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Early Detection of Douglas-Fir Beetle
Infestation with Subcanopy Resolution

Hyperspectral Imagery

Rick Lawrence, Department of Land Resources and Environmental Sciences, Montana
State University, P.O. Box 173490, Bozeman, MT 59717; and Mari Labus, Research
Systems, Inc., 4990 Pearl East Circle, Boulder, CO 80301.

ABSTRACT:  Early detection of insect or pathogen infestations in forests would be useful to forest managers
who want to make decisions that minimize timber losses. Typical methods of forest reconnaissance to detect
infestations have included analysis of multispectral imagery. Multispectral imagery, however, often lacks the
sensitivity to detect subtle changes in tree canopy reflectance because of physiologic stress from insects or
pathogens. Most hyperspectral imaging has the sensitivity to detect subtle changes in canopy reflectance but
lacks high spatial resolution to identify affected trees. Our study examined the use of subcanopy spatial
resolution hyperspectral imagery for differentiating Douglas-fir trees attacked by the Douglas-fir beetle.
Comparison of the accuracies of step-wise discriminant analysis and classification and regression tree analysis
(CART) revealed that CART provided the best separability among tree health classes (93% overall) because
of CART’s ability to use different band combinations for each class. Predictive accuracy of the CART method
was estimated through cross-validation of the dataset using a jackknife resampling technique. Overall
classification accuracy was promising (69%), as was classification among healthy and attacked, but still living,
trees (50–70%). The results of our study provide support that hyperspectral imagery might be used for detecting
and mapping tree stress in Douglas-fir stands. Although the rapid progress of beetle infestation somewhat
limited the ability to differentiate among tree stress classes, which might limit the utility of this approach for
fast moving infestations, the results were well beyond what might be expected from alternative detection
methods. Slower moving infestations would benefit from the use of hyperspectral imagery because a lower
percentage of infested trees would be asymtomatic.
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Early detection of forest diseases and insect infestations, such
as beetle or root rot, is important to foresters who want to
minimize economic loss due to these threats (Schmits and
Gibson 1996). In rugged terrain where Douglas-fir
(Pseudotsuga menziesii) often grows, this typically requires
extensive field campaigns that are time-consuming and
expensive. Remote sensing imagery from airborne and satellite-
based sensors has been used in the past to map infestations but
lacks the spectral sensitivity to detect infestations before
visual signs of infestation become evident. Newer,
hyperspectral instruments have this required sensitivity,
providing information comparable to spectra obtained in the
laboratory. These instruments, however, have lacked the
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spatial resolution to map individual tree canopies. In the past
several years, commercial high-resolution, hyperspectral
imagery has become available with the introduction of Probe
1, operated by Earth Search Sciences, Inc., of McCall, ID, and
HyMap, operated by HyVista Corporation of Sydney,
Australia. Assessment of tree stress with the use of high-
resolution, hyperspectral remote sensing might provide a
method for detecting the early stages of infestation or disease
over large areas more quickly and efficiently than by ground
observations. Our objective was to determine if relative tree
stress from Douglas-fir beetle (Dendroctonus pseudotsugae)
could be detected using such imagery.

Insects, such as the Douglas-fir beetle, are considered
agents of stress in forests because they adversely affect the
physiology and growth of trees, often killing them. The
Douglas-fir beetle occurs throughout much of the western
United States, British Columbia, and Mexico (Schmitz and
Gibson 1996, Thompson et al. 1996). These beetles normally
attack and kill small groups of trees, but during outbreaks,
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attacks on tree groups as large as 100 are not uncommon,
especially in dense stands. Early evidence of infestation
consists of entry holes in the tree bark and frass expelled from
bark crevices by invading beetles. Several months after a
successful infestation, foliage exhibits chlorosis by turning
yellow, then sorrel, and then reddish brown, with needles
beginning to fall from infested trees the year following attack.

