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Abstract

Invasive nonindigenous plants are threatening the biological integrity of North American rangelands, as well as the economies that are

supported by those ecosystems. Spatial information is critical to fulfilling invasive plant management strategies. Traditional invasive plant

mapping has utilized ground-based hand or GPS mapping. The shortfalls of ground-based methods include the limited spatial extent covered and

the associated time and cost. Mapping vegetation with remote sensing covers large spatial areas and maps can be updated at an interval determined

by management needs. The objective of the study was to map leafy spurge (Euphorbia esula L.) and spotted knapweed (Centaurea maculosa

Lam.) using 128-band hyperspectral (5-m and 3-m resolution) imagery and assess the accuracy of the resulting maps. Beiman Cutler

classifications (BCC) were used to classify the imagery using the randomForest package in the R statistical program. BCC builds multiple

classification trees by repeatedly taking random subsets of the observational data and using random subsets of the spectral bands to determine each

split in the classification trees. The resulting classification trees vote on the correct classification. Overall accuracy was 84% for the spotted

knapweed classification, with class accuracies ranging from 60% to 93%; overall accuracy was 86% for the leafy spurge classification, with class

accuracies ranging from 66% to 93%. Our results indicate that (1) BCC can achieve substantial improvements in accuracy over single

classification trees with these data and (2) it might be unnecessary to have separate accuracy assessment data when using BCC, as the algorithm

provides a reliable internal estimate of accuracy.
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1. Introduction

Invasive nonindigenous plants are harmful ecologically and

economically to North American rangelands (Bangsund et al.,

1999; Sheley et al., 1996; Vitousek et al., 1996). Managers

require accurate and timely spatial information to assist with

locating and controlling small infestations before they grow too

large to eradicate effectively (Johnson, 1999) and to monitor

the effectiveness of their management strategies (Cooksey &

Sheley, 1997). Traditional survey methods such as hand

mapping and Global Positioning System (GPS) receiver

mapping (Cooksey & Sheley, 1997) specify sufficiently high

accuracies (approximately 80%) for small management areas
0034-4257/$ - see front matter D 2005 Elsevier Inc. All rights reserved.
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(Cooksey & Sheley, 1998), but might be financially, techni-

cally, and logistically impractical for many managers.

Remote sensing has been used for decades to measure and

map the biophysical characteristics of vegetation (Anderson et

al., 1976; Lawrence & Ripple, 2000; Treitz et al., 1992; Tucker

et al., 1985). Both spatial and spectral resolutions impact the

accuracy with which individual species are mapped. Moderate

resolution satellite imagery is more suited to mapping at the

community level because the spatial resolution is generally too

coarse to distinguish individual species unless represented as a

monoculture (Dewey et al., 1991; Everitt & Escobar, 1996;

Sohn & McCoy, 1997).

In contrast to satellite imagery, aerial photography is

capable of producing very high spatial resolution (often less

than 1 m). Vegetation reflectance is generally too similar in

the visible (VIS) and near-infrared (NIR) wavelengths

(Cochrane, 2000; Okin et al., 2001; Woolley, 1971), however,
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to delineate spectrally using the limited spectral dynamic

range of aerial photography (Lillesand & Kiefer, 2000).

Researchers were able to utilize both VIS and NIR spectral

characteristics, however, to photointerpret and map landscape-

scale infestations of leafy spurge (Euphorbia esula L.) with

conventional color and color infrared aerial photography in

Theodore Roosevelt National Park (Anderson et al., 1996).

Airborne digital imagery can achieve spatial resolutions

similar to aerial photography, yet methods for processing

and spectrally classifying the imagery can be automated,

allowing for more efficient landscape-scale coverage. In

Idaho, four-band multispectral imagery captured from fixed

wing aircraft and with very high spatial resolution has been

used to map several invasive plants (Carson et al., 1995; Lass

& Callihan, 1997; Lass et al., 1996).

