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Mapping Percent Tree Mortality Due to Mountain
Pine Beetle Damage
John A. Long and Rick L. Lawrence

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a pervasive and particularly destructive species of insect that has killed vast areas of conifers in western
North America. To map large areas of infestation satellite imagery is often used because of its ability to cover large areas, but the spatial resolution often precludes
fine-scale analysis. Furthermore, maps of insect-caused tree mortality have been attempted on the basis of presence-absence. We present here a two-step method to
estimate and map tree mortality as a percentage within a Landsat-sized pixel. The first step delineates presence-absence, and the second estimates percent tree mortality
for those pixels with tree mortality. We tested a total of 25 two-step models. The binary presence-absence first step of the models produced overall accuracies between
89.9 and 98.0% and Cohen’s kappa values between 0.69 and 0.94. The full two-step models that predicted percent tree mortality produced estimated differences between
modeled and observed percent tree mortality that ranged from �0.1 to 2.4% with associated root mean square errors between 10 and 18%. This method has several
advantages over most current methodologies, including the use of a single image, nondependence on wetness measures, magnitude of error that is not density-dependent,
and no restriction to trees with red-shaded faded crowns.
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Vast areas of North America’s western conifer forests have
experienced insect damage at epidemic levels, and mapping
the location of insect-caused tree mortality is critical to

monitoring forest health, informing management strategies, and
understanding ecological relationships. The mountain pine beetle
(MPB) (Dendroctonus ponderosae Hopkins) is a native component of
the coniferous forests of western North America (Bentz et al. 2009).
It is a pervasive species and can be found from South Dakota’s Black
Hills to the Pacific coast and from northwestern Mexico to the
northern portions of British Columbia and Alberta. There is no
shortage of suitable habitat for MPB, as they can successfully attack
22 species of the genus Pinus, including 6 species from the eastern
United States and 4 species that are not native to North America;
however, the principal host species are lodgepole pine (Pinus con-
torta), ponderosa pine (Pinus ponderosa), and whitebark pine (Pinus
albicaulis) (e.g., Safranyik et al. 2010, Meddens et al. 2013).

Many populations of MPB are innocuous, causing little mortal-
ity to healthy trees, and periodic outbreaks of increased insect pop-
ulations are a natural ecosystem process (Creeden et al. 2014); how-
ever, epidemic outbreaks can cause widespread tree mortality and
affect millions of hectares of forest (Meddens et al. 2012). These

outbreaks produce substantial ecological and economic impacts,
because they affect forest health and ecosystem services. Large re-
gions of mortality in mature trees, for example, can reduce both the
amount and quality of harvestable timber (Schwab et al. 2009), alter
the dynamics of biogeochemical cycling (Kurz et al. 2008, Pfeifer et
al. 2010), alter forest composition and structure as well as the dis-
tribution of habitat (Klenner and Arsenault 2009), and affect fuels
and wildfire behavior (Jenkins et al. 2014).

The symptoms of an attacked tree follow a predictable trajectory
of changes in foliage coloration (e.g., Skakun et al. 2003). These
changes, known as stages, proceed over the course of 2 or 3 years.
The foliage in newly attacked trees changes from a bright green to a
duller green (green stage) during the first year due to changes in the
cellular structure derived primarily from water loss. The second
stage (red stage) is characterized by a substantial loss of chlorophyll
and an accompanying change in foliage coloration to red. The final
stage (gray stage) results once infested trees have lost the majority of
their foliage (e.g., White et al. 2005, Wulder et al. 2006) and may
last several years to a decade or longer. Details of the stages of
infestation and the ecological relationship between the MPB, its
blue-stain fungus symbiont (Grosmannia clavigera), and host tree
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species have been extensively covered (e.g., see Tsui et al. 2012 or
Lundquist and Reich 2014).

Much of the scientific work at the regional scale relies heavily on
mapping efforts. The need to locate and map very large areas of
infestation and tree mortality has motivated many studies based on
multispectral imaging, because the spectral characteristics of foliage
from healthy trees and from trees in various stages of MPB attack
have been shown to be sufficiently different in several wavelength
bands as to be useful for discrimination (Ahern 1988). The majority
of these studies exploited differences in the spectral characteristics of
healthy and insect-damaged trees (e.g., Wulder et al. 2006, Hicke
and Logan 2009, Meddens et al. 2011, 2013), including differences
in spectral wetness indices between the green- and red- or gray-stage
trees (e.g., Coops et al. 2006, Goodwin et al. 2008, Cheng et al.
2010, Jewett et al. 2011). Many of these studies also relied on
multitemporal imagery (e.g., Coops et al. 2006, Jewett et al. 2011,
Meddens et al. 2013).