As stresses occur, such as those from insect infestation,
changes arise in leaf physiology, chemistry, and photosynthetic
efficiency that affect the reflectance response of vegetation
(Sampson et al. 1998). The detailed shape of the reflectance
spectra and variables such as width, depth, skewness, and
symmetry of absorption features can be measured and used to
detect canopy stresses. For instance, leaf pigments, chlorophyll
a&b, and chlorophyll fluorescence levels in leaves and needles
of trees were highly related to visible and near infrared ratios
and indices, particularly red edge indices, at the leaf and
simulated canopy level (Sampson et al. 1998, Zarco-Tejada et
al. 1999). Red edge indices are calculated along the red/
infrared boundary, where chlorophyll absorption in vegetation
forms one of the most extreme slopes found in spectra of
naturally occurring materials. In healthy, green vegetation,
the edge is sharp and steep, but as vegetation becomes stressed
or senescence starts, the width of the absorption band decreases,
and the red edge shifts towards shorter wavelengths (Clark et
al. 1995). Red edge shifts have also been related to stress in
crops that were sprayed with defoliant or water deprived
(Clark et al. 1995). Other indices used to estimate physiologic
responses in vegetation, such as the Physiological Reflectance
Index (PRI), are calculated in the visible wavelengths. The
PRI was highly correlated with xanthophyll pigments that are
involved in part of the CO2 assimilation process in vegetation
and are a measure of photosynthetic efficiency. Substitution
of other reflectance bands in the PRI calculation has resulted
in better correlation with photosynthetic efficiency (CO2
assimilated) in pine (Held and Jupp 1999). While these
previous studies have shown that tree stress is detectable
spectrally, most have been based on laboratory spectra. We
sought to extend these studies to an operational level by using
commercially available hyperspectral imagery to detect early
stress caused by Douglas-fir beetle infestation at the individual
tree or subcanopy level.

Methods

A Douglas-fir stand with known occurrence of Douglas-fir
beetle infestation was located in the Lamar Valley of
Yellowstone National Park, Wyoming. Sampled trees were
selected randomly from 1:5000 scale color infrared aerial
photos, were clustered into tree health classes based on field
observations and were grouped as: (1) Healthy (H)—no sign
of beetle infestation or other damage; (2) Attacked (A)—
beetle infestation present as evidenced in bark, but the tree
crown remains green with no visual signs of decline; and (3)
Dead (D)—successful beetle infestation that has killed the
tree within the past year, evidenced by red or yellow foliage.
All trees sampled were dominant or subdominant and ranged
from 0.5 to 2 m diameter at breast height.

A hyperspectral image swath of the sampled stand was
collected at 10 a.m. on August 4, 1999 from the Probe-1
sensor. The sensor was flown aboard a helicopter at 500 m,
producing 1 m2 pixel size with an approximately 0.5 km swath
width. The sensor collected 128 continuous spectral bands in
the visible through short-wave infrared (SWIR) spectral regions
(0.4–2.5 µm). A 650 by 418 m study area subset of the image
was analyzed. Georectification of the image was not performed
due to unrecoverable image acquisition errors. Locational
accuracy, however, was not required, since the high spatial
resolution of the imagery made it possible to locate specific
sample trees in the field and on the imagery. Spectral responses
were extracted for image elements (pixels) for each sample
tree (numbers of pixels per sampled tree ranged from 2 to 12,
depending on how much of the sampled tree crown could be
distinguished positively from other tree crowns). Total numbers
of pixels for each of the tree health classes were 20 for healthy
trees, 22 for attacked trees, and 13 for dead trees. Spectral
responses were also extracted for other cover types within the
study area, including light yellow (senescent) grass (LG) (18
pixels), heavy green grass (HG) (18 pixels), and shadow (SH)
(18 pixels) to differentiate these spectral responses from the
trees.

Individual and class average spectra were plotted for visual
examination of among-class separability. We were able to
apply analytical methods to the imagery that have been
successfully developed for analyzing laboratory spectra
because of the continuous spectral response provided by
hyperspectral imagery. Although we examined several
methods, the two best performing methods, stepwise
discriminant analysis (DISCRIM) and classification and
regression tree analysis (CART), were our primary statistical
tools. In DISCRIM, predictor variables (spectral bands) are
entered into the analysis based on their ability to increase
group separation (tree health classes) (Huberty 1994). This
reduces the number of spectral bands to a subset of bands that
provides the best discrimination among classes. The subset of
spectral bands is combined linearly into discriminant functions
that describe the orthogonal (noncorrelated) dimensions in
which classes reliably differ. The first discriminant function
provides the best separation among classes, while the second
function separates classes using information not used in the
first function, and so on through all possible dimensions
(Tabachnick and Fidell 1989). In this study, the first four
discriminant functions were used to create four discriminant
images and combined into one “multispectral” discriminant
image. A supervised classification was then performed on the
discriminant image.

CART analysis involves binary recursive partitioning to
determine which single explanatory variable best reduces
deviance in the response variable (Breiman et al. 1984, Friedl
and Brodley 1997, Lawrence and Ripple 2000). Each possible
binary split for all variables is evaluated recursively for best
class separability until homogeneous end points are reached in
a hierarchical tree. In this study, all sampled class spectra were
introduced in CART as explanatory variables and used to
develop the splitting rules for assigning classes. The tree was
evaluated as to whether all terminal nodes significantly reduced
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deviance and pruned back to a level believed to be not overfit.
The splitting rules were used in a rule-based approach to
create a classified image.

