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1. Introduction 

 1.1 An agnostic approach to image analysis 

 More statistical methods are being used in remote sensing analyses than ever before, 

resulting in many cases in much higher accuracies than traditional methods (such as the 

maximum likelihood classifier for extracting thematic data and multiple linear regression for 

extracting continuous responses).  Methods such as random forest (e.g., Lawrence et al., 2006) 

and support vector machines (e.g., Mountrakis et al., 2011) have found particular favor, even 

while not being available in most commercial image processing software packages. 

 The reliance on one or a few statistical methods, however, can lead to accuracies below 

what might otherwise be readily achieved.  A study using 30 datasets and six classification 

methods (Lawrence and Moran, 2015), including random forest, C5.0, logistic model trees, 

support vector machines, multivariate adaptive regression splines, and classification tree 

analysis, demonstrated that each method, other than classification tree analysis, was superior to 

all other methods for at least one dataset.  A recent unpublished experiment by one of the authors 

with a university remote sensing class had each student test five different statistical methods 

(from a suite of 12 methods) on both a classification dataset and a continuous response dataset.  

Most methods provided the best results with at least one dataset. 

 Every dataset has a distinctive, and often complex, data structure.  Each statistical method 

has explicit or implicit assumptions with respect to data being analyzed.  In-depth knowledge of 

the structure of a dataset and the assumptions underlying the wide range of statistical methods 

available could, theoretically, enable an analyst to select the best statistical method to apply to a 

particular dataset a priori.  The reality is that neither the necessary knowledge with respect to the 

data nor the methods are commonly, if ever, fully available.  An analyst is, therefore, best served 
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by evaluating multiple methods, if such can be done with acceptable efficiency.  We present in 

this paper one way to conduct this “agnostic” approach to image analysis, using the free 

statistical program R. 

 1.2 Using R for image analysis 

 There are many commercial and non-commercial image processing software packages, as 

well as many statistical and data analysis packages that can be used for remote sensing image 

analysis.  We present an approach using R, but in no way purport to suggest that it is the only, or 

even the best, software solution.  R does pose several advantages, however.  First, the “raster” 

package in R provides the ability to readily handle a wide range of commonly used raster formats 

within an advanced statistical framework.  Perhaps most important, a large number of statistical 

methods are available within R for creating predictive models.  We are aware of 76 methods that 

can be used for classification or regression (e.g., continuous response modeling), an additional 

91 methods that can only be used for classification, and an additional 50 that can only be used 

for regression.  Many of these methods might not be appropriate for remote sensing applications 

and most likely have never been evaluated for that purpose.  The availability in R of this wide 

range of methods (with more constantly being made available), however, makes it a compelling 

choice.  A third important advantage we have found in using R is the “caret” package.  The caret 

package provides an analyst with several features not commonly available, even with software 

that might otherwise have modern methods, such as random forest or support vector machines.  

The caret package function “train” tunes each model using a resampling approach, which should 

improve model performance when compared to accepting a method’s default parameters.  The 

caret package also standardizes the format of model predictions to meet the needs of most remote 

sensing analyses.  This is particularly important for some methods in R.  Some neural network 
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methods, for example, do not provide final predicted classes, but instead provide a probability 

matrix for each class for each observation.  This might be useful for some analyses, but for most 

remote sensing applications, the desired output is the most probable class.  The caret package 

standardizes predictions across methods to provide final class or continuous predictions, as 

appropriate. 

 Using R also comes with some important challenges.  R is a command line programming 

environment, and it therefore requires a steeper learning curve than most image processing 

packages.  We have attempted to alleviate that issue by providing code in this article to meet 

most needs, but some working knowledge of R is still necessary.  This is particularly true 

because R is updated often, and these updates will sometimes result in the need to make 

adjustments, almost always minor, to prior code.  Some knowledge of R coding is needed, 

therefore, if only to adjust prior code, such as that provided here, for potential changes.  There 

are also likely differences in many datasets than those we have tested that might require code 

adjustments.  Third, R is limited in terms of data size handling ability, although the raster 

package should fulfill many remote sensing needs; an analyst with a very large dataset might 

find that R is unable to handle it.  Anecdotally, we have been able to handle four mosaicked 

Landsat 8 images without issue, while a colleague was unable to analyze a 1-m NAIP mosaic for 

the state of Montana (which requires all or part of 37 Landsat images, by way of reference).  