Identifying invasive plants in a heterogeneous landscape

is difficult with multispectral imagery (Dewey et al., 1991)

because healthy vegetation exhibits similar spectral

responses in the VIS and NIR portions of the spectrum

due to similar cellular chemistry and architecture (Woolley,

1971). An alternative to multispectral imagery is hyperspec-

tral imagery (Ustin et al., 2004). The continuous nature of

spectra inherent to hyperspectral imagery might be utilized

to differentiate vegetation into taxonomic levels because of

greater information content of the data. Researchers have

applied hyperspectral imagery, for example, to map leafy

spurge in Theodore Roosevelt National Park (O’Neill et al.,

2000), undesirable woody vegetation encroaching into

grasslands in the Niobrara Valley (Wylie et al., 2000),

flowering leafy spurge in northeastern Wyoming (Parker

Williams & Hunt, 2002, 2004), flowering leafy spurge in

Idaho (Glenn et al., 2005), and hoary cress in Idaho (Mundt

et al., 2005). A particular advantage of using hyperspectral

imagery for invasive plant mapping is its potential for

determining the relative components, or unmix, pixels,

which can be especially valuable for determining percent

cover of species or detecting sub-pixel size infestations (e.g.,

Glenn et al., 2005; Mundt et al., 2005; Parker Williams &

Hunt, 2004).

We sought to map leafy spurge and spotted knapweed

(Centaurea maculosa Lam.) at two sites in Madison County,

Montana, where infestations occurred at widely varying

densities and phenological stages. Three factors provided a

substantial challenge in producing precise maps of invasive

species in our study. First, previous studies of invasive plants

using digital imagery have shown that there is a tendency for the

species to be over-classified, that is, more pixels are identified as

invasive species than actually exist (e.g., Lass et al., 2002).

Second, in our study areas, most infested sites were not uniform,

but contained a mixture of invasive species and other vegetation

present at the site (referred to herein as ‘‘co-occurring

vegetation’’). Third, there was substantial phenological variabil-

ity in the invasive species and co-occurring vegetation through-

out each of our sites, unlike most previous successful attempts at

mapping invasive species with hyperspectal imagery, making it

more difficult to identify clear spectral responses. Our attempts

to classify hyperspectral imagery for our study area using
numerous classification methods (spectral angle mapper, logistic

regression, classification trees, boosted classification trees with

See5 (Quinlan, 1993), and stochastic gradient boosting (Lawr-

ence et al., 2004)) all met with no success; all classifications

were below 70% and included at least one class accuracy in the

40% range, which was deemed well below levels necessary for

management purposes (Driscoll, 2002). We decided to test the

use of a relatively new statistical method, Breiman Cutler

classification (BCC, implemented as the randomForest package

in the R statistical program (R Development Core Team,

2005)), based on the assertion that it is particularly powerful

when there are many weak explanatory variables, characterized

as where no single variable or small group of variables can be

expected to distinguish classes (Breiman, 2001). This was the

case with our data, where no one of the 128 hyperspectral

bands could be expected to distinguish the invasive species.

BCC was developed by one of the principal developers of

classification and regression trees (CART) and is claimed to be

‘‘unexcelled in accuracy among current algorithms’’

(www.stat.berkeley.edu/users/breiman/RandomForests).

BCC is a bagging (bootstrap aggregation) operation, where

multiple classification trees are developed, each one based on a

random subset of the training data observations (Breiman,

2001; Lawrence et al., 2004). In addition to this normal

bagging function, in BCC, each classification tree split is based

on a random subset of the input variables, in our case spectral

information. The multiple classification trees then vote by

plurality on the correct classification. BCC (under the name

randomForest) has been used successfully for studies of

clinical drugs (Gunther et al., 2003), structural genomics

(Goh et al., 2004), molecular epidemiology (Schwender et

al., 2004), vegetation mapping related to climate change

(Iverson et al., 2004), and recently in remote sensing studies

(Bunn et al., 2005; Pal, 2005).

BCC has several advantages over other classification tree-

based approaches (Breiman, 2001; Liaw & Wiener, 2002).

Pruning of trees is not necessary and the approach is robust to

overfitting, a problem that plagues classification trees. It is

easier to use than many other ensemble classification methods,

with the only parameters to be set being the number of trees

grown and the number of variables used at each tree split;

however, it has been shown to be not very sensitive to the

setting of either of these parameters. It also is claimed that BCC

can provide a reliable estimate of error using the data that is

randomly withheld from each iteration of tree development (the

‘‘out-of-bag’’ portion), making it unnecessary to have an

independent accuracy assessment data set (Breiman, 2001).

We found this claim particularly intriguing, as it would enable

all collected data to be used for training and potentially

substantially reduce the field effort required for remote sensing

studies.

The specific objectives of our study were to examine the

ability of hyperspectral imagery and BCC to classify two

invasive species, leafy spurge and spotted knapweed, in

southwest Montana rangeland. We examined further whether

the internal assessment of accuracy from BCC was as reliable

as an independent accuracy assessment data set.

http://www.stat.berkeley.edu/users/breiman/RandomForests
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2. Methods

The imagery covered two sites in Madison County,

Montana, each site approximately 1024 ha in area (Fig. 1).

