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A B S T R A C T

A hyperspectral imaging system was used to monitor vegetation during a subsurface controlled release

of carbon dioxide (CO2). From August 3 to 10, 2007, 0.3 tons CO2/day were released through a 70 m

horizontal pipe located at a nominal depth of 1.8 m below the surface. Hyperspectral images of alfalfa

plants were collected during the controlled release and used along with classification tree analysis to

study changes in the reflectance spectra as a function of perpendicular distance from the horizontal pipe.

Changes in the reflectance spectra near the red edge (650–750 nm) were observed over the course of the

controlled release experiment for plants within a perpendicular distance of 1 m of the release pipe. These

results indicate monitoring vegetation over a carbon sequestration site has the potential to allow

monitoring of the integrity of the CO2 storage.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

The atmospheric concentration of carbon dioxide (CO2) in the
past 250 years has increased from an average 280 parts per million
(ppm) in the preindustrial era to a current global average
concentration of 384 ppm (Barnola et al., 1987; Cuffey and Vimeux,
2001; Masarie and Tans, 1995; Monnin et al., 2001; Scripps, 2007).
The rising level of atmospheric CO2 during the industrial age is
mainly attributed to burning fossil fuels such as coal, oil, and natural
gas (Masarie and Tans, 1995; Scheffer et al., 2006; Tans, 2006a) with
annual emissions resulting from burning fossil fuels increasing from
23.5 GtCO2/year in the 1990s to 26.4 GtCO2/year from 2000 to 2005
(Keeling et al., 2005). There is growing international concern that the
increase in CO2 released in the atmosphere is altering the global
climate and environment (Alcamo and Kreileman, 1996; Hansen,
2004; IPCC, 2001b; Norby and Luo, 2006; Shackleton, 2000; Tans,
2006b; Vinnikov and Grody, 2003). International efforts are under-
way to curb the emission of CO2 into the atmosphere as a result.

One effort aimed at decreasing the emission of CO2 into the
atmosphere involves the capture of CO2 at its source, such as a power
generating facility. This CO2 is then stored in a geologic storage site
such as depleted oil wells, underground coal seams, or in deep saline
formations, effectively removing the CO2 from the atmosphere
(Herzog, 2001; IPCC, 2001a, 2005; LBNL, 2000; Xu, 2004). Carbon
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capture and storage in geologic sites have an estimated potential
capacity of 1680 GtCO2 (LBNL, 2000; Mingzhe et al., 2006; Xu, 2004).

Three industrial scale carbon capture and storage projects are
currently operating. The Sleipner Saline Aquifer Storage Project
removes 1 million tons of CO2 and stores it in a deep sub-sea brine-
filled sandstone formation (Korbol and Kaddour, 1995). The Salah
Gas Project began in 2004 and is currently storing 1 million tons of
CO2 in a depleted gas field (Knott, 2004). A third project located in
Saskatchewan, Canada is using CO2 captured by the Dakota
Gasification Plant located in North Dakota for both enhanced oil
recovery and CO2 storage in the Weyburn oil field (Whittaker,
2004; Whittaker et al., 2002). Several smaller pilot projects for CO2

storage are also under investigation (LBNL, 2000).
An important issue to ensure the successful storage of carbon

dioxide in geologic sequestration sites is the ability to monitor these
sites for leakage. The three main causes of leakage include leaking
injection wells, leakage from improperly sealed abandoned wells,
andleakagethroughgeologicfaultsandfractures(Bensonetal.,2005;
Hepple, 2002; Knauss et al., 2005; Wilson et al., 2003). Initial studies
of geologic storage sites indicate that for carbon storage to effective,
seepage rates must be less than 0.1–0.01%/year (Benson et al., 2005).

CO2 leaking from geologic storage sites might affect the
vegetation above the storage site in an observable way. The
leaking CO2 initially might cause fertilization and stimulate plant
growth. As the concentration of CO2 builds up in the soil and
displaces soil oxygen, however, plant stress begins to occur.
Anomalous plant growth and plant stress might be monitored by
utilizing different parts of the reflectance spectra generated by a
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Fig. 2. Example reflectance spectrum from an alfalfa plant taken from above. The

majority of spectra were collected from the plant leaves. Spectra from (a) a healthy

plant and from (b) an unhealthy plant are shown.