Finally, R can be notoriously slow to run code when compared to many other programming 

languages.  Various approaches exist to alleviate this issue somewhat, but we have had very 

limited success with most approaches.  An approach that has been useful is to run multiple 

instances of R when comparing multiple methods, with different methods running in different 
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instances, Success with this approach depends on the number of cores and amount of physical 

memory in the analyst’s computer. 

2. R Workspace Setup 

 R commands in the following sections are indented in courier new font.  It should be 

possible to copy and paste these commands into R, but doing this directly might cause issues.  R, 

for example, only recognizes straight quotes, not Word's "smart quotes".  Copying commands 

first to a plain text editor, such as Microsoft Notepad, can ensure that unintended formatting does 

not get copied into R. 

 Workspace setup should include at least the following four steps: (1) set up a folder for 

your analysis; (2) set your workspace in R; (3) install needed libraries; and (4) load needed 

libraries.  We recommend that you establish a folder on your computer solely for the analysis 

being conducted and include in the folder only the files being used in the analysis.  A 

classification using a single image, with shapefiles for training and accuracy assessment data, 

should contain only those files (and possibly applicable R code).  This directory will also receive 

the output from your analysis. 

 The following libraries need to be installed to conduct the analyses presented in this 

paper: 

caret, doParallel, e1071, maptools, pbkrtest, raster, 

rgdal, shapefiles, sp   

Additional libraries will be needed depending on the statistical methods being used.  We have, to 

date, tested this code with the following methods: C5.0, classification and regression tree 

analysis, conditional inference random forest, cubist, k-nearest neighbors, learning vector 

quantization, linear discriminant analysis, multivariate adaptive regression splines, naïve Bayes, 

neural networks, partial least squares, random forest, regression trees with gradient boosting, 
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ridge regression, stacked autoencoder deep neural network, stepwise linear regression, and 

support vector machines (with linear, radial, and polynomial kernels) .  The following libraries 

should be installed to enable all of these methods (some can be excluded if a certain method is 

not being used, additional libraries might be needed for other methods not listed): 

C50, class, Cubist, deepnet, earth, elasticnet, foba, kernlab, 

kknn, klaR, MASS, mboost, nnet, party, pls, plyr, 

randomForest, rpart, xgboost  

Load the base libraries and enable parallel processing (if you have a multicore computer) from 

the R command line using the following: 

library(raster) 
library(shapefiles) 
library(sp) 
library(rgdal) 
library(caret) 
library(e1071) 
library(doParallel) 
library(maptools) 
registerDoParallel(cores=x) ### Replace x with number of cores 
you wish to allocate. 

 
Caret should load the additional libraries as needed for particular methods. 

3. Image preparation 

 Imagery that is in an acceptable format (Table 1) can often be used as is.  Special 

considerations might arise, however, when either one of the layers is categorical or when the 

image study area is not rectangular. 

 Predicting responses, whether for validating a model or for creating a predicted raster 

image, requires that all categorical values be represented in both the data used to create the 

model and the data being predicted.  It is, therefore, necessary to ensure that both training and 

validation data include all categories for any categorical variables.  For example, an aspect layer 
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might include categories for north, west, south, east, and flat; it would be necessary for all five 

categories to be represented in training and validation data.  Failure to do so will result in the 

inability to generate an accuracy assessment confusion matrix or generate an output predicted 

image. 

 Non-rectangular image study areas require a background value for areas outside the study 

area.  A common practice is to set this value to zero; however, this practice creates two potential 

issues.  True zero values (which can appear, for example, in NDVI data) cannot be differentiated 

from zero-designated background values.  Ignoring zeros in the analysis will avoid confusion 

with the background, but will also result in the failure to predict output values where true zeros 

exist.  Second, categorical layers, if present, will result in errors, because the background 

category of zero will not be present in the training data, resulting in prediction errors, per the 

preceding paragraph.  We recommend, in this case, that an alternative background value be set 

that is not present in any raster layer, such as the largest value present in any raster layer plus 1.  

For example, if the raster image's largest value was an elevation of 2437 m, the background 

value could be reset to 2438 before bringing the image into R.  The code we provide includes 

optional lines for designating such values as NA when producing output images (we assume that 

no such values will exist in training or validation data), which can then be removed from the 

analysis using na.action = na.omit as an argument. 

