area affected by these differences was 
small, thus not significantly affecting classification accuracy.  Individual class user’s and 
producer’s accuracy also improved for many of the classes, thus reducing the error of 
commission and omission.   
 

 
Fig. 5. The addition of LiDAR information resulted in the segmentation creating objects that better 
reflected surface objects by adding contrast in areas of spectrally low contrast, as demonstrated in this 
mixed land cover area. 

 
 The fused classification had similar accuracy issues as the Quickbird.  Bare soil had a high 
rate of misclassification with impervious surfaces and grass.  Impervious surfaces had a high 
confusion with grass.  Snow also had a high misclassification rate with impervious surfaces.  
These errors can be attributed to the creation of discrete boundaries for continuous land cover 
types.  Overall, the classification had higher consistency, as there were less dramatic 
differences between the user’s and producer’s accuracies than seen in the Quickbird 
classification. 
 Previous studies have used image fusion with topographic data with great success.  
Studies have compared image fusion to single sensors and found fusion results in increased 
accuracy for pixel-based classifications due to the inclusion of elevation information to the 
classification process [17,18,19].  Our results show little improvement in overall accuracy 
when compared with the Quickbird classification.  This is a result of the success and power of 
the segmentation processing in creating objects, which can be accurately classified through 
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the addition of contextual metrics.  The addition of the LiDAR resulted in finer objects, which 
significantly reduced error rates but did not improve overall accuracy. 

5 CONCLUSION 
Object-oriented analysis and classification works well with high-resolution imagery.  Object-
oriented classification can overcome the traditional spectral limitations of high-resolution 
sensors.  The appropriate segmentation level coupled with the addition of contextual metrics 
can accurately create detailed LULC maps.  Object-oriented classification can be used to map 
accurately heterogeneous land cover areas such as dense urban areas, rural or suburban areas, 
and natural land cover.   
 Image fusion and object-oriented classification created more realistic objects.  This 
resulted in a classification that was more visually appealing.  This is advantageous if spatial 
precision required, but might not be necessary if only point-based accuracy is needed.   
 There are a plethora of future research opportunities for object-oriented classification and 
analysis.  One significant research area includes identification of an appropriate spatial 
resolution for use with object-oriented classification and analysis.  Quickbird imagery has 
high spatial resolution but is still plagued by pixilation, which blurs the boundaries of 
different land cover.  Increased class accuracy and homogenous objects might be achieved if 
the optimum spatial resolution was identified.   
 Another research area would be full utilization of contextual metrics.  Definiens software 
allows for an extreme number of metrics including standard deviations and ratios of both 
spectral and contextual metrics to be calculated.  This is a new frontier in image 
classification, as most of these have not be tested for relevance or relation to different LULC 
classes.  These new metrics need to be researched and identified in order to streamline 
classification of objects.   
 Object-oriented software also needs to be programmed so as to make full use of the 
today’s high resolution data.  Today’s technology is resulting in an increased number of 
sensors with increasing spatial resolution that require matching data handling capabilities.  
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