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Abstract. Severe mountain pine beetle (MPB) epidemics can degrade ecosystem services and
socioeconomic assets. Mapping outbreak progression provides tools to mitigate damages and
analyze MPB attack processes. Current time-series methods for mapping disturbance focus
on extent rather than severity. Infestation severity, defined by within-pixel percentage, is
more robust for answering a variety of ecologic questions. We develop a time-series regression
approach to map infestation severity from 2005 to 2015 in the U.S. Central Rocky Mountains.
Covariates include spectral data from all available dates of Landsat imagery, topographic data,
and US Forest Service aerial detection survey (ADS) polygons. We collect model reference data
by interpreting National Agricultural Imagery Program images. Validation against a randomly
selected subset of the data results in no statistical difference between predicted and observed
severity. The mean absolute deviation is 7.7% with a root-mean-square error of 9.9%.
Average (maximum) severity increased from 9.4% (49.7%) in 2005 to 17.6% (58.8%) in
2015. Our raster maps identify widespread, lower severity infestation absent from the ADS.
Our maps can improve mitigation efforts by allowing managers to: address low-severity
infestations before they intensify, monitor intensifying infestations within previously identified
outbreak extents, and combine infestation severity with other forest metrics. © 2018 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12.046030]
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1 Introduction

Mountain pine beetles (MPB; Dendroctonus ponderosae) are native to the forests of western
North America and, like other insects and diseases, are typically agents of healthy forest
disturbance that remove old and sick trees and foster diversity in forest age and structure.1

In recent decades, however, infestations have become more severe, frequent, and widespread
than historic levels.2 Epidemic MPB events profoundly impact forests and the services they
provide. High-severity disturbance can impair ecosystem function, degrade wildlife habitat,
and hinder ecosystem services such as carbon storage, watershed quality, recreation, and
timber.3–7 Severe outbreaks can also pose risk to public health and safety due to the hazard of
falling dead trees, increased air pollution, and changing susceptibility to wildfires.8–10 These
impacts present challenges to managers and policy makers.

MPB infestations are controlled by a series of thresholds and move cyclically through four
major stages of outbreak.11,12 The predominant phase is the “endemic phase,” in which MPB
infestation occurs across the landscape at low densities that are difficult to detect. This is fol-
lowed by the stand-level incipient outbreak phase characterized by clusters of attacked stands
at short and long ranges from dispersing beetles.11 This phase occurs when stand composition
and structure,13,14 herbivory, and other tree ailments compromise tree resistance or favor MPB
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proliferation.12,15 The infested stands overlap and grow into a traveling wave in the landscape-
level outbreak phase.11 This phase results when weather and climate, landscape composition and
structure, and MPB dispersal further compromise tree resistance or favor MPB proliferation.12

The infestation returns to endemic levels in the outbreak collapse phase, when the available hosts
become scarce or environmental factors limit population growth.11 The relationships between
MPB infestation and influential variables can change as infestation thresholds are crossed.
The initial factors that provoked an outbreak might not be needed to sustain it.12

Infested trees present visible color changes as they die, which are observable with remote
sensing technology.16 An initial yellowing of the needles is called the “green stage.” The tree
needles dry out and turn red over the course of a year or more, reaching what is referred to as
the “red stage” of tree mortality. The “gray stage” occurs after the needles drop, 3 to 5 years
from initial infestation. The red and gray stages are pronounced, providing a clearer remote
indication of infestation than green-stage trees.

The U.S. Forest Service aerial detection surveys (ADS) are the longest running form of pres-
ence–absence disturbance monitoring.17 Some regions have conducted ADS for more than
60 years, while others made their programs active in the last decade. Trained interpreters fly
over forests in airplanes on an annual basis to locate infested trees and digitize polygons around
the corresponding area on a map. These surveys provide much needed information, but have
several shortcomings. Interpreters must draw absolute lines to differentiate disturbed and undis-
turbed forest, when in reality these outbreaks are very heterogeneous in both the presence and
degree of disturbance.18 Human interpretations are also subjective and can vary in accuracy
depending on the experience and skill of the interpreter, complicating statistical analyses.19

Surveying is costly in terms of time and resources and aviation work is hazardous. Most
areas are surveyed every 2 years, but some are missed. Wilderness areas and national parks
in particular are not surveyed regularly.20,21 A 2012 study found that U.S. aerial surveys under-
estimate infestation extent by a factor ranging from 3 to 20.22 ADS is valued for its widespread
data collection and long historical precedence, but the dataset’s inconsistencies, exclusions,
risks, and costs make it challenging to analyze and maintain.