Fig. 1. Schematic of the data structure of hyperspectral images.
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hyperspectral imaging spectrometer (Dawson and Curran, 1998;
Smith et al., 2004a,b; Wilson et al., 2004), providing an indirect
method of monitoring carbon sequestration sites for CO2 leakage.
The ability to monitor carbon sequestration sites over long periods
of time for signatures of the effects of leaking CO2 on vegetation
might provide a cost effective monitoring technique for large areas
associate with the sequestration sites.

Hyperspectral imaging is used to study scenes at several
spectral bands typically in the visible to the short-wave infrared
region, 400–2500 nm. Hyperspectral imaging spectrometers work
by simultaneously capturing an image in many narrow adjacent
spectral bands (Fig. 1). Electromagnetic energy is recorded for each
spectral band for each pixel within the image. A radiance spectrum
can then be generated for each pixel from the image by plotting the
relative brightness for each spectral band as a function of
wavelength. This process is repeated for each of the pixels.

The spectral response from an alfalfa plant (Fig. 2) demonstrates
several of the spectral features associated with the spectra of
vegetation resulting from the chlorophyll and the structure of the
plant cells. In a healthy plant (Fig. 2a), chlorophyll absorbs light in
the visible part of the spectrum, 400–650 nm, with stronger
absorption in the blue and the red as compared to the green part
of the visible spectrum, thus producing a small reflectance peak
within the green wavelength range, near 550 nm for this plant. The
red edge results from the presence of the chlorophyll, which has
strong absorption in the visible but not in the infrared part of the
spectrum, and spongy leaf mesophyll, which results in high
reflectance in the near infrared portion of the spectrum. The
location of the red edge shifts toward lower wavelengths by 5–
10 nm as plants become stressed due to a decrease in the chlorophyll
(Smith et al., 2004a,b). Also, absorption of light in the red part of the
spectrum decreases and the red edge tends to flatten out as the plant
becomes stressed (Fig. 2b). The high reflectance in the near infrared
part of the spectra results from interactions with the internal cellular
structure of the leaves. The spectral reflectance drops after about
1300 nm with two water absorption bands that further decrease the
reflectance spectra at 1400 and 1900 nm. An oxygen absorption line
accounts for the sudden perceived change in the reflectance
spectrum at about 760 nm because the signal-to-noise ratio of
the spectrum becomes low here. Monitoring changes such as these
in the spectrum can give a sign of elevated CO2 levels in the soil.

The method employed for detecting differences in spectra used
Random Forest classifiers constructed from training reference data
(Breiman, 2001). The training data is a set of plant spectra with
known characteristics, such as being nearer to the CO2 release pipe
for a longer period of time, leading to greater exposure to elevated
CO2 levels. The classifier finds which characteristics of the
spectrum give the best separation among the training set classes.



Fig. 3. Map of positions of plants observed. The x-axis here is along the length of the

CO2 release pipe, while the y-axis is perpendicular to the CO2 release pipe. Plants

included in the training set are shown here.
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This can then be used to predict the classification of plant spectra
not from the training set.

From these classifiers a measure related to the plants’ exposure
to elevated CO2 levels can be derived. Regression analysis was used
to verify the relationship between this measure and the distance
from the plant to the CO2 release pipe. The results of these analyses
are described below.

This paper is organized as follows. Section 2 describes the
controlled release facility. In Section 3, the data collection at the
controlled release facility is described. An explanation of Random
Forest classifiers is provided in Section 4. The data analysis
technique is described in Section 5. A discussion of the results from
the controlled release experiment is presented in Section 6. Finally,
some brief concluding remarks are presented in Section 7.

2. Controlled release facility

The Zero Emission Research Technology (ZERT, 2005) field site
is located on a relatively flat 12-ha agricultural plot at the western
edge of the MSU-Bozeman campus in Bozeman, Montana at an
elevation of 1500 m above sea level. Typical of the geology of the
Bozeman area, thick sandy gravel deposits are overlain by several
meters of silts and clays with a topsoil blanket. The water table at
the site is quite close to the ground surface. The depth to the water
table from the ground surface was approximately 1.6–1.7 m during
the release of CO2 occurring August 3–10, 2007. From measure-
ments made the previous year, the direction of the ground water
gradient was estimated to be 178 west of north. Although highly
variable, measurement of wind direction at the site indicated
winds predominantly out of the southeast in the summer months.