These studies have been generally successful in identifying pres-
ence-absence for each stage of attack, although spatial resolution of
the sensor has been a limiting factor. Homogeneous regions are
easily classified and mapped; however, success in heterogeneous re-
gions with a mix of healthy trees and those in one of the stages of
attack has been scale dependent (Bentz and Endreson 2003, Frank-
lin et al. 2003). The pixel size of moderate-resolution satellite im-
agery, such as Landsat (900 m2), is problematic, because a single
pixel can include several whole and partial trees, some attacked and
some not. The ability to identify the percentage of tree mortality
within Landsat-sized pixels is important for several reasons, includ-
ing better understanding of the early stages of outbreak, when the
percentage of tree mortality is low, and better informing of eco-
nomic analyses when harvest is a viable option.

To our knowledge, there have been only two peer-reviewed pub-
lished attempts to characterize mortality within a Landsat-sized
pixel. Meddens et al. (2013) evaluated the ability of single-date and
multidate Landsat imagery to estimate the percentage of a pixel that
contained trees in the red stage; trees in the gray stage were excluded.
They employed four-band aerial imagery (0.3 m resolution) that was
ultimately aggregated to 30 m “superpixels” as the reference data.
Success was a function of homogeneity in the reference data; pixels
with large percentages of trees in the red stage had high classification
accuracies, whereas cells with small percentages were not classified
with high accuracy. Their method was an important first step, but it
was unable to detect pixels with fewer than 25% trees in the red stage
with acceptable accuracy (Meddens et al. 2013). In an additional
study, Meddens and Hicke (2014) used multitemporal Landsat im-
agery to develop a continuous measure of red-stage tree mortality as
part of a larger study of bark beetle spatial and temporal patterns.

Modeling tree mortality as a percentage is confounded by the fact
that the data set is likely to contain many instances of no mortality
(i.e., locations with no dead trees). These zero-inflated data have
more observations equal to zero than expected under the distribu-
tional assumptions of standard statistical methods. This condition
can lead to overdispersion and is common in field studies based on
counts (Barry and Welsh 2002) and in those based on percentages
(Vieira et al. 2010). Models that fail to account for zero-inflated data
can give misleading results regarding the statistical significance of
explanatory variables and, more importantly, can produce predic-
tions that are good in aggregate, but poor for any given location
(e.g., Potts and Elith 2006).

The purpose of the research reported in this article was to inves-
tigate the ability of several modeling approaches appropriate for
zero-rich data to estimate and map the within-pixel percentage,
rather than presence-absence, of tree mortality in a section of the
Helena National Forest with moderate-resolution imagery. We used
single-date Landsat-8 imagery and used four-band aerial imagery at
1-m spatial resolution as the reference data. The result was a map of
percent tree mortality, rather than a binary dead/live characteriza-
tion. The methods presented in this article are general and can be
used for any analysis in which the goal is to determine the within-
pixel percentage of any identifiable class.

Materials and Methods
Study Area

The study area comprises the south central section of the Helena
National Forest in west central Montana (Figure 1). This site is in
the Northern Rocky Mountains physiographic province and in-
cludes a large portion of the Elkhorn Mountains. The study area is a
mountainous region of 57,260 ha (141,491 acres), which consists of
approximately 75% coniferous forest and 25% montane steppe.
Elevations range between 1,500 and 2,600 m. Local MPB popula-
tions began to increase relative to historical levels in 2005 and
reached epidemic levels the following year, with substantial increases
every year through 2009 (US Department of Agriculture [USDA]
Forest Service 2010). Forests are primarily lodgepole pine, with
MPB-caused tree mortality within Landsat pixel-sized areas that
span the gradient from no mortality to complete mortality. Mortal-
ity within the study area overwhelmingly represented trees in the
gray stage; we estimated that �2% of the dead trees were in the red
stage. We define tree mortality in this study to include trees in the
red stage and gray stage, as well as defoliated standing dead trees that
may have died from other causes such as disease.

Data
We used both fine-resolution aerial imagery and moderate-reso-

lution satellite imagery. The aerial images consisted of 29 color-in-
frared digital ortho quarter quad tiles from the National Agricultural
Image Program (NAIP), which were mosaicked to provide complete
coverage of the study area. Spectral changes across adjacent flight-
lines is a potential issue with aerial imagery. This was not the case
with the NAIP imagery because post-2006 NAIP images are radio-
metrically preprocessed to compensate for atmospheric absorption,
solar illumination angle, and bidirectional reflectance (Montana
State Library 2014). A visual inspection of all NAIP images was
conducted with no radiometric issues that would affect visual inter-
pretation of the imagery noted. These images were acquired during
July 13–19, 2013, and were obtained from the Montana Geo-
graphic Information Clearinghouse.