4. Importing Data 

 Reference data can be in many different formats.  We have included appropriate code for 

many common formats, including several shapefile arrangements and csv formatted text data (we 

recommend converting ASCII, spreadsheet, and text formats csv format; Excel Save As has this 

as an option, for example).  Data may also be imported as a single dataset and randomly divided 
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into training and validation, in which case the data should be imported using the code for training 

data and then divided using the code provided under instructions for importing validation data. 

Our experience has resulted in a practice of combining all input raster data into a single, 

multi-layer file (we commonly use img file format).  R includes code that should allow separate 

import of various raster data (e.g., a Landsat image and a separate digital elevation model) and 

stacking within R; however, we have never had success in doing so, receiving errors claiming 

different extents.  The following sections provide sample code for importing data in various 

formats. 

 4.1 Importing classification training data 

 4.1.1 Shapefiles, one shapefile for each class.  Each shapefile should be named with the 

name of the desired output class, followed by "train" (e.g., watertrain.shp).  Lines that begin with 

“###” are comments that indicate what the following step in the code is doing but do not call any 

code. 

### Get the names of the training shapefiles 
train.files <- list.files(pattern="*train.*shp") 
### Read in the raster image.  Replace image with the name of 
the image. 
img <- stack("image") 
### Create an object to receive the training data 
train.full <- NULL 
### This loop extracts the training data for each shapefile 
and adds it sequentially to the training dataset. 
for (x in seq_along(train.files)) {      
  ### Read in the a shapefile 
  train.locations <- readShapePoly(train.files[x]) 
  ### Extract values from the image for the shapefile area. 
  train.predictors <- extract(img, train.locations) 
  ### Combine the data from multiple polygons in the 

shapefile.  If the data is in a point shapefile instead of 
polygons, skip this next line. 

  train.predictors <- as.data.frame(do.call(rbind, 
train.predictors))   

  ### Add a column for the class type and populate it.   
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  train.by.class <- cbind(train.predictors, "types" = 
substr(train.files[x], 1, nchar(train.files[x])-9))  

  ### Combine the data with data from previous loops. 
  train.full <- rbind(train.full, train.by.class) 

  } 
 
 4.1.2 One shapefile with multiple classes.  This shapefile must have at least one field that 

identifies the classes (in the code below, the field is called “types”).  The shapefile can be of any 

feature type, but different code must be used for points versus any other type.   

### Read in the raster image.  Replace image with the name of 
the image. 

img <- stack("image") 
### Read in the training shapefile.  Replace shapefile with 
the name of the shapefile.  The shapefile should have an 
attribute named "types" for class designations (e.g., 
water). 

train.locations <- readShapePoly("shapefile") 
### Create an object to receive the training data. 
train.full <- NULL   
### This loop extracts the training data for each class and 
adds it sequentially to the training dataset. 

for (i in 1:length(unique(train.locations[["types"]]))){ 
  ### Sequentially extract the name for each unique class.                           
  train.type <- unique(train.locations[["types"]])[i] 
  ### Sequentially create a spatial polygon object for each 

class. 
  train.type.locations <- train.locations 

[train.locations[["types"]] == train.type,] 
  ### ### Extract values from the image for the subset of the 

shapefile area. 
  train.by.class <- extract(img, train.type.locations) 
  ### Combine the data from multiple polygons in the 

shapefile.  If the data is in a point shapefile instead of 
polygons, skip this next line. 

  train.by.class <- as.data.frame(do.call("rbind", 
train.by.class)) 

  ### Add a column for the class type and populate it. 
  train.by.class <- cbind(train.by.class, "types" = 

as.character(category)) 
  ### Combine the data with data from previous loops. 
  train.full <- rbind(train.by.class, train.full) 
} 
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 4.1.3 Csv files, one csv file for each class.  Each csv file should be named with the name 

of the desired output class, followed by "train" (e.g., foresttrain.csv) and should only contain the 

coordinates for the training data, with columns headed x and y.  