The classification methods were compared for overall
accuracy, Kappa (which estimates classification accuracy
compared to a random assignment), and individual class
user’s and producer’s accuracies (user’s accuracy measures
errors of commission or the accuracy of resulting maps, while
producer’s accuracy measures errors of omission (Congalton
and Green 1999). The method that produced the highest
overall accuracy was subject to an intensive cross-validation
procedure using a jackknife resample technique. In jackknife
resampling, bias is reduced in small datasets by leaving each
sample out and developing the classification from all other
cases. The withheld sample is then classified, added back into
the dataset, the next sample is taken out of the dataset, and the
procedure is repeated until all samples have been evaluated.

Results

Examination of spectral responses from individual trees
showed classes grouping at different reflectance values in
specific wavelengths, such as in the two sharp peaks at
1,000 and 1,100 nm, the wider peak around 1,250 nm, and
in the two large peaks at >1,500 nm (Figure 1 shows these
spectral ranges for the class averages). There were also
considerable overlaps among different classes in certain
portions of the spectrum, even within those regions where
some class separability existed. For example, only class
SH separated well from the other classes in all portions of
the spectrum due to the very low reflectance of shadow. In
the visible wavelengths, no vegetation class showed
substantial separability. At the near infrared (NIR)

boundary (700 to 750 nm) and in the short-wave IR region
(especially 1,100 to 1,200 nm), where vegetation
characteristics typically stand out, the D class was
differentiated from the spectra of other green vegetation,
but the H and A classes fail to differentiate. HG was
separated from other classes with very high reflectance
values within the 750–800 nm and 1,000–1,100 nm range,
was strongly mixed with other spectra in the 1,500–1,750
nm range, and then again separated into its own group in
the 2,000–2,500 nm, though with intermediate reflectance
values at this wavelength. The H and D classes separated
well in the 1,500–1,750 nm and 2,000–2,500 nm ranges,
while the A class spectra overlapped the H class in these
wavelengths.

Examination of average class spectra gave a clearer
overview of class separability (Figure 1). Green vegetation
separated from the D class in the peaks of the 700–800 nm
and the 1,000–1,375 nm ranges. In the visible range, all
classes except for shadow were confounded. Two sharp
reflectance peaks at 1,007 and 1,069 nm showed promise
for good class separability in all classes. At longer
wavelengths (1,500–2,500nm), grasses (heavy and light)
were confounded with the D class. It was also evident that
the averaged A spectrum was very similar to the H class,
indicating poor separability for this important class at
these longer wavelengths.

DISCRIM used 17 spectral bands to distinguish the
classes (Table 1). The first four discriminant functions
accounted for approximately 95% of the variability in the
classes. CART, on the other hand, used only six of the
spectral bands (Figure 2) to account for 91% of the
variability.

CART provided superior classification results compared

Figure 1. Class spectra averages showing class distinctions. Spectral responses are offset on the y-axis
to improve visual differentiation of similar spectra.
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Figure 2. CART tree developed using all samples. The tree shows
utilized spectral bands (designated by central band wavelength)
and splitting rules for classification. Splitting rules apply to the
left branchings of the tree.

Table 1.  Spectral bands (central band wavelength in nm) and discriminant function
weightings used in the DISCRIM classification.

FunctionSpectral band
(nm) 1 2 3 4

448.60 –1.107 –0.186 0.806 –1.029
509.10 –1.354 0.247 4.763 –2.207
523.80 –5.142 0.251 –6.791 0.629
539.90 –4.337 –2.210 4.630 1.690
600.60 12.886 0.943 –4.194 5.395
707.50 –0.700 3.019 1.866 –5.175
738.00 –2.678 –7.690 –1.130 0.586
767.80 2.289 16.081 1.901 –3.803
876.60 0.470 –9.724 –0.044 4.449

1422.60 0.913 0.353 –0.917 0.574
1466.40 0.003 –2.337 2.725 –5.963
1801.10 1.465 –0.495 –0.509 –0.692
2071.10 –1.235 3.125 –1.519 9.609
2089.50 4.895 7.299 6.818 –5.300
2282.60 –3.989 –7.867 –8.668 0.142
2382.10 –1.725 –1.846 –0.309 2.865
2430.40 0.029 1.171 2.065 –0.299

to DISCRIM (Table 2), as well as all other methods tested.
CART had an overall accuracy of 92.5% and a Kappa of
0.91 and produced a 100% user’s accuracy in the important
A class and a 74% accuracy in the H class. Accuracy for
the D class was 90%, while the LG and HG classes
achieved 100% accuracy. The DISCRIM approach could
not readily distinguish in the H and A classes. High
accuracies were achieved by DISCRIM in the D, LG, and
HG classes.