Satellite imagery offers many advantages over the ADS for monitoring forest disturbance.
Satellite imagery is available at fine temporal and spatial scales. It enables repeatable assess-
ments of disturbance with relatively little investment in terms of time and human resources.
Imagery is spatially explicit, encompasses large geographic areas, and is available at temporal
resolutions coinciding with MPB lifecycles.23 Collection of satellite imagery is automated and
does not pose safety risks to interpreters.

Forest disturbances mapped with satellite imagery are defined by their extent or their severity.
Extent mapping defines pixels as either presence or absence of disturbance using band values
and indices, or change in band values and indices across time.18,24,25,26 Severity mapping mea-
sures the percent of each pixel disturbed.27,28 Severity maps provide several advantages over
extent. Severity offers a better indication of the ecological effects of a disturbance within a single
date analysis. A low-severity infestation might have limited effects on forest habitat, whereas
a high-severity infestation might affect forest structure enough to alter processes that regulate
ecosystems.29,30 Severity maps can provide a more representative view of the ecological impact
of an infestation by combining them with a variety of other forest metrics, such as percent tree
cover and biomass.31

The temporal breadth of an infestation mapping technique is also an important consideration.
Single date analyses use one or more dates of imagery to map infestation for a single time period.
Single date analyses have employed a variety of explanatory variables to map various stages of
MPB attack at numerous image resolutions.16,18–21,24–26 Single date approaches lend themselves
to incorporation of many indices and bands because the analysis is only performed once. These
approaches offer a snapshot of beetle activity by producing models well fitted to the data, but do
not provide accurate predictions of other dates and thus do not lend themselves to continued
monitoring.

Multitemporal analyses use many dates of imagery to map disturbances. Moderate spatial
resolution imagery, such as Landsat, is commonly used to map forest disturbances because it
provides the best balance between precision, accuracy, and cost.24 Access to the Landsat archive,
made freely available in 2008, fostered a variety of multitemporal time-series techniques for
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mapping forest disturbance that make use of every date of available imagery. A review of
the published Landsat forest disturbance algorithms summarized the overarching approach of
the following techniques.32 Vegetation change tracker, exponentially weighted moving average
change detection, multi-index integrated change analysis, and continuous change detection and
classification identify abrupt changes within a time period, from a base year, or from a modeled
phenology.33–37 Image trends from regression analysis identifies gradual trends.38 Only Landsat-
based detection of trends in disturbance recovery and vegetation regeneration and disturbance
estimates through time monitor both abrupt changes and gradual trends.39,40

Multitemporal approaches to mapping forest disturbance can provide improved accuracy
using trends to identify changes due to clouds, phenology, and other exogenous factors rather
than real forest change. Additionally, most of these approaches have the ability to provide dis-
turbance information for every image released (every eight days for Landsat). These techniques
are limited, however, in two ways: (1) many of these techniques use a single index, which might
remove valuable information present in multiple bands and result in lower model accuracy,41,42

and (2) all of the reviewed forest disturbance algorithms classify extent of disturbance rather
than by severity. These techniques agree well in their predictions of overall proportion of
forest area disturbed, but one study comparing multiple methods revealed that they can
have vastly different pixel-by-pixel estimates.32 This incongruity is partially due to differing
definitions of disturbance, which incorporate thresholds tailored to their respective study ques-
tions and applications.32 Different algorithms are incompatible on a pixel-by-pixel basis and can
produce complications when applying an algorithm developed for one application to another.
Mapping severity bypasses these complications by avoiding the need to define a threshold
altogether.

Multitemporal severity maps can offer more detailed information in an ongoing infestation
than maps of extent. Multitemporal severity approaches quantify infestation extensification
(the change in infestation extent from one period to another) as well as intensification (the
change in severity within the same extent from one period to another). Measuring intensification
allows for continued observation of affected pixels where extent maps cannot because the
infestation severity of a single pixel can increase over time while the extent remains the same.
Unfortunately, we are unaware of published studies offering multitemporal approaches for
mapping severity of forest disturbance.