The leafy spurge site is located 16 km southwest of Twin

Bridges at the southern end of the Highland Mountains

(UTM extents: 384023E, 5092295N and 387239E,

5039036N; NAD83, Zone 12). Average annual precipitation

is 30 cm (Boast & Shelito, 1989). Physiography predomi-

nantly consists of upland fans dissected with ephemeral

streams and terraces of the Big Hole River. Native vegetation

is a mix of grasses, forbs, and shrubs, including Bouteloua

gracilis (H.B.K.) Lag. (blue grama), Poa sandbergii Vasey

(Sandberg bluegrass), Pascopyrum smithii Rydb. (western

wheatgrass), Pseudoroegneria spicatum Pursh. (Love) (blue-

bunch wheatgrass), Hesperostipa comata Trin. and Rupr.

(needleandthread), Nassela viridula Trin. (green needlegrass),

Artemisia tridentata Nutt. (big sagebrush), and Chrystham-

nus nauseosus (Pall.) Britt. (rabbitbrush) (Boast & Shelito,

1989). Leafy spurge primarily occupied drainage bottoms

and surrounding hillsides and grew in association with native

vegetation in low to high density infestations and occasion-

ally grew in dense monocultures. Leafy spurge was growing

in various phenological stages on the date the image was

captured, ranging from bright yellow-green flowering to early

senescence.
Fig. 1. Leafy spurge and spotted knapweed were mapped at two locations in

Madison County, southwest Montana.
The second site, located in the northern foothills of the

Gravelly Range and including the town of Virginia City and

areas due west and south (UTM extents: 422693E, 5017404N

and 425887E, 5014094N; NAD83, Zone 12), was dominated

by spotted knapweed. Average annual precipitation is 30 cm

(Boast & Shelito, 1989). Physiography predominantly consists

of upland hills and ridges of the Gravelly Mountains and

floodplains of perennial streams. Native vegetation consisted of

mixed rangeland-forest types, including P. spicatum, Festuca

idahoensis Elmer (Idaho fescue), S. comata, Carex filifolia

Nutt. (threadleaf sedge), Lupinus L. spp. (lupine), A. tridentata,

C. nauseosus, Gutierrezia sarothrae (Pursh) Britt. and Rusby.

(broom snakeweed), Symphoricarpos albus (L.) Blake (snow-

berry), Juniperus scopulorum Sarg. (juniper), Populus tremu-

loides Michx. (aspen), and Populus deltoides Marsh.

(cottonwood) (Boast & Shelito, 1989). In addition, the non-

native grass Bromus tectorum L. (cheatgrass) infested portions

of the site. Spotted knapweed was growing in various

phenological stages on the date the imagery was captured,

ranging from recent flowering to early senescence. Spotted

knapweed infestations tended to be mixed with other vegeta-

tion and had a higher percentage of bare soil exposed than the

leafy spurge site.

The hyperspectral imagery was obtained in August 1999

using the Probe-1 sensor. We converted the imagery to

relative reflectance using the internal average relative

reflectance algorithm (Kruse, 1988), since we had no ground

reference spectra. A minimum noise fraction (MNF)

transformation was performed to control for noise in the

imagery (Green et al., 1988). Specifications for Probe-1 cite

a ground resolution of 5 m when flying at an average height

above ground level of 2500 m (Earth Search Sciences,

2004), although resolution at the leafy spurge site was

approximately 3 m. Probe-1 records reflected electromagnet-

ic energy in 128 bands in a nearly continuous spectral range

from 440 to 2507 nm (from blue through shortwave

infrared). Imagery was georegistered (RMSE<1.0 pixels)

to a digital orthophotoquad (DOQ), which in turn had an

estimated accuracy of 6 m.

Crews collected ground reference polygons of the target

invasive species (leafy spurge or spotted knapweed) and co-

occurring vegetation from August 16 to 20, 1999, using GPS

receivers that had an accuracy of 2–5 m after differential

correction (Marshall, 1996). We randomly located transects

within a grid overlaid on the study sites and sampled target

invasive species and co-occurring vegetation polygons along

each transect by circumnavigating patches where the target

species was either present or absent. Field data collected for

this study resulted in 120 weed polygons and 64 co-

occurring vegetation polygons at the spotted knapweed site

and 38 weed polygons and 68 co-occurring vegetation

polygons at the leafy spurge site. Sizes of invasive species

infestations ranged from 6 to 507 m2 and percent of plots

infested ranged from 5% to over 50%, based on ocular

estimations. GPS field data were differentially corrected and

were further adjusted to align with the imagery by reference

to DOQs.