### Get the names of the training csv files. 
train.files <- list.files(pattern="*train.*csv") 
### Read in the raster image.  Replace image with the name of 
the image. 

img <- stack("image") 
### Create an object to receive the training data. 
train.full <- NULL 
### This loop extracts the training data for each csv file and 
adds it sequentially to the training dataset. 

for (x in seq_along(train.files)) {      
  ### Read in the csv file. 
  train.locations <- read.csv(train.files[x]) 
  ### Set the values in the csv data to be coordinates. 
  coordinates(train.locations) <- c("x","y") 
  ### Extract values from the image for the point locations. 
  train.predictors <- as.data.frame(raster::extract(img, 

train.locations)) 
  ### Add a column for the class type and populate it.   
  train.by.class <- cbind(train.predictors, "types" = 

substr(train.files[x], 1, nchar(train.files[x])-9))  
  ### Combine the data with data from previous loops. 
  train.full <- rbind(train.full, train.by.class) 

  } 
 
 4.1.4 Csv file with training data already extracted and assembled.  Data can, of course, 

be extracted using alternative methods and programs.  Data assembled outside of R that is to be 

used with the code in this article should have a column for the data from each band and a column 

headed "types" containing class names for each observation.  Do not change this code to use the 

word "class" as the variable name for the classes, as this is a reserved word in R. 

### Read in the training data, replacing the filename with the 
name of the csv file. 

train.full <- read.csv("my-data-file.csv") 
 

4.1.5 Object-oriented datasets.  Data preparation for object-oriented analysis will 

depend on the software being used to create the objects.  One approach is to convert the objects 
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to a shapefile and then to use the resulting shapefiles in a training/validation role as described 

earlier. Another approach would be to export the data to a text file, which can then be imported 

using the directions for csv files. The object-oriented approach is most useful when the landscape 

can be partitioned into homogeneous groupings of pixels based on an auxiliary layer, such as 

agricultural landscapes delineated at the field level by a using a cadastral layer (Long et al., 

2013).  

 4.2 Importing classification accuracy assessment data 

 Importing accuracy assessment data is, for the most part, the same as training data.  The 

corresponding code is provided in the following sections, where the object names have been 

changed to reflect that accuracy assessment validation data is being prepared.  We have removed 

comments, since the processes are the same as with the training data.  An exception is provided 

for cases when accuracy assessment data is created by extracting a subset from a full dataset that 

was imported as training data. 

4.2.1 Shapefiles, one shapefile for each class.  Each shapefile should be named with the 

name of the desired output class, followed by "valid" (e.g., watervalid.shp). 

valid.files <- list.files(pattern="*valid.*shp") 
valid.full <- NULL 
for (x in seq_along(valid.files)) {      
  valid.locations <- readShapePoly(valid.files[x]) 
  valid.predictors <- extract(img, valid.locations) 
  ### If the data are in a point shapefile instead of 

polygons, skip this next line. 
  valid.predictors <- as.data.frame(do.call(rbind, 

valid.predictors))   
  valid.by.class <- cbind(predicotrs.valid, "types" = 

substr(validdat[x], 1, nchar(validdat[x])-9))  
  valid.full <- rbind(valid.full, valid.by.class) 

  } 
 
 4.2.2 One shapefile with multiple classes.  This shapefile must have at least one field that 

identifies the classes (in the code below, the field is called “types”).  The shapefile can be of any 



12 
 

feature type, but different code must be used for points versus any other type.  The comments 

below indicate which code to use for points and which to use for other types. 

 
valid.locations <- readShapePoly("shapefile") 
valid.full <- NULL   
for (i in 1:length(unique(valid.locations[["types"]]))){ 
  valid.type <- unique(valid.locations[["types"]])[i] 
  valid.type.locations <- valid.locations 

[valid.locations[["types"]] == valid.type,] 
  valid.by.class <- extract(img, valid.type.locations) 
  ### If the data is in a point shapefile instead of polygons, 

skip this next line. 
  valid.by.class <- as.data.frame(do.call("rbind", 

valid.by.class)) 
  valid.by.class <- cbind(valid.by.class, "types" = 

as.character(category)) 
  valid.full <- rbind(valid.by.class, valid.full) 
} 

 
 4.2.3 Csv files, one csv file for each class.  Each csv file should be named with the name 

of the desired output class, followed by "valid" (e.g., forestvalid.csv) and should only contain the 

coordinates for the validation data, with columns headed x and y.  