Substantial progress has been made in providing estimates of infestation extensification.
Extent maps do not address aspects of intensification, however, and are difficult to combine
with other ecosystem metrics. Severity mapping is relatively underdeveloped despite the ability
for time-series severity maps to provide valuable insights into processes and drivers of MPB
outbreaks. In this study, we evaluated the ability to map infestation severity during an MPB
epidemic outbreak in the U.S. Central Rocky Mountains. Our objective was to develop and
evaluate one multitemporal model of infestation severity that would be robust in its applicability
over an 11-year study period. Accuracy of such a model will enable evaluation of the progress of
an epidemic outbreak in terms of both extensification and intensification and allow users to set a
threshold for the presence or absence of infestation that is tailored to their study question or
application.

2 Methods

2.1 Study Area

The study area for our analysis was comprised of the forested regions of a single Landsat scene,
path 34 row 32, in northern Colorado and southern Wyoming (Fig. 1). We restricted this analysis
to conifer forests only where pixels were greater than or equal to 10% forested in the LANDFIRE
data set.43 The study area excluded areas logged during the time-series period,44 areas within city
boundaries,45 highways,46,47 high-density housing,48 agriculture, and developed open space.49

The resulting area included ∼1.5 million ha of land in the Medicine Bow, Routt, Arapaho,
Roosevelt, White River, and Pike National Forests as well as the Colorado State Forest
State Park and the Rocky Mountain National Park (RMNP). The elevation ranged from

Bode et al.: Time-series approach for mapping mountain pine beetle infestation extent. . .

Journal of Applied Remote Sensing 046030-3 Oct–Dec 2018 • Vol. 12(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 12/28/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



1636 to 4124 m. A stand-level incipient outbreak began in this area in 2003 and grew to
a landscape-level outbreak over the next several years.50 Predominant host species in the
study area included lodgepole pine (Pinus contorta var. latifolia), ponderosa pine (Pinus pon-
derosa), and limber pine (Pinus flexilis).50 We defined tree mortality as any red stage or grey
stage tree as well as any tree that died from any other disease or physical trauma. It was not
possible to exclude trees that died from other diseases or physical traumas if they also displayed
red or gray stage characteristics.

2.2 Reference Data

Reference data for the analysis was collected by manual interpretation of National Agricultural
Imagery Program (NAIP) imagery. There were 7 years of NAIP imagery available with a res-
olution of 1 m or finer (Colorado NAIP from years 2005, 2009, 2011, 2013, and 2015 and
Wyoming NAIP from years 2006, 2009, 2012, and 2015). We created 10 × 10 (100 point)
grids with points spaced 3 m apart to coincide with 30-m pixels of Landsat imagery. We placed
26 grids at random locations for each year of available NAIP imagery for a total of 182 grids.
A sample size test determined an appropriate sample size. A sample test for a desired margin of
error of 0.06 required 82 observations, based on the sample standard deviation.51 We interpreted
the land cover at each of the 100 points per location. Higher resolution Google Earth imagery
was viewed for additional context, but never for final interpretation. Grid points over dead trees
(red or grey stage) were summed and converted to a percent mortality of all 100 observed points

Fig. 1 Study area map of the forested land in the U.S. Central Rocky Mountains.
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for each location. This method of interpretation of fine-scale imagery is an acceptable substitute
for ground reference data of tree mortality.10,19,27,52

The percent mortality observations were divided into a training and validation dataset using
a stratified random sampling method. The method was stratified by the year of observation
and the severity of mortality observed in order to obtain similar ranges of mortality and
representation from each observed year in both datasets. Three of the observed locations
were discarded due to alignment issues between the different footprints of Landsat sensors
(training dataset n ¼ 90 and validation dataset n ¼ 89).

2.3 Digital Data Acquisition and Preprocessing

Spectral data were extracted at the individual pixel level for each of the 179 sampled locations
from a variety of digital imagery (Table 1). All available dates of Landsat surface reflectance
imagery were compiled using the Google Earth Engine.53 We calculated median pixel values
from cloud free pixels for the blue, green, red, near-infrared (NIR), and shortwave infrared
(SWIR) 1 and 2 bands across Landsat TM, ETM+, and OLI sensors for a preoutbreak
year (2001) and for each year of the time series (2005 to 2015). Cloud free pixels were
identified using F-mask.54 We acquired a normalized difference vegetation index (NDVI)
layer for each year by determining the single greatest NDVI value for each pixel across
all sensors. NDVI is a prominent index used for identifying live vegetation and is calculated
using the red and NIR bands.55 The highest NDVI values are cloud free and represent similar
phenology across years. To study the effects of the outbreak, we subtracted the outbreak
variables from the corresponding preoutbreak variables (Table 1). We also extracted informa-
tion from several ancillary datasets. Elevation, slope, and aspect were derived from a digital
elevation model acquired from the U.S. Geological Survey National Elevation Dataset.56,57

Aspect was grouped into eight classes: N, NE, E, SE, S, SW, W, and NW. Flat pixels
were merged into the S group because there were not enough of them to properly train
and validate the model. We included a variable specifying the year of observation for the
percent mortality for each sample. We also included the cumulative extent of infested area

Table 1 Variables included in the regression analysis and their respective sources.