The CO2 was injected through a 100 m long, 10.16 cm diameter
stainless steel pipe installed in the shallow subsurface at a depth of
1.8 m with the center 70 m of the pipe being slotted. The horizontal
pipe runs southwest to northeast approximately 458 off true north
beneath the field. This orientation was chosen to allow resolution
of vector components perpendicular to the well of potential CO2

transport both in ground water and by wind.
The well is partitioned by a system of packers into six isolated

and independent zones to improve the chances of getting an even
distribution of CO2 release along the length of the pipe and to
increase the flexibility of the system. Because each zone is
plumbed separately and has a dedicated mass flow controller, CO2

flow in each zone can be controlled independently. A uniform flow
rate was delivered to the six zones resulting in a total release of
0.3 tons CO2/day during the August 3–10, 2007 release. The CO2

injection lasted for an 8-day period. The CO2 flow rate was chosen
in the following way. For a 500 MW fossil fuel burning power plant,
approximately 4 Mtons of CO2 per year could be captured and
sequestered. Over a 50-year period this would results in a total
storage of 200 Mtons of CO2. The area of the pipe is assumed to be
approximately 0.33% of the area of a typical geologic fault. The flow
rate was chosen such that an annual seepage rate through the fault
of approximately 0.02% of the total amount stored would be
mimicked.

3. Data collection

Hyperspectral imagery was collected using a commercial
imager (Resonon, 2008) mounted on a tripod, placing the
hyperspectral imager at a distance of about 1 m from the plants
being imaged. The hyperspectral imager collected 640 � 640 pixel
images covering a ground area of approximately 20 cm � 20 cm.
The hyperspectral imager has 160 spectral channels in the 400–
900 nm spectral range with a spectral band resolution of 3.21 nm.
This spectral range is the primary area in which effects due to plant
stress may be observed. In particular, this range includes the red
edge, which is the transition region between high absorption in the
visible region due to chlorophyll and high reflectance in the near
infrared region due to spongy leaf mesophyll. The red edge
experiences the greatest degree of spectral change as plant health
deteriorates.

Much of the plant matter at the site had senesced at the time of
the experiment. An exception was the alfalfa plants. A number of
alfalfa plants were thus chosen for observation at various positions
about the release line (Fig. 3). Care was taken in choosing the plants
such that they were of approximately the same health and
flowering stage.

Data was collected by repeated measurements of the selected
plants over the course of the CO2 release. It was acquired at nearly
the same time each day, about solar noon. The hyperspectral
imager was positioned opposite to the sun such that the angle
between the hyperspectral imager’s field of view and vertical was
about the same as between the sun and vertical.

Data collection began 2 days after the start of the release and
finished 1 day after the end of the release. All of the plants selected
were imaged each day except when inclement weather conditions
prevented the completion of the data collection. This occurred for
part of the data collection on August 5 and for the entire day of
August 9.

4. Explanation of random forest classifiers

The Random Forest classifiers (Breiman, 2001) use an ensemble
(or forest) of tree-structured classifiers (Breiman et al., 1984), each
of which uses a random subset of the training set. The training set
contains data samples which have been labeled as belonging to
definite classes before the analysis has begun. The tree-structured
classifiers are constructed by separating the training set by
recursive binary splitting, where the splits are chosen based on the
explanatory variables of the training set samples. For each split, a
random subset of the bands is considered for selecting the best
split. Each tree is grown by continuing to split until each of the
lowest nodes contains only a single class. When presented with
new data, each tree in the forest returns its own classification of the
data. The Random Forest then decides on the classification by
taking the plurality vote of the classes returned by each of the trees.
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It has been shown (Breiman, 2001) that the Random Forest does
not overfit the learning set. The Random Forest misclassification
rate approaches the Bayes misclassification rate as the number of
trees grows large for training sets that well represent the
population.

5. Analysis of the spectral data

The purpose of the analysis of the data collected using the
hyperspectral imager was to detect effects in the spectra of the
vegetation resulting from the elevated subsurface CO2 concentra-
tions associated with the CO2 release. We assumed that distance
from the CO2 release pipe was a reasonable surrogate for CO2

concentration. The analysis approach developed was based on
Random Forest classifiers, described above. The training set
included as classes plants that had experienced long exposure
to elevated CO2 levels and ones that have not.