The satellite imagery consisted of a single Landsat-8 scene (path
39, row 28) from July 18, 2013, which was obtained from the US
Geological Survey’s Earth Explorer portal. The date of the Landsat
image was chosen to coincide as closely as possible to the dates of the
NAIP imagery. The Landsat image had one small cumulus cloud
and associated shadow, located along the southwestern edge of the
study. The geometric accuracy design specification for the
Landsat-8 Operational Land Imager (OLI) is 12 m, but the evalu-
ation of test images suggests that Landsat-8 imagery is delivered at a
geometric accuracy of �4.1 m (Storey et al. 2014). NAIP imagery
has a geometric accuracy of �6 m (USDA 2015). Consequently,
there were no substantial issues regarding georegistration between
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the Landsat-8 image and the NAIP images. This conclusion was
supported by a close visual inspection of all images.

A total of 397 random locations were selected from within the
study area; 296 of these were used to build the models, 99 were used
for validation, and 2 were deleted because they were located in a
cloud-covered area. The sample size for the training data was based
on power calculations comparing two binomial proportions (� �
0.05, power � 0.80) to detect a minimum difference of 10% (e.g.,
Rosner 2010). We extracted tree mortality (response variable), spec-
tral reflectance data, topographic data, and four derived measures
for each of these locations. The use of fine-scale imagery has been
shown to be an acceptable substitute for ground reference data (e.g.,
White et al. 2005, Hicke and Logan 2009, Meddens et al. 2013);
therefore, tree mortality, measured as the percentage of dead trees
within a Landsat-8 pixel (900 m2), was estimated using the point-
counting method (Belhouse 1981) with NAIP imagery (1 m2) as the
reference. Point-counting used an acetate overlay printed with 100
points arranged in a 10 � 10 grid (Figure 2), which resulted in 3-m
horizontal and vertical spacing between points, the approximate
diameter of the average lodgepole pine tree crown and similar to the
2.4 m spatial resolution found to produce the highest classification
accuracy by others (Meddens et al. 2011). This overlay was the same
size as a Landsat pixel and was used on the NAIP imagery to identify
the land cover (dead tree, live tree, live vegetation (nontree), bare, or
shadow) under each of the 100 points at all 397 locations. A com-
plete absence of tree mortality was observed in approximately 20%
of the random locations. The distribution of class percentage was
relatively consistent between the locations used to build the models
and in the validation set (Figure 3). Shadows were common in the
aerial images, particularly in forested areas. Consequently, the per-
centage of dead trees at each of the random locations was shadow-
normalized (Dennison et al. 2010) by dividing by the sum of the
nonshadow classes. The shadow-normalized percentage of dead
trees per Landsat-sized pixel in the study area averaged 29.2%.

Spectral data (scaled radiance), the normalized difference vege-
tation index (NDVI), and the first 3 principal components (PC1,
PC2, and PC3) were extracted from the Landsat-8 image for each of
the 397 locations. Finally, we extracted the topographic variables,
elevation, slope, and aspect, which were derived from the National
Elevation Dataset 1 arc-second (�30 m) resolution product. Aspect
was categorically coded (Flat, N, NE, E, SE, S, SW, W, and NW).

Modeling Approaches and Techniques
There are several approaches to modeling zero-rich data (e.g., see

Vieira et al. 2010). We focused on two approaches. The first was a
single-step approach using a nonparametric method that does not
rely on distributional assumptions; the second was a two-step ap-
proach in which presence-absence of tree mortality was modeled
initially, and the nonzero percent mortality was subsequently mod-
eled in a second step (e.g., Welsh et al. 1996, Rideout et al. 1998).
Using a two-step process effectively eliminates problems caused by
zero-rich data because the zeros (absence of dead trees) are removed
in the first step and therefore eliminated from further analysis.

We began with the single-step nonparametric approach by mod-
eling percent mortality with random forest regression. Random for-
est (RF) is a tree-based ensemble classification and regression ap-
proach that creates multiple decision trees, each using a different
bootstrapped random subset of the training data (Breiman 2001). In
RF regression, the result is the mean of all individual tree predic-
tions. RF is useful when the data contain numerous weak explana-
tory variables (Breiman 2001, Lawrence et al. 2006), and it is well
established in the remote sensing literature (Long et al. 2013). We
used two single-step RF models: RF1 and RF2. The first, RF1, used
the training data as is; in the other, RF2, we reassigned all instances
of predicted percent mortality that were �5% to zero. This reas-
signment was based on one-half of the minimum detectable differ-
ence based on our power test, i.e., the sample size precluded the
ability to tell the difference reliably between 5% and 0%.

Figure 1. Aerial imagery and locator map of the study area located in the south central portion of the Helena National Forest (shaded
area) in western Montana.
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We also used several combinations of techniques in various two-
step analyses. The specific techniques included the following: (1)
RF; (2) generalized linear models (GLMs); (3) boosted logistic re-
gression (BLR); (4) beta regression (BR); (5) linear support vector
machines (LSVMs); and (6) polynomial support vector machines
(PSVMs). Two-step analyses began by modeling presence-absence
with one of five techniques (RF, GLMs, BLR, LSVMs, or PSVMs).
Then, all nonzero observations were used in the second step with
one of five techniques (RF, GLMs, BR, LSVMs, or PSVMs). In
total, we evaluated the ability of 27 models (Table 1) to estimate
within-pixel tree mortality.