Variable Source

Percent mortality* Reference data

Preoutbreak annual median spectral response Landsat

Preoutbreak annual maximum NDVI Landsat

Outbreak annual median spectral response Landsat

Outbreak NDVI Landsat

Difference in annual median spectral responses Landsat

Difference in annual maximum NDVI Landsat

Cumulative ADS** U.S. Forest Service

Year of observation Reference data

Slope U.S. Geological Survey

Aspect (N, NE, E,SE, S, SW, W, NW)** U.S. Geological Survey

Elevation (m) U.S. Geological Survey

Note that annual median spectral responses are for the blue, green, red, NIR, SWIR 1, and SWIR 2 bands of
the Landsat TM, ETM+, and OLI sensors. In total, there were 26 variables available to explain infestation
severity in the time series. *Response. **Categorical variable.
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identified by the ADS from 2001 (what we consider the beginning of the outbreak) to the year
of observation.

2.4 Data Analysis

We built a regression model using the aforementioned extracted data. We employed an agnostic
approach to model selection, whereby several promising model types are tested with an external
validation dataset and the best performing model type is selected by validation on withheld
data.58 We conducted the analysis using the statistical programming language R version
3.1.4.59 The following models were included in the selection process, based on previous use
with remotely sensed imagery:58 general linear model (GLM) with step AIC, cubist, random
forest, support vector machine (SVM) with linear and radial kernels, multivariate adaptive
regression splines, and extreme gradient boosting trees. Each of these models was trained
with the reference dataset, tuned with 10-fold cross validation using the caret package in R,
and then assessed for accuracy using the validation dataset. Our sample size determined that
the models’ minimum detectible difference in ability to discern infestation severity was plus
or minus 6%, or 12% total. Our models, therefore, could not be expected to reliably detect
the difference between 6% and 0%.27 Thus all predictions <6% severity were reassigned to
zero before validation.

The model with the best accuracy was then used to predict the values of all pixels in the study
area for each year of the time series. We measured accuracy with Wilcoxon pseudomedians
with 95% confidence intervals, Wilcoxon p-values, mean absolute deviation (MAD), and
root-mean-square error (RMSE). The Wilcoxon pseudomedian assessed the difference between
the observed and predicted infestation severity values. The Wilcoxon p-value assessed if the
predicted mortality values were significantly different at a 0.05-alpha level from the observed
values. MAD measured the average deviation between the predicted and observed values and
provided an indication of how much variation there was in the accuracy of the model predictions.
RMSE, a variation of MAD that takes the square root of the sum squared deviations, was used
to measure less frequent but larger errors in predictions.

We controlled for occasional large errors in the predictions by smoothing the data temporally
with a centered moving average.60 The value of a prediction for a given year was averaged with
the predictions for that pixel in the previous year and the following year. An asymmetric filter
was applied to the ends of the time series by giving the end years double weight and averaging
them with the value of that pixel in the single year closest in time. The model predictions were
further transformed to reflect expected fall rates of beetle-killed trees and increasing severity of
infestation. The natural fall rate of beetle-killed standing dead trees varies by factors including
climate, soil type, tree species, tree size, and occurrence of high winds. Beetle-killed ponderosa
pine in the Front Range typically remain standing for 2 years following infestation and then fall
at a rate of 3% to 5% per year.61 We thus expect 24% to 40% of the trees killed in 2005 to have
fallen by 2015 and none of the trees from 2013 to 2015 to have fallen by 2015. It is likely that
few trees killed in the middle and end of our study period fell and that more from the earlier years
fell during our study period. Proportionally fewer trees were infested in the earlier years of our
study period, thus accurate predictions of the severity of infestation within a pixel should not
decrease substantially within our time series.