Table 1

Error matrix and accuracy totals for spotted knapweed based on full data sets

Spotted knapweed accuracy

Classified data Reference data

Co-occurring

vegetation

Spotted

knapweed

Row

totals

Co-occurring

vegetation

540 90 630

Spotted knapweed 42 133 175

Column totals 582 223 805

Producer’s accuracy User’s accuracy

Co-occurring

vegetation

93% Co-occurring

vegetation

86%

Spotted knapweed 60% Spotted

knapweed

76%

Overall accuracy 84%

Khat 0.56

Accuracy assessments are based on out-of-bag estimates of error. Observations

are based on number of pixels within each class.
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We used the randomForest package in R (Liaw &

Wiener, 2002) to classify the imagery. We developed BCC

models with 500 classification trees each; exploratory graphs

indicated that error rates became stable well before this

number of trees was developed. All 128 bands were

included as potential variables for the models. The number

of bands used at each tree split was optimized based on out-

of-bag estimates of error (Liaw & Wiener, 2002). Models

were developed using the entire reference data set and

accuracy was evaluated based on the out-of-bag estimation

of error. The out-of-bag estimates of error were developed

using the one-third portion of the data that was randomly

excluded from the construction of each of the 500

classification trees, with a different one-third randomly

selected for exclusion from each classification tree. This is

an internal estimate of error, as opposed to withholding a

portion of the data from all model building for an

independent estimate of error after the model is built. The

estimation of error was based on correctly classified pixels

because the classification, and therefore the out-of-bag

estimation of error, was pixel based. Other approaches to
Table 2

Error matrix and accuracy totals for leafy spurge based on full data sets

Leafy spurge accuracy

Classified data Reference data

Co-occurring

vegetation

Leafy

spurge

Row

totals

Co-occurring vegetation 702 96 798

Leafy spurge 50 189 239

Column totals 752 285 1037

Producer’s accuracy User’s accuracy

Co-occurring vegetation 93% Co-occurring

vegetation

88%

Leafy spurge 66% Leafy spurge 79%

Overall accuracy 86%

Khat 0.62

Accuracy assessments are based on out-of-bag estimates of error. Observations

are based on number of pixels within each class.
error estimation for high spatial resolution data, such as

polygon-based estimates, have been advocated (e.g., Glenn

et al., 2005), but were not consistent with this classification

approach. The larger number of co-occurring vegetation

pixels, relative to weed pixels, in each data set resulted in a

bias in the estimates of overall accuracy toward the class

results for co-occurring vegetation. To evaluate the reliability

of the out-of-bag accuracy assessment, we also tested the

more traditional approach by randomly dividing the refer-

ence data polygons for each site into two equal data sets,

developing models using one-half of the data, and predicted

classifications for the withheld half of the data. We

compared the out-of-bag accuracy assessment of the training

data to the accuracy of the predictions for the withheld data.
Fig. 2. Graphs showing change in out-of-bag accuracy estimation (in terms of

error rates) with increase in number of classification trees. Out-of-bag estimated

error rates are computed continuously as additional classification trees are built.

Estimates based on the full model (500 classification trees) are hypothesized to

be unbiased estimates of error, but estimates based on a small number of trees

are likely unreliable. Black lines represent overall accuracy, light gray lines

represent weed class accuracy, and medium gray lines represent co-occurring

vegetation accuracy.



Table 4

Error matrix and accuracy totals for leafy spurge based on reduced data set

Leafy spurge accuracy

Classified data Reference data

Co-occurring

vegetation

Leafy

spurge

Row

totals

Co-occurring

vegetation

354/353 47/43 401/396

Leafy spurge 24/28 93/95 117/123

Column totals 378/381 140/138 518/519

Producer’s accuracy User’s accuracy

Co-occurring

vegetation

94%/93% Co-occurring

vegetation

88%/89%

Leafy spurge 66%/69% Leafy spurge 79%/77%

Overall accuracy 86%/86%

Khat 0.63/0.64

Numbers represent results for out-of-bag estimates/assessment for withheld

data.
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3. Results and discussion

Estimated overall accuracy from out-of-bag data for the full

data sets was 84% (Khat=0.56) for the spotted knapweed site

(Table 1) and 86% (Khat=0.62) for the leafy spurge site (Table

2). Class accuracies for the spotted knapweed site ranged from

60% for spotted knapweed producer’s accuracy to 93% for co-

occurring vegetation producer’s accuracy (Table 1). User’s

accuracy was somewhat more consistent for the spotted

knapweed site, 76% for spotted knapweed and 86% for co-

occurring vegetation. The largest source of error was spotted

knapweed being classified as co-occurring vegetation.