RF has already been discussed. GLMs use standard linear regres-
sion techniques and are based on maximum likelihood principles.
These are well-known models and have been used in forestry-related
remote sensing applications for decades. BLR is standard logistic
regression that uses the boosting technique (Freund 1995, Freund
and Schapire 1997) to improve prediction accuracy. Boosting, like
RF, is an ensemble approach; it sequentially and iteratively re-
weights the training data and then takes the mean response from the
multiple resulting models (e.g., Collins et al. 2002). We could find
no studies that directly used the BLR technique in a remote sensing
application. In the absence of any a priori assumptions, we separated
0s from 1s at a probability of 0.5 in all logistic regression models. BR
(Ferrari and Cribari-Neto 2004) is analogous to multiple linear
regression with a continuous response variable (y) that is restricted to
the unit interval, 0 � y � 1. Consequently, BR is well suited
to responses measured as a percentage when they are converted to
proportions; however, the dependent variable cannot be zero (i.e.,
there can be no instances of observed 0% mortality; hence, this
method was only appropriate for the second step of the two-step
approaches). Standard multiple linear regression is not appropriate

for percentages because the models can produce results outside of
the unit interval, and it assumes a distribution that is theoretically
unbounded. BR has successfully predicted percent forest canopy
cover using field measurements (Korhonen et al. 2007) and has been
used with satellite imagery (Coulston et al. 2012). Support vector
machines (SVMs) are nonparametric techniques, which construct a
set of linear hyperplanes (boundaries) in n-dimensional space that
separate the training data such that the margins around the hyper-
planes are maximized (Burges 1998). LSVMs use standard hyper-
planes, whereas the nonlinear SVMs (such as PSVMs) gain linear
separation by mapping the training data to a higher-dimensional
feature space where the data are linearly separable (e.g., Mangasarian
and Wild 2007). SVMs are also well established in remote sensing
applications (for an excellent review, see Mountrakis et al. 2011).

Data Analysis
We used the statistical computing program R, including the

packages betareg, caret, caTools, e1071, MASS, randomForest, ras-
ter, rgdal, shapefiles, and sp, for all data analysis efforts. The explan-
atory variables available for modeling were elevation (EL), slope
(SL), the nine categorically coded aspects (AS), scaled radiance val-
ues for Landsat-8 bands (B1–B7 and B10–B11), NDVI, and the
first three principal components (PC1–PC3). Accordingly, a total of
24 explanatory variables were considered. Each of the single-step
models and the first step of the two-step models (presence-absence)
used the full suite of variables. In the second step of the two-step
models (percent mortality), RF and SVMS (LSVM and PSVM)
used the full suite of variables, whereas the final versions of the BR
and GLMs were selected by dropping statistically insignificant vari-
ables stepwise based on the Akaike information criterion. Models

Figure 2. Close-up of a representative portion (150 m � 75 m) of the study area color infrared NAIP image displayed in true color (A),
the same color infrared NAIP image displayed in standard false color (B), Landsat-8 image in standard false color (C), and the 10 � 10
grid overlay to scale. The point-counting grid has been superimposed on panels A, B, and C in the upper left-hand corners. Note that these
colors are brighter and more easily distinguished on computer monitors (RGB color model) than they are in the CMYK color model required
for printing. Live trees are green in the true color NAIP image and red in the standard false color NAIP image. Gray-stage trees are gray
in the true color image and are greyish-blue to purple in the standard false color image. Red-stage trees are rare, and there are only two
in this figure (in the lower left-hand quadrant); they are pink to red in the true color image and a pale greenish-yellow in the standard
false color image. Shadows are dark in both images. Note that we are showing a representative scale; the actual classification would
involve shifting between several scales before assigning a class.
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were constructed with the training data, and then tree mortality was
estimated for the validation data using each model.

We assessed the classification performance of the presence-ab-
sence step of the two-step models based on overall accuracy and
Cohen’s kappa coefficients, � (Cohen 1960) and the associated 95%
confidence intervals (CIs), although performance was ultimately
evaluated when combined with the second step of the models. The
two-step models were evaluated by comparing the predicted percent
tree mortality estimated from each model using the validation data
with the observed percentage in the validation data by calculating
the two-sample pseudomedian of differences between groups, along
with the associated 95% CIs. The pseudomedian (Hodges-
Lehmann estimator of location shift) of differences is a nonparamet-
ric measure of location functionally equivalent to the mean differ-

ence (Hodges and Lehmann 1963) and is the associated location
measure for the Wilcoxon signed-rank test. We used the Wilcoxon
signed-rank test (Wilcoxon 1945), a nonparametric alternative to
the two-sample paired t-test, to test the hypothesis that the distri-
butions of the predicted percentages and the observed percentages
were equal (Demšar 2006). In addition, we computed the root mean
square error (RMSE) as an additional measure that is robust to
differences in error distributions (Chai and Draxler 2014). Finally,
we computed error matrices for the presence-absence step of the
two-step models.