We limited the severity predictions of each pixel to be equal to, or less than, the severity
prediction of the year following that pixel. The correction was applied from the most recent
to the oldest predictions because both the Landsat imagery and the reference NAIP imagery
at the end of the time series were of superior quality than the earlier imagery and were
likely to provide superior interpretations and model predictions. We implemented this step
starting in 2014 because the asymmetrical smoothing of the 2015 year at the end of the
time series was likely to provide slightly less accurate predictions. The 2015 predictions
were limited to be equal to, or greater than, the 2014 predictions. A second accuracy assess-
ment, using the validation dataset, determined the final accuracy of the mapped percent tree
mortality.

We then compared our raster maps to the ADS maps for each year of the time series.
We summed the total extent of outbreak area identified by each dataset. We conducted a paired,
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one-sided t-test of the mean prediction value of the raster map pixels that overlapped with
the ADS outbreak areas and those that did not overlap for each year of the time series. This
enabled an evaluation of the differences between our methods and the ADS with respect to
differing minimum mapping units. The finer spatial resolution of Landsat data offers opportu-
nities to reveal uninfested locations within ADS polygons, as well as map small outbreaks
outside of ADS polygons.

3 Results

The reference data for interpreted percent infestation of the 179 random plots ranged from 0% to
53%. The mean nonzero response over all observed years was 19% infested. The infestation
estimates might seem low, given that this area experienced landscape-scale epidemic outbreak.
However, other land cover types within the pixel, such as bare ground and understory vegetation,
lowered the overall pixel infestation percentage even when 100% of the conifer trees in a pixel
were dead. The reference data were used to train seven potential model types. The Wilcox
medians of all seven model predictions were not statistically different from the observed values
except for the predictions from the SVM radial model (Table 2). From the remaining models,
GLM with step AIC produced the lowest RMSE (10.5%), while SVM linear produced the
lowest MAD (7.5%). We selected RMSE as the more important metric for our analysis
because of its ability to amplify occasional large errors, which could be more troublesome
to decision-makers.

The GLM model with step AIC was the best model for our application because it had a
comparable MAD (7.7%) and the lowest RMSE. We recognized that the observed differences
between the models were not statistically different, however, these metrics provided a reasonable
basis for the determination of a best model. The step AIC process removed three quarters of the
available explanatory variables (Table 3). The remaining variables were all median annual spec-
tral responses from the outbreak and preoutbreak years. None of the median difference bands or
ancillary variables was utilized. Smoothing the mortality predictions from the GLM model
resulted in a lower RMSE (10.1%) and an identical MAD statistic (7.7%; Table 4). The limiting
postprocessing step produced an even lower RMSE and MAD of 9.9% and 7.2%, respectively
(Table 4). These predictions tended to overestimate low levels of mortality and underestimate
high levels of mortality (Fig. 2). The final version of the raster maps displayed extensification
and intensification of infestation across the time series (Fig. 3). The average severity of affected
pixels was 9.4% in 2005 and 17.6% in 2015, with a maximum severity that increased from
49.7% to 58.8% over the same period.

Table 2 Accuracy statistics for the seven models considered. Note that large p-values are
desirable as they indicate there is not a statistically significant difference between our modeled
infestation severities and those observed.

Model MAD (%) RMSE (%)

Wilcoxon metrics

Median (%)
Confidence
interval (%) P value

GLM step AIC 7.7 10.5 0.5 −2.7 to 3.3 0.70

SVM linear 7.5 11.1 −2.2 −6.1 to 1.3 0.23

Cubist 8.2 12.1 −3.2 −6.7 to 0.7 0.10

SVM radial 7.6 12.2 −6.0 −9.5 to −2.5 <0.01

Random forest 9.3 12.2 0.6 −3.4 to 4.7 0.79

Multivariate adaptive regression splines 11.0 14.1 2.4 −1.5 to 5.1 0.26

Extreme gradient boosting tree 11.4 14.8 2.0 −2.5 to 6.2 0.33
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We compared the severity and cumulative extent of infestation in our raster maps to the ADS
maps for each year from 2005 to 2015 (Fig. 4). The observed extent of infestation in the ADS
maps was lower than our raster maps in all years of the time series by an average of 131,538 ha.
The ADS and raster maps indicate that 27.9% and 42.4%, respectively, of the ∼1.5 million-ha

Table 4 Accuracy statistics for the original, smoothed, and limited versions of the final GLM step
AIC model. Each step of postprocessing improved the RMSE. The median differences between
the predicted and observed mortality rates are small with tight confidence intervals. Note that large
p-values indicate no statistical difference between the predicted and observed mortality levels.