The analysis was begun by choosing a training set. The spectra
for the training set were taken from two plants near the CO2 release
pipe to maximize the effects of the CO2 on the plants. The spectra
from these two plants taken on August 6th were classified as
healthy for the training set. The spectra from these same two plants
taken August 11th were classified as unhealthy for the training set.
These dates correspond to early and late in the experiment,
respectively. Spectra from these plants were not included in any
subsequent analyses. Bias due to individual characteristics of the
plants was accounted for by using the same plants on each date,
thus allowing analysis of change rather than relative plant vigor.
From each plant image, 102,400 pixels were selected for analysis.
This represents one fourth of the total image area and was taken
out of the center of the image. Using the image center ensures that
only the alfalfa plant being observed is included, since many of the
images also included senesced grasses and soil about their edges.
This helps to ensure that these extraneous spectra are not included.
Every 100 pixels were averaged to reduce the effects of noise,
resulting in 1024 spectra from each plant.

Several statistics may be analyzed after construction of the
classifier. The out-of-bag misclassification rate, which is a good
estimate of the true misclassification rate, was 1%. An estimation of
the importance of each band can be examined as well. For this
statistic, a variable becomes more important if it is used more often
to produce good splits. A plot of the relative importance of the
bands revealed that for distinguishing between healthy and
unhealthy spectra, most of the important bands are near the red
edge of the spectra (Fig. 4). This is expected as explained above.

6. Experimental results

The classifier can be used to analyze spectra from new imagery.
The proportion of pixels classified as healthy was taken as a
Fig. 4. Band importance plot for the Random Forest classifier used. Higher numbers

indicate that the variable tended to produce significant splits more often.
measure of the health for the plant in the image. The proportion of
pixels classified as healthy versus distance from the CO2 release
pipe was plotted for each day that data was taken during the
controlled CO2 release (Fig. 5). One point at 17.2 m appeared to be a
possible outlier (Fig. 5(f)), so subsequent analysis will consider this
date both with and without that point.

The health measure remained fairly high even near the CO2

release pipe for the days earlier in the experiment. For the two last
days in the experiment, August 10 and 11, the health measure
dropped to nearly zero for the plants near the carbon dioxide
release. August 9 data was not collected due to clouds, so the
transition from mostly healthy plants at the beginning to very
unhealthy plants near the CO2 release pipe at the end might be
more or less gradual than observed here. No rise in plant health
appeared for moderate distances from the CO2 release pipe or at a
time partway into the experiment before the effect became
negative. Any fertilization effects due to the CO2 were either not
present or masked by other factors such as generalized plant
senescence.

The surface CO2 flux was non-uniform along the length of the
CO2 release pipe (Lewicki et al., 2007). It would be assumed that
non-uniform surface flux would correspond to non-uniform
underground concentrations. Thus, plants along the release pipe
would receive a variable dosage of CO2 even though their distances
perpendicular to the release would be the same. This effect may
reduce the statistical relationship between observed changes in
plant health and distance from the CO2 release pipe.

A linear regression between the distance to the release and
the health measure was evaluated for the data from each day.
Residual plots indicated that a log transformation of distance
would improve regression fits, so this was also analyzed
(distances of zero were replaced with 0.01 to avoid undefined
log values).

The Adjusted R2 values can be compared between the
regressions as the response variable (distance or logjdistancej)
was the same for each. The Adjusted R2 values indicate the portion
of sample variance that the model accounts for and are thus a
measure of the goodness of the regression. The p-values indicate
the significance of the regressions and may be compared as well
(Table 1) (Ramsey and Schafer, 2002). It would be expected that a
regression between plant health and distance from the CO2 release
would be not be significant at the start of the experiment because
there was no factor causing vegetation to change as a function of
distance from the pipe. Accordingly, the Adjusted R2 values should
be small as the model accounts for very little of the variance. As
effects caused by the CO2 becomes more pronounced it would be
expected that a regression would become more significant over
time. p-Values for August 10 and thereafter were highly significant
and substantially lower than before that date. The Adjusted R2

values were large at the same time. p-Values were not significant
Table 1
Table of Adjusted R2 and p values for regressions. ‘‘11 August (b)’’ is for the

regression done on the data from August 11th with the suspected outlier omitted.

Spectra used in the classifier training set were not used in the calculation of these

values.