Results
We begin with the single-step models RF1 and RF2, which gave

differences in predicted and observed pseudomedians of 0.62 and

Figure 3. Distribution of within-pixel percentages by class for the training data and the validation data sets. These plots indicate that
the classes do not strongly favor any particular within-pixel percentage and that the validation data are representative of the training
data.
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1.21%, with associated 95% CI widths of 3.57 and 4.53%, respec-
tively (Table 2). The RMSEs were 10.47% for RF1 and 10.44% for
RF2. Both RF1 and RF2 had narrower CIs and smaller RMSEs than
many of the two-step models; however, their pseudomedians of
differences were intermediate in value, and their P values were
among the smallest (note that large P values indicate no statistically
significant difference between predicted and observed and suggest
that the model predicts well). Reassigning all observed percent tree
mortality of �5% to zero, as we did in RF2, did not provide any
additional benefit and, arguably, produced a worse, although not
statistically significantly worse, model. The single-step models also
gave a positive pseudomedian of differences, suggesting that, on
average, these models underestimated percent tree mortality. Con-
currently, RF1 tended to predict low levels of presence when tree
mortality was absent, which was less of an issue for RF2 as all
predictions of �5% were reassigned to zero. The failure to predict
absences did not have a substantial effect on any of the metrics but is

generally undesirable in mapping as it results in users of the map
(e.g., land managers) being unable to distinguish early infestations
(which might be a high priority for management) from lack of
infestation (which might be the lowest priority for beetle
management).

Overall classification accuracies for the presence-absence step of
the two-step models ranged from 90.91% for the GLM to 97.98%
for the RF model (Table 3). Kappa coefficients ranged from � �
0.6903 (GLM) to � � 0.9396 (RF). Cohen’s kappa coefficient
accounts for the chance agreement between the observed accuracy
and the expected accuracy; consequently, it can be a less misleading
metric than overall accuracy for comparing methods. Nonetheless,
arranging the models in descending order based on kappa coeffi-
cients, RF � BLR � PSVM � LSVM � GLM, produces the same
ordering as arranging them based on overall accuracy. Overall, RF
and BLR performed the best with respect to correctly predicting
presence-absence, regardless of which measure is used to assess per-
formance. More than three-quarters of the errors, regardless of
model, resulted from predicting presence when the actual observed
class was absence (Table 3; Figure 4). When tree mortality was
absent, RF1 and RF2 predicted low levels of mortality, 3.66 and
2.27%, respectively (Table 4).

Each of the two-step models that we considered here performed
well with respect to estimating percent tree mortality (Table 5);
however, performance differed, depending on which metric was
used for assessment. There was insufficient evidence statistically to
suggest that model performance of any particular model was “bet-
ter” than that of any of the other models considered; nonetheless, we
make the following observations regarding differences in perfor-
mance. The pseudomedian of differences, formulated as observed �

Table 1. Summary of models and explanatory variables included.

Presence-absence
step

Percent mortality
step Explanatory variables

RF1 EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3
RF2 EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3

GLM BR SL � AS � B2 � B3 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2
GLM SL � AS � B1 � B3 � B5 � B6 � B9 � B10 � B11 � NDVI � PC2 � PC3
RF SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC3
LSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3
PSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3

RF BR SL � AS � B2 � B3 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2
GLM SL � AS � B1 � B3 � B5 � B6 � B9 � B10 � B11 � NDVI � PC2 � PC3
RF SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC3
LSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3
PSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3

BLR BR SL � AS � B2 � B3 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2
GLM SL � AS � B1 � B3 � B5 � B6 � B9 � B10 � B11 � NDVI � PC2 � PC3
RF SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC3
LSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3
PSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3

LSVM BR SL � AS � B2 � B3 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2
GLM SL � AS � B1 � B3 � B5 � B6 � B9 � B10 � B11 � NDVI � PC2 � PC3
RF SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC3
LSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3
PSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3

PSVM BR SL � AS � B2 � B3 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2
GLM SL � AS � B1 � B3 � B5 � B6 � B9 � B10 � B11 � NDVI � PC2 � PC3
RF SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC3
LSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3
PSVM EL � SL � AS � B1 � B2 � B3 � B4 � B5 � B6 � B7 � B10 � B11 � NDVI � PC1 � PC2 � PC3