Validation dataset MAD (%) RMSE (%)

Wilcoxon metrics

Median (%) Confidence interval (%) p-value

Raw predictions 7.7 10.5 0.6 −2.6 to 3.5 0.65

Smoothed predictions 7.7 10.1 1.5 −1.2 to 4.2 0.26

Limited predictions 7.2 9.9 0.3 −2.5 to 3.3 0.80

Fig. 2 Scatterplot of the reference tree mortality versus the GLM step AIC predicted mortality for
the validation dataset with a 1:1 line. Note that the model tended to overestimate low levels of
mortality and underestimate high levels of mortality.

Table 3 The final model from the GLM step AIC model selection process included seven
variables.

Final GLM Band Estimate p-value

Intercept — 3.1 × 102 —

Preoutbreak median annual spectral response Blue −8.0 × 10−2 0.10

Green 1.3 × 10−1 0.01

Red −7.3 × 10−2 0.03

Outbreak median annual spectral response Blue 5.2 × 10−2 0.13

Green −8.9 × 10−2 0.03

NIR −1.3 × 10−2 0.01

SWIR 1 2.4 × 10−2 <0.01
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study area was infested in 2005. The infested area climbed and leveled off at 71.2% and 78.7%,
respectively, by 2015. The rate of extensification decreased over time in both datasets, nearing
zero in 2011 and thereafter, while the severity of infestation continued to intensify. There was
strong evidence against the null hypothesis that there was no difference, on average, between the
percent mortality of the pixels that both datasets identified and those that only our raster maps
identified (paired t-test, t ¼ −17.514 with a one-sided p-value < 0.001 on 10 df). We estimated
that the infestation severity of the pixels that only our raster maps identified as infested was 7.2%
less, on average, than the pixels identified by both datasets as infested with an associated 95%
confidence interval of 6.3% to 8.1% (Fig. 5). We conducted a secondary analysis to evaluate
whether the greater extent of infestation observed in our study as compared to the ADS was
a function of overclassification (false positives) in our study. This analysis revealed that the
false positive rate of our raster maps was 24% compared to 26% by the ADS.

0 80 16040 km

Tree mortality
0–8%
9–16%
17–24%
25–32%
33% +

2005 20072006

20092008 2010

2011 2012 2013

2014 2015

Fig. 3 Tree mortality in each year of the time series. Visual inspection shows that tree mortality
intensified in the northwest and central portion of the study area before moving east and south.
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4 Discussion

We mapped the progression of infestation severity during a major epidemic outbreak in the U.S.
Central Rocky Mountains. We developed and evaluated a robust multitemporal model of percent
tree mortality over an 11-year period of study. Our time-series analysis provided visual and
quantitative measures of both extensification and intensification of MPB infestation (Figs. 3
and 4). This approach to mapping infestation is the first to our knowledge to predict severity
from a time-series analysis. This approach enabled us to predict infestation in years
for which reference data were not available, although we were not able to validate the results
for those years. Mapping MPB outbreaks in terms of severity overcomes complications with
defining a threshold for what is considered an affected pixel and instead allows the user to decide
a level most fitting for their application. Furthermore, maps of severity can be combined with

Fig. 5 Raster map severity versus ADS extent of infestation. A section of the study area visually
demonstrates that pixels identified as infested by only our raster maps were lower, on average,
than those that both the ADS and our raster maps identified as infested.

Fig. 4 Average severity and annual cumulative extent of infestation in our raster maps compared
to ADS extent. The ADS and raster maps indicate that 27.9% and 42.4%, respectively, of
the 1,559,000 ha study area was affected in 2005. The affected area climbed to 71.2% and
78.7%, respectively.
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other continuous forest metrics, such as percent forest cover and premortality biomass, to pro-
vide estimates of dead biomass.