valid.files <- list.files(pattern="*valid.*csv") 
valid.full <- NULL 
for (x in seq_along(valid.files)) {      
  valid.locations <- read.csv(valid.files[x]) 
  coordinates(valid.locations) <- c("x","y") 
  valid.predictors <- as.data.frame(raster::extract(img, 

valid.locations)) 
  valid.by.class <- cbind(valid.predictors, "types" = 

substr(valid.files[x], 1, nchar(valid.files[x])-9))  
  valid.full <- rbind(valid.full, valid.by.class) 

  } 
 
 4.2.4 Csv file with accuracy assessment data already extracted and assembled.  Data 

assembled outside of R that are to be used with the code in this article should have a column for 

the data from each band and a column headed "types" containing class names for each 
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observation.  Do not change this code to use the word "class" as the variable name for your 

classes, as this is a reserved word in R. 

valid.full <- read.csv("my-data-file.csv") 
 

4.2.5 Random extraction of accuracy assessment data from imported training data.  This 

is a common practice.  The statistical appropriateness of this approach is not addressed in this 

article, although analysts should be aware of issues related to use of non-independent data for 

validating results. 

### Get the number of entries (rows) in the data. 
x <- nrow (train.full)  
### Create index numbers for extracting the training data.  
The example is set for 75% training, but this can be changed. 

train.index <- sample (1:x, (x * 0.75))  
### Create index numbers for the rest for validation. 
valid.index <- setdiff (1:x, train.index)  
### Extract the training data to a temporary object. 
train.temp <- train.full[train.index,]  
### Extract the validation data. 
valid.full <- train.full[valid.index,]  
### Rename the training data to match the rest of the code. 
train.full <- train.temp 

 
4.3 Importing continuous training and validation data 

4.3.1 Point shapefile with values as an attribute.  These shapefiles must have at least one 

field that identifies the continuous values (in the code below, the field is called “amount”). 

### Create objects to receive the training and validation 
data. 

train.full <- NULL 
valid.full <- NULL 
### Read in the raster image.  Replace image with the name of 
the image. 

img <- stack("image") 
### This process extracts the training data within the 
shapefile. 

### Read in the shapefile.  Replace the shapefile argument 
with the full name of the training shapefile. 

train.locations <- readShapePoints("shapefile") 
### Extract values from the image for the shapefile area. 
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preidctors.train <- extract(img, train.locations, df=TRUE) 
### Add continuous amount to the "amount" column in the data 
frame directly from the shapefile. 

train.full <- cbind(train.predictors, "amount" = 
train.locations$amount) 

### Omit the following steps if validation data will be 
randomly extracted from the full training dataset. 

### Read in the shapefile.  Replace the shapefile argument 
with the full name of the validation shapefile. 

valid.locations <- readShapePoints("shapefile") 
valid.predictors <- extract(img, valid.locations, df=TRUE) 
valid.full <- cbind(valid.predictors, "amount" = 
valid.locations$amount) 

 
 4.3.2 Csv files with location and value data.  The csv file should contain three columns.  

The following code assumes these are labeled x, y, and amount, and that the files are named 

"train.csv" and "valid.csv", respectively. 

### Read in training text file. 
train.locations <- read.csv("train.csv") 
### Read in validation text file. 
valid.locations <- read.csv("valid.csv") 
### Read in the raster image.  Replace image with the name of 
the image. 

img <- stack ("image") 
### Identify the locational information. 
coordinates(train.locations) <- c("x", "y") 

  ### Extract predictor data from the image. 
  train.predictors <- raster::extract(img, train.locations) 
  ### Extract the training values. 
amount <- train.locations$amount 
### Combine the response and predictor data. 
 train.full <- cbind(amount, train.predictors) 
 ### Repeat the steps for the validation data. 
 coordinates(valid.locations) <- c("x", "y") 
 valid.predictors <- raster::extract(img, valid.locations) 
 amount <- valid.locations$amount 
 valid.full <- as.data.frame(cbind(amount, valid.predictors)) 

 
4.3.3 Csv files with data already extracted and assembled.  Follow the instructions for 

importing classification data in this format.  The response variable should be named "amount". 
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4.3.4 Random extraction of validation data from imported training data.  Follow the 

instructions for random extraction of accuracy assessment data from imported classification 

training data. 