Overall accuracy for the CART method using the
jackknife resampling technique was 69%, and the Kappa
was 0.62. User’s accuracy for the A class was 53%. Poor
distinction between the A and H classes persisted, with
user’s accuracy for the H class at 57%. Poor distinction
also was present between the D and LG classes, with user’s
accuracies of 59 and 75%, respectively. The HG class was
well distinguished from other classes (100% user’s
accuracy), while the SH class was not well distinguished
from the H class.

Discussion

Our analysis demonstrated that subcanopy resolution
hyperspectral imagery could successfully distinguish among
tree stress classes resulting from Douglas-fir beetle attack.
Examination of the classification methods showed that the
CART approach provided the best ability to separate tree
health classes. CART’s ability to use different band
combinations for each class in a rule-based classification
allowed for maximum spectral separability of tree health
classes compared to DISCRIM, which required the same
spectral bands for all classes. This was advantageous because
tree health classes and other background classes were different
in their physical and chemical characteristics, and thus spectral
regions in which classes could be distinguished varied. The
mean spectral profiles for each class showed these class
spectra and the spectral regions where class distinctions
could be made. Although the spectra were similar, slight
shifts in the spectral regions of maximum separation could be
seen in all classes. CART utilized these slight differences in
the spectra to build the classification tree, thus it took full
advantage of spectral resolution afforded by hyperspectral
imagery and reduced the spectral data to those bands that
provided the best class distinctions.

Results of the classification using the CART-Jackknife
method were encouraging for the use of hyperspectral imagery
for mapping tree stress. Use of the jackknife method of cross-
validation in combination with CART allowed for a realistic
estimate of the ability of CART to separate groups while
reducing bias associated with our dataset for validation. Some
confusion persisted between H and A classes using CART-
Jackknife, with the best class accuracies from 50 to 70%. This
confusion was the result of substantial variability in spectral
responses among trees within these tree health classes.

Tree response to beetle attack occurs over a relatively short
time period compared to other, slow-acting stressors such as
root rot. Time between initial attack and visual signs of
chlorosis can be as short as a month, with death occurring
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Table 2.  Accuracies and kappa statistics for the classification methods.
Accuracy (%) Classes DISCRIM CART CART-Jack

Producers H 32.5 100 70.0
A 47.8 65.2 50.0
D 89.5 100 84.2

LG 97.2 100 50.0
HG 100 100 88.9
SH 100 100 80.6

Users H 50.0 74.1 57.1
A 51.7 100 53.5
D 70.8 90.5 59.3

LG 76.1 100 75.0
HG 100 100 100
SH 94.7 100 100

Overall 74.6 92.5 68.6

Kappa statistic 0.69 0.91 0.62

within 2–3 months (Thompson et al. 1996, Zarco-Tejada et al.
1999). This means that there will be large proportions of trees
that have been recently attacked (i.e., exhibit evidence of
boring) that are not yet experiencing stress, visual or otherwise.
If the imagery is detecting nonvisible indicators of tree stress,
this inclusion of not yet stressed trees might have limited our
accuracy. For trees infested with more slowly advancing
pathogens, such as root rot, the relatively slower advance of
the disease means a smaller proportion of nondetectable
recent infestations, reduced variability in the spectral response
of the infested class, and an increased chance of identifying
trees and outbreak areas. We would, therefore, expect superior
results with slower advancing infestations. If a particular
source of tree stress resulted in increased spectral variability,
however, classification results might be lower.

Our study has shown that CART analysis of remote sensing
data is a robust and easily implemented statistical method of
classification without the need of extensive expert knowledge.
This study was conducted in a single stand having one species
and a single known source of tree stress, and further studies
will be necessary to determine how broadly our results are
applicable. At least in this case, however, CART effectively
created classification rules that distinguished the early stages
of tree stress by using the full spectral capabilities of
hyperspectral imagery. Thus, the possibility exists that
hyperspectral imagery of large forest stands might be useful in
identifying areas of relative tree stress that would not otherwise
be detected without prohibitive field reconnaissance. Forest
stands classified as experiencing higher stress could then be
examined on the ground to identify the causes of the stress
(e.g., beetle attack, root rot, poor site conditions). Ameliorative
actions, if available, can be taken at earlier stages, thus
reducing adverse economic and forest health effects.
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