RF1, single-step random forest; RF2, single step random forest with observations of �5% reassigned to 0%; GLM, generalized linear model; RF, random forest; BLR,
boosted logistic regression; BR, beta regression; LSVM, linear support vector machine; PSVM, polynomial linear support vector machine; EL, elevation; SL, slope; AS,
aspect; B1–B11, Landsat-8 bands 1–11 (B1, 0.43–0.45 �m, B2, 0.45–0.51 �m, B3, 0.53–0.59 �m, B4, 0.64–0.67 �m, B5, 0.85–0.88 �m, B6, 1.57–1.65 �m, B7,
2.11–2.29 �m, B10, 10.60–11.19 �m, B11, 11.50–12.51 �m); NDVI, normalized difference vegetation index: (B5 � B4)/(B5 � B4); PC1–PC3, principal components
1–3.

Table 2. Performance of the one-step models.

Modela P valueb
Pseudomedian
of differencesc CI (� � 0.05)c RMSE (%)

RF1 0.4884 0.62 �1.07 to 2.50 10.47
RF2 0.2968 1.21 �1.16 to 3.37 10.44

a RF1, single-step random forest; RF2, single step random forest with observations
of �5% reassigned to 0%.
b Results are based on Wilcoxon signed-rank tests (note that large P values are
“better” because they indicate failure to reject the null hypothesis that observed and
predicted are the same).
c Results are based on Wilcoxon signed-rank tests where the difference was for-
mulated as observed � predicted and are given as percent.
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predicted, ranged between �2.35 and 0.97%, whereas the 95% CI
widths were between 3.57 and 8.95%. The smallest pseudomedian
of differences (0.002%) resulted from using BLR for the presence-
absence model and GLM for the continuous model; the largest
(�2.35%) used LSVM for the presence-absence model and PSVM
for the continuous model. Hereafter, for the two-step models, we
will use a hyphenated nomenclature, e.g., BLR-GLM, to identify
the presence-absence model and the continuous model, respectively.
The P value for each model was substantially �0.05 (Table 5),

suggesting no statistically significant differences between observed
and predicted percentages at the 95% confidence level; conse-
quently, any of the models could be used to estimate percent tree
mortality with that level of confidence. Based on pseudomedians of
differences and P values, the BLR-GLM model performed best.
However, based on RMSE, the RF-RF model was the superior
model (RMSE � 10.42%). In general, models using RF, BLR, and
BR produced the lowest RMSEs, whereas those using GLM, LSVM,
and PSVM had higher RMSEs (Table 5).

Table 3. Performance of the presence-absence step of the two-step models.

Classified data

Reference data

Present Absent User’s accuracy (%)

GLM
Present 77 9 (77/86) 89.53
Absent 1 12 (12/13) 92.31

77/78 12/21
Producer’s accuracy (%) 98.72 57.14
Overall accuracy 89.90% � � 0.69; CIa � 0.50 to 0.88

RF
Present 77 1 (77/78) 98.72
Absent 1 20 (20/21) 95.24

77/78 20/21
Producer’s accuracy (%) 98.72 95.24
Overall accuracy 97.98% � � 0.94; CIb � 0.96 to 1.00

BLR
Present 76 1 (76/77) 98.70
Absent 2 20 (20/22) 90.91

76/78 20/21
Producer’s accuracy (%) 97.44 95.24
Overall accuracy 96.97% � � 0.91; CI � 0.80 to 1.00

LSVM
Present 77 6 (77/83) 92.77
Absent 1 15 (15/16) 93.75

77/78 15/21
Producer’s accuracy (%) 98.72 71.43
Overall accuracy 92.93% � � 0.78; CI � 0.62 to 0.94

PSVM
Present 77 5 (77/82) 93.90
Absent 1 16 (16/17) 94.12

77/78 16/21
Producer’s accuracy (%) 98.72 76.19
Overall accuracy 93.94% � � 0.84; CI � 0.70 to 0.98

a CI for Cohen’s kappa.

Figure 4. Scatterplot of reference versus predicted within-pixel percentage of tree mortality for the validation dataset using the RF1,
RF-RF, and GLM-PSVM models as representatives. All models tend to overestimate low levels of mortality and underestimate high levels
of mortality, but the amount is model dependent (Table 4). Note that the range of the errors is approximately equal regardless of the
percent mortality.
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The performance of the presence-absence step drove all subse-
quent measures. RF, for example, had the highest overall accuracy,
the largest kappa, and the smallest pseudomedian of differences, the
narrowest CI, the largest P value, and the smallest RMSE when