5. Agnostic Classification Analysis 

 5.1 Model building 

 5.1.1 Create your equation.  The equation can be simple or a bit complex depending on 

how the data were imported and the nature of the variables.  Important matters to remember are 

(1) categorical variables that are represented by numbers must be preceded by "factor" (e.g., if 

the classes are designated 1, 2, 3 . . ., the equation response variable should be "factor(types)") 

and (2) variable names (and everything else in R) are case sensitive.  The following are several 

potential ways to set your equation. 

### If the data were imported using the commands above for 
shapefiles, all bands will be used as potential predictors, 
and none of the variables are categorical. 

equation <- factor(types) ~ . 
equation <- as.formula(equation) 
### If there are four bands, and band 3 is categorical.  Use 

the "names" function to get the actual names of the 
variables and replace B1, B2, etc. with these names. 

names(train.full) 
equation <- factor(types) ~ B1 + B2 + factor(B3) + B4 
equation <- as.formula(equation) 
### If externally prepared data have been imported, the classes 

are designated by numbers, all bands will be used as 
potential predictors, and there are no categorical predictor 
variables. 

equation <- factor(types) ~ . 
equation <- as.formula(equation) 
### If externally prepared data have been imported, the classes 

are designated by numbers, and there are four bands, with 
band 3 being categorical. 

equation <- factor(types) ~ B1 + B2 + factor(B3) + B4 
equation <- as.formula(equation) 
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5.1.2 Compare classification models.  The first step in comparing methods is to 

determine which methods to compare.  There are, as noted above, at least 167 methods for 

classification that can be used with the caret package in R, and it is unlikely that even the most 

agnostic analyst will want to evaluate them all.  The full list can be found at 

http://topepo.github.io/caret/modelList.html, and for the following code the methods used should 

be designated using the "method Argument Value" listed there.  The following sample code 

includes random forest (rf), support vector machines (with linear (svmLinear), radial 

(svmRadial), and polynomial (svmPoly) kernels), classification tree analysis (rpart), C5.0 (C5.0), 

k-nearest neighbors (kknn), extreme gradient boosting (xgbTree), and linear discriminant 

analysis/maximum likelihood (lda).  Output is to a text file.  This step can take considerable time 

to run, depending on the data size and the particular methods being compared, primarily because 

of the cross validation used by the caret train function to tune model parameters (svmPoly and 

especially xgbTree seem to take the longest time to run; in our experience, xgbTree can take 4-

12 hours for datasets with 5,000 to 60,000 observations, obviously depending on each computer; 

these can be very good classifiers, however).  It is very important, however, for many models 

that these parameters be tuned, because the default parameters in many cases will yield 

substantially inferior results.  The output can be compared in terms of overall and class 

accuracies (along with full error matrices) to select the desired classification method for creating 

a final output image. 

### Define which methods you want to analyze.  Add and/or 
subtract methods as desired. 

mthd <- c("rf", "rpart", "svmLinear", "svmRadial", "svmPoly", 
"C5.0", "kknn", "xgbTree", "lda") 

### Step through each method, saving the results in a text 
file. 

for (x in mthd) {  
train.model <- train(equation, method = x, data = train.full) 

  predict.model <- predict (train.model, newdata = valid.full) 

http://topepo.github.io/caret/modelList.html
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  results <- confusionMatrix(predict.model, valid.full$types) 
  capture.output(x, results, file = "results.txt", append = 

TRUE) 
} 
 

5.2 Output a final image  

The raster package predict function is used to create the final output image.  The 

following code outputs an unsigned, 8-bit, ERDAS Imagine img file, but this can be changed 

using the "format" and "datatype" parameters (Tables 1 and 2). 

Table 1: Available file formats for the raster package predict function. 

File type Long name default extension  

raster 'Native' raster package format .grd  
ascii ESRI Ascii .asc  
SAGA SAGA GIS .sdat  
IDRISI IDRISI .rst  
CDF netCDF (requires ncdf4) .nc  
GTiff GeoTiff (requires rgdal) .tif  
ENVI ENVI .hdr Labelled .envi  
EHdr ESRI .hdr Labelled .bil  
HFA Erdas Imagine Images (.img) .img      

 

Table 2: Available datatypes for the raster package predict function. 