We found that the best predictive model of infestation was the simplest one. GLM’s basic
structure allowed for interpretation of the predictor variables and their coefficients compared to
prominent model types like random forest that often make interpretation impractical. We used
Landsat surface reflectance values, which standardized the values of spectral data and enabled an
evaluation of which variables have the largest relative weighted coefficients. The two variables
with the greatest impacts were the annual median green bands for preoutbreak and outbreak
years. The contrasting signs of the coefficients for these variables (positive for preoutbreak,
negative during the outbreak) have the effect of building the change in green reflectance into
the model and seems to use the drastic change in green reflectance from tree death to identify
tree mortality. The red and NIR bands are a logical inclusion in the model for their usefulness in
many vegetation indices. The presence of the blue bands is surprising because the blue portion of
the electromagnetic spectrum contains the most atmospheric effect and is rarely incorporated
into vegetation indices. The absence of NDVI and the median differences provides an argument
for multispectral infestation analyses over those using a single index.41,42 The absence of slope,
aspect, and elevation variables suggests that, at an epidemic level of outbreak, topography might
not have a notable influence on beetle attack.

Visual inspection of the raster maps indicated that the outbreak both extensified and inten-
sified from 2005 to 2011, then maintained a relatively constant extent while intensifying further
from 2013 to 2015 (Fig. 3). This observed trend is representative of the incipient outbreak phase
and outbreak phase of MPB infestation.11 This trend also points to an important advantage of
mapping a time series of severity rather than extent. Evident in the contrast with ADS, extent
mapping data failed to reveal the progress of the epidemic after 2012, whereas our raster maps
showed intensification of the outbreak.

The accuracy of the final smoothed and limited maps met and exceeded that of previously
reported single-date within-pixel forest analyses.27,28,31 The model overestimated low-infestation
values and underestimated high-infestation values. This trend results from a tendency to model
toward the mean and is consistent with other within-pixel analyses.27,28 We cannot directly com-
pare our maps to the other time-series disturbance methods, however, because those methods use
classifications with varying thresholds for disturbance. The underestimation of high-severity
infestation values by our model might be less consequential from a management perspective,
because the implementation of mitigation efforts for a 30% infested forest likely would be
similar to that of a 50% infested forest. Additionally, those locations represent a relatively small
portion of the study area.

The predictions agree closely with the ADS maps on a regional scale, with both datasets
conveying similar trends of increasing extent of infestation throughout the time series. Our raster
maps did identify a greater extent of infestation overall compared to the ADS maps. Our sec-
ondary analysis of false positives for our raster maps and the ADS dataset showed that this
greater extent was not the result of greater false positives in our analysis (our maps had slightly
lower false positives than the ADS dataset). This indicates that our pixel-based analysis iden-
tified single affected pixels within stands of unaffected pixels that were too small for human
interpreters of the ADS to discern. A second possibility is that areas were simply missed by
the ADS surveys. This might be especially true with respect to areas such as RMNP, which
is not surveyed as frequently. We found that the pixels that were not identified as infested by
the ADS but that our raster maps did identify had considerably lower levels of tree mortality.
This indicates that our raster maps identified widespread, lower severity infestation not recorded
in the ADS dataset (Fig. 5). Detecting these low levels of infestation might improve mitigation
efforts by allowing managers to address new infestations before they become more severe.

This methodology produced one infestation map per year for the period within the training
data. Annual maps are sufficient when MPB life cycles take one or more years. MPBs have been
known to complete more than one cycle a year in warming climates.62 This analysis could be
altered to analyze a spring and fall time series using seasonal median spectral responses as the
explanatory variables. The efficacy of using the established time-series model to extrapolate
beyond the study period and extent is untested. Our process uses annual composites of surface
reflectance rather than individual images. Conceptually, the resulting models should, therefore,
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be applicable within the time and extent of the reference data, so that the analysis could be
expanded in both of these dimensions if reference data were available. Year of outbreak was
an available explanatory variable not selected for use in the final model, suggesting that temporal
trends were not necessary to accurately map the infestation. Spectral response alone might
provide enough information to map infestation in extrapolated years, allowing users to set up
a model with a few base years of imagery and then continue to map infestation as new imagery
becomes available.

This analysis demonstrates the efficacy and advantages of mapping time series of within-
pixel disturbance. Our raster maps achieved a high overall accuracy and were able to identify
widespread, lower severity infestation absent from the ADS. This technique can improve mit-
igation efforts by allowing managers to: address low-severity infestations before they intensify,
monitor intensifying infestations within previously identified outbreak extents, and combine
infestation severity with other forest metrics. Land cover information formatted as a measure
of severity provides flexibility in data applications. The advancement of spectral, radiometric,
and temporal resolution of Landsat-scale imagery will further enable analysis of continuous land
cover responses. The raster maps created in this study offer a wealth of information that can be
tailored to explore a wide range of forest health questions.
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