Date Health to distance

regression

Health to logjdistancej
regression

Adj. R2 p-Value Adj. R2 p-Value

5 August 0.128 0.067 0.352 0.003

6 August �0.024 0.649 0.0361 0.134

7 August 0.023 0.178 0.044 0.105

8 August 0.009 0.261 �0.002 0.345

10 August 0.216 0.003 0.589 <0.0001

11 August 0.085 0.044 0.449 <0.0001

11 August (b) 0.220 0.002 0.537 <0.0001



Fig. 5. Plots of health measure versus distance. Health measure for (a) August 5th, (b) August 6th, (c) August 7th, (d) August 8th, (e) August 10th, and (f) August 11th. Plants

included in the training set are not shown.
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Fig. 7. The health measure, fraction of pixels classified as healthy, versus position for

plants that have had greater exposure to CO2. Data is from August 10th. Plants

included in the training set are not shown.

Fig. 6. The health measure, fraction of pixels classified as healthy, versus position for

plants that have had little or no exposure to CO2. Data is from August 6th. Plants

included in the training set are not shown.
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and Adjusted R2 values were small before August 10 except for
August 5, which, while significant, had a much higher p-value and
larger Adjusted R2 value than the later dates. The higher Adjusted
R2 value of The August 5 data may be due to the fact that fewer data
points were collected this day than on others, resulting in fewer
degrees of freedom, 18, for the regression compared to about 35
degrees of freedom for the other days. This was due to fewer data
points being taken on August 5 as a result of inclement weather.
The significance of the August 5 regression could potentially be
related to underlying site properties (such as soil moisture), but we
lacked the data for such analysis. These results are largely
consistent with a threshold-type response to the CO2, where the
threshold was reached between August 8th and 10th, causing the
health to decrease rapidly.

Threshold-type responses are a type of nonlinear response
common in biological systems. Some examples are those involving
positive-feedback processes such as proteolysis and blood
coagulation (Jest et al., 1993). Threshold-type functions, the
response variable does not change (or changes slowly) with
respect to the input variable until the input reaches some value
called the threshold. After this value, the response variable
responds much more greatly. In the case of this experiment, the
threshold in the degree of treatment (CO2 exposure) occurred at
some time between August 8 and 10, after which the response
(plant health) responded greatly.

The results of the CO2 release experiment can be summarized
by looking at the fraction of pixels classified as healthy as a
function of perpendicular distance from the CO2 release pipe at the
beginning and end of the CO2 release period. The health measure
versus position for plants that have not yet been exposed to large
quantities of CO2 shows little variation in the health measure
moving perpendicularly across the CO2 release pipe (Fig. 6). The
health measure versus position after the CO2 release had been
active for some time shows a very pronounced depression in the
health of the plants near the zero position, or directly over the CO2

release pipe (Fig. 7). Away from the CO2 release pipe, the health
remains at a higher value. The information in these plots indicates
that there was an effect, likely caused by elevated subsurface CO2

levels, that can be discerned from the spectral data collected by the
analysis techniques presented above.
7. Conclusions

The results of the analysis indicate a threshold response of plant
health to the injected CO2. The logarithm transform of the distance
values gave more significant regressions for all of the data. The
regressions from the health measure to distance have lower
significance values for the days of August 5th to 8th. On August
10th and 11th, the significance of the regressions is far greater than
for the earlier days. In each group of days before and after the
apparent threshold has been reached there is no clear trend to the
significance of the regressions, indicating a threshold response of
the plant health to the elevated subsurface CO2 resulting from the
injection.

This method of analysis assesses the health of plant spectra. The
important bands used in the classifier are near the red edge of the
spectra associated with the chlorophyll in the plant. These spectral
bands near the red edge change as a plant’s health changes.
Applying the classifier to hyperspectral images in the manner
described gives a measure of health for plants in the images that
vary with distance from the CO2 release in an expected manner. For
the 0.3 tons CO2/day injection rate, the plant health deteriorated
the most within a perpendicular distance of 0.5 m on either side of
the release pipe.

Symbols

Definition Symbol

Carbon dioxide CO2

Gigatons carbon dioxide GtCO2

Units

Definition Symbol

Meter m

Centimeter (10�2 m) cm

Nanometer (10�9 m) nm

Megawatt (106 W) MW

Megaton (106 tons) Mton

Parts per million ppm
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