The leafy spurge site had very similar class accuracies to the

spotted knapweed site (Table 2). Leafy spurge producer’s and

user’s accuracies were slightly higher, at 66% and 79%,

respectively, than spotted knapweed. Co-occurring vegetation

producer’s accuracy was the same as at the spotted knapweed

site, 93%, while user’s accuracy was 2% higher at 88%. Again

the main source of error was weed locations being incorrectly

classified as co-occurring vegetation.

These results are particularly remarkable when compared

to other classification attempts with these data (Driscoll,

2002). Spectral angle mapper, for example, had overall

accuracies of 40% and 66% for the spotted knapweed and

leafy spurge sites, respectively, maximum likelihood had

48% and 50%, and conventional classification trees had 65%

and 70%. In all of these attempts, at least one class accuracy

was 41% or less. BCC provided graphical output that

demonstrated, based on out-of-bag accuracy estimation,

how accuracies change as numbers of classification trees

are increased (Fig. 2). The starting point is a single

classification tree. It can be seen that accuracies increase

substantially as trees are added to the model, eventually

stabilizing after less than 50 trees. Out-of-bag estimates of

accuracy might be less reliable, however, when there are

very few trees in the model.

Our evaluation of the reliability of the out-of-bag estimates

of accuracy supported the position that these estimates are
Table 3

Error matrix and accuracy totals for spotted knapweed based on reduced data

set

Spotted knapweed accuracy

Classified data Reference data

Co-occurring

vegetation

Spotted

knapweed

Row

totals

Co-occurring

vegetation

278/262 43/49 321/311

Spotted knapweed 20/21 62/70 82/91

Column totals 298/283 105/119 403/402

Producer’s accuracy User’s accuracy

Co-occurring

vegetation

93%/93% Co-occurring

vegetation

87%/84%

Spotted knapweed 59%/59% Spotted knapweed 76%/77%

Overall accuracy 84%/83%

Khat 0.56/0.55

Numbers represent results for out-of-bag estimates/assessment for withheld

data. Observations are based on number of pixels within each class.
reliable. All overall and class accuracies from the reduced

modeling data sets, based on the out-of-bag estimates, and the

withheld data from the reduced data sets, which provided our

independent accuracy assessments, were within 3%, and most

estimates were less than 1% apart (Tables 3 and 4). These

accuracy assessments from the reduced data sets were also

nearly identical to the out-of-bag accuracy assessments from

the full data sets (compare Table 1 with Table 3 and Table 2

with Table 4). This supports the assertion that, with BCC, it is

not necessary to have a separate accuracy assessment data set.

We believe that this assertion should receive considerable

additional testing with other data before it is accepted as a

substitute for reliable independent accuracy assessments. This

could provide a tremendous saving of resources for remote

sensing studies if sufficient studies show that these out-of-bag

estimates of accuracy are reliable. We caution, however, that

this conclusion is based on the assumption that there is no bias

in the reference data. If there is a bias in the reference data, that

bias will be present in the accuracy assessment and the results

will not be reliable. We protected against bias in our study by

randomly locating all reference plots, but this is not always

practical.

Our results might have been adversely affected by, among

other things, registration errors, a common issue with high

spatial resolution data (e.g., Aspinall et al., 2002; Glenn et al.,

2005). Error existed in our reference DOQ (estimated up to 6

m), image registration to the DOQ (estimated at 1 m), and the

corrected GPS data (estimated at 2 to 5 m). The compound

effect of these sources of error likely resulted in some level of

misalignment between the imagery and our ground reference

data.

BCC was able to provide reasonable accuracies for what

have been difficult data sets to classify. The internally

generated out-of-bag accuracy assessments were shown to be

reliable, potentially obviating the need to collect separate

assessment data. The implementation of BCC in the R statistics

package (as the randomForest package) makes it available to

analysts free of charge. We believe, based on our relatively

high accuracies, ease of use, low cost, and possibly no need for
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independent accuracy assessment, it is worth considering BCC

for remote sensing classification problems in the future.
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