averaging across all two-step models that used RF as the presence-
absence step. This ordered relationship held true for RF � BLR �
PSVM. The “poorer” performing models, those using LSVM and
GLM as the presence-absence model, were nearly indistinguishable
in second-step average performance. We note that, within the sec-
ond step, RF and BR tended to perform very well, regardless of the
first-step model, whereas GLM and LSVM were less capable. The
relationship between the reference percentage and the predicted
percentage was such that the models tended to overestimate when
predicting low levels of tree mortality (�20% or less) and underes-
timate when predicting high levels of tree mortality (�70% or
greater). Success in predicting the absence of tree mortality varied by
model as indicated by the error matrices (Table 3). When the two-
step models incorrectly predicted the absence of tree mortality as
presence, RF- and BLR-based models had the smallest average over-
predictions, 2.24 and 2.42%, respectively. In contrast, GLM-based
models overpredicted by an average of 12.45%, the LSVM-based
model by an average of 10.88%, and the PSVM-based model by
6.29% (Table 4; Figure 4).

Discussion
Our purpose was to investigate the ability of several modeling

approaches to estimate and map the within-pixel percentage of in-
sect-caused tree mortality with moderate-resolution imagery. All of
the models that we evaluated predicted percent tree mortality with
what we believe likely to be acceptable accuracy from a management
perspective, �3% in pseudomedians of differences and RMSE
�18% in all cases, suggesting that it is possible to use moderate-res-
olution imagery, such as Landsat, in conjunction with fine-scale
imagery and various modeling approaches to estimate percent tree
mortality over large areas (Figure 5).

The single-step model RF1 produced very accurate predictions,
�1% error in the pseudomedian of differences on average (Table 2),

Table 4. Overestimation of the absence of tree mortality.

Two-step model Two-step model Overprediction
Mean

overpredictiona

. . . . . . . . .(%) . . . . . . . . .

Presence-absence model
GLM GLM.BR 10.54 12.45

GLM.GLM 11.51
GLM.RF 13.17
GLM.LSVM 12.50
GLM.PSVM 14.54

RF RF.BR 1.78 2.24
RF.GLM 1.84
RF.RF 2.76
RF.LSVM 2.14
RF.PSVM 2.67

BLR BLR.BR 2.14 2.42
BLR.GLM 2.47
BLR.RF 2.64
BLR.LSVM 2.41
BLR.PSVM 2.42

LSVM LSVM.BR 9.36 10.88
LSVM.GLM 9.87
LSVM.RF 12.42
LSVM.LSVM 10.63
LSVM.PSVM 12.13

PSVM PSVM.BR 4.97 6.29
PSVM.GLM 5.23
PSVM.RF 7.48
PSVM.LSVM 6.15
PSVM.PSVM 7.63

One-step model RF1 3.66 NA
RF2 2.27 NA

a Mean overprediction for the five models is based on the presence-absence step.
NA, not applicable.

Table 5. Summary of two-step model performance.

Presence-absence step Percent mortality step P valuea Pseudomedian of differencesb CI (� � 0.05)b RMSE (%)

GLM BR 0.6644 �0.76 �4.56 to 2.55 15.47
GLM 0.3551 �1.64 �5.55 to 1.68 15.79
RF 0.5464 �0.84 �4.21 to 1.74 13.59
LSVM 0.1832 �2.27 �5.78 to 1.21 16.18
PSVM 0.3463 �2.27 �6.67 to 2.22 18.29

RF BR 0.6061 0.85 �2.67 to 4.01 13.34
GLM 0.9751 �0.04 �3.65 to 3.05 13.26
RF 0.6061 0.56 �1.95 to 2.93 10.42
LSVM 0.6129 �0.88 �4.16 to 2.66 13.75
PSVM 0.9943 �0.04 �4.56 to 4.07 15.80

BLR BR 0.6062 0.87 �2.84 to 4.14 14.00
GLM 0.9981 0.00 �3.35 to 3.30 14.05
RF 0.4500 0.97 �1.67 to 3.32 11.19
LSVM 0.7137 �0.63 �4.10 to 3.01 14.50
PSVM 0.8235 0.56 �4.17 to 4.59 16.24

LSVM BR 0.6605 �0.76 �4.56 to 2.54 15.37
GLM 0.3479 �1.67 �5.62 to 1.66 15.57
RF 0.5466 �0.86 �4.15 to 1.77 13.53
LSVM 0.1723 �2.31 �5.95 to 1.13 16.29
PSVM 0.3283 �2.35 �6.77 to 2.18 17.99