Datatype definition Minimum possible value Maximum possible value 
LOG1S FALSE (0) TRUE (1) 
INT1S -127 127 
INT1U 0 255 
INT2S -32,767 32,767 
INT2U 0 65,534 
INT4S -2,147,483,647 2,147,483,647 
INT4U 0 4,294,967,296 
FLT4S -3.4e+38 3.4e+38 
FLT8S -1.7e+308 1.7e+308 
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### Recreate the desired model, replacing x with the value for 
the desired method (in quotation marks).   

train.model <- train(equation, method = "x", data = train.full) 
### Create the output image, changing the filename as desired. 

This code uses the clusterR function to implement parallel 
processing and increase the speed of the predictions (the 
first line sets this up for four cores; change this as 
desired). 

beginCluster(4) 
### Use the following line only if you have a designated NA 

value; insert the NA value you are using in place of x. 
NAvalue(img) <- x 
clusterR(img,raster::predict, args=list(model=train.model), 

filename="output", format="HFA", datatype="INT1U" , 
overwrite=TRUE, na.action=na.omit) 

endCluster() 
 

6. Agnostic Continuous Analysis 

 6.1 Model building 

 6.1.1 Create your equation.  Equation creation follows the same pattern as with 

classification, and that section should be reviewed.  The response, of course, will never be 

categorical, but some predictor variables might be.  The following are two ways to set your 

equation. 

### If the data were imported using the commands above for 
shapefiles or externally prepared data were imported, all 
bands will be used as potential predictors, and none of the 
variables are categorical. 

equation <- amount ~ . 
equation <- as.formula(equation) 
### If there are four bands, and band 3 is categorical.  Use 

the "names" function to get the actual names of the 
variables and replace B1, B2, etc. with these names. 

names(train.full) 
equation <- amount ~ B1 + B2 + factor(B3) + B4 
equation <- as.formula(equation) 
 
 

6.1.2 Compare continuous models.  The first step in comparing methods, as with 

classifications, is to determine which methods to compare.  There are at least 126 methods for 
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regression analyses that can be used with the caret package in R.  The full list can be found at 

http://topepo.github.io/caret/modelList.html, and for the following code the methods used should 

be designated using the "method Argument Value" listed there.  The following sample code 

includes random forest (rf), support vector machines (with linear (svmLinear), radial 

(svmRadial), and polynomial (svmPoly) kernels), classification tree analysis (rpart), neural 

networks (nnet), k-nearest neighbors (kknn), partial least squares (pls), ridge regression (foba), 

cubist (cubist), conditional inference random forest (cforest), generalized linear model with step 

AIC feature selection (glmStepAIC), and multivariate adaptive regression splines (earth).  

Methods are evaluated by comparing predicted and observed validation data using a paired t-test 

(it might be necessary to change this if the data do not meet the assumptions underlying a t-test, 

for example when comparing proportions).  Output is to a text file.  This step, again, can take 

considerable time to run, depending on the data size and the particular methods being compared. 

### Define which methods to analyze.  Add and/or subtract 
methods as desired. 

mthd <- c("rf", "rpart", "svmLinear", "svmRadial", "svmPoly", 
"pls", "nnet", "kknn", "foba", "cubist", "cforest", 
"glmStepAIC", "earth") 

### Step through each method, saving the results in Word file. 
for (x in mthd) {  
train.model <- train(equation, method = x, data=train.full) 

  predicted <- predict (train.model, newdata = valid.full) 
  observed <- valid.full$amount 
  results <- t.test(observed, predicted, paired=TRUE) 
  capture.output(x, results, file = "results.txt", append = 

TRUE) 
} 
 

6.2 Output a final image 

The raster package predict function is used to create the final output image.  The 

following code outputs a floating point, ERDAS Imagine img file, but this can be changed using 

the "format" and "datatype" parameters (Tables 1 and 2). 

http://topepo.github.io/caret/modelList.html
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### Recreate the desired model, replacing x with the value for 
the desired method (in quotation marks). 

train.model <- train(equation, method = "x", data = train.full) 
### Create your output image, changing the filename as desired. 

This code uses the clusterR function to implement parallel 
processing and increase the speed of the predictions (the 
first line sets this up for four cores; change this as 
desired). 

beginCluster(4) 
### Use the following line only if you have a designated NA 

value; insert the NA value you are using in place of x. 
NAvalue(img) <- x 
clusterR(img,raster::predict, args=list(model=train.model), 

filename="output", format="HFA", datatype="FLT4S", 
overwrite=TRUE, na.action=na.omit) 

endCluster() 
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