PSVM BR 0.9873 0.06 �3.65 to 3.28 13.93
GLM 0.6255 �0.89 �4.69 to 2.36 14.00
RF 0.9475 �0.07 �3.01 to 2.40 11.98
LSVM 0.3324 �1.67 �5.09 to 1.88 14.79
PSVM 0.5874 �1.31 �5.74 to 3.10 16.94

a Results are Based on Wilcoxon signed-rank tests (note that large P values are “better” because they indicate failure to reject the null hypothesis that observed and predicted
are the same).
b Results are based on Wilcoxon signed-rank tests where the difference was formulated as observed � predicted and are given as percentages.
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but this is potentially misleading because the results were largely a
consequence of overestimating the zero values (absence of tree mor-
tality) while simultaneously underestimating the nonzero values
(Figure 4). We attempted to account for this situation by reassigning
all instances of predicted percent tree mortality of �5% to zero in
the RF2 model. This reassignment worsened performance with re-

spect to all measures, with the single exception of RMSE, which
remained essentially unchanged. The RF2 model also suffered from
a tendency to overestimate zero values and underestimate the non-
zero values. Both single-step models produced excellent results in
terms of overall model performance; nonetheless, they might be less
desirable, depending on specific research interests, for mapping

Figure 5. A. Map of the estimated percent mortality made by applying the RF-RF model across the study area. B. NAIP imagery for the
study area. C. Close-up view of the estimated percent mortality map. D. NAIP imagery of the same close-up area. The full-region panels
(A and B) indicate that the central and west central regions of the study area tend to have the highest levels of mortality, whereas the
northern and northeastern portions are characterized by low-density mortality. The map matches the NAIP imagery well, including
correctly identifying meadows as “no-mortality,” in the close-up panels (C and D).
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because the models incorrectly identify pixels with no tree mortality
as pixels with low levels of mortality, whereas the opposite was rarely
the case. Predicting low densities of tree mortality in areas where no
actual damage has occurred might obscure important spatial rela-
tionships, particularly in regions that are in the early stages of MPB
outbreak or generate false conclusions that lead to inappropriate
forest management decisions. We do not recommend either single-
step model for mapping percent within-pixel tree mortality due to
MPB attack.

The two-step models, collectively performed well, but varied
depending on the metric used to assess performance. The inclusion
of a presence-absence model as a first step substantially improved the
ability of the models to correctly predict pixels with no tree mortal-
ity. This initial step in each of the two-step models accurately pre-
dicted presence-absence with �90% overall accuracy; however, the
Cohen’s kappa coefficients suggested that the ensemble-based meth-
ods, RF and BLR, were substantially better than the other methods,
which were not ensemble-based. This finding is consistent with
studies in the literature (e.g., Freund and Schapire 1997). Errors
with models that used RF or BLR as the presence-absence model
were less biased because the misclassifications were approximately
equal between the classes, whereas the other methods showed a
strong propensity to misclassify absence as presence rather than the
other way around.

The focus of the second step of modeling was to estimate the
nonzero responses, i.e., accurately predict percent tree mortality in
pixels with actual damage. Overall model performance was ulti-
mately driven by the performance of the first step, suggesting that
partitioning the observations into presence-absence is a necessary
initial step. Two-step models using RF or BR in the second step
consistently produced better metrics than the other models, regard-
less of which technique was used in the first step. These findings
suggest robustness across methods for RF and BR. Surprisingly, the
more traditional GLM tended to outperform both the modern ma-
chine learning methods LSVM and PSVM in the second step, al-
though the differences were not statistically significant.

All combined models were able to estimate percent tree mortality
with acceptable accuracy for mapping MPB beetle damage. None-
theless, we recommend considering either RF or BLR for the pres-
ence-absence model and either RF or BR for the second step of the
model. The success of the models did vary according to which mea-
sure was used to assess performance. We recommend that research-
ers use the RF-RF model if RMSE is the desired performance mea-
sure. Alternatively, if the pseudomedian of differences is preferred,
then the BLR-GLM model is recommended.

It is important in the evaluation of our results to clearly under-
stand the context in which the models were evaluated. The objective
in this study was to obtain the best predictive map, which in turn led
us to evaluate models based on measures of accuracy and precision.
Alternative objectives, which might include multiple objectives,
could result in alternative measures for evaluation. If understanding
the relationship between response and explanatory variables is a
priority, for example, boosted and bagged statistical methods, such
as RF and BLR, might be less desirable models because such infor-
mation is limited or nonexistent, whereas GLM expressly shows
such relationships. Similarly, if computational efficiency is impor-
tant, for example, because of large data sizes and time constraints, an
analysis would probably find significant differences among the
methods.

The methods presented here have broad applicability across a

wide range of ecological applications (and elsewhere) where zero-in-
flated data are common. Species abundance data, in particular, tend
to be zero rich (e.g., Welsh et al. 1996, Smith et al. 2012), and
extending methodological approaches beyond traditional regression
models to take advantage of modern, machine-learning approaches
such as decision trees, random forest, or support vectors could ben-
efit these applications. Other remote-sensing applications, as well as
other studies, in which within-observation concentrations add to
our understanding of processes of interest will also benefit from
these methods, as we see the ability of sensors, when combined with
appropriate methods, to accurately model within-observation
variability.

Regardless of method, our work advances the science of mapping
MPB damage in four notable respects: (1) only a single image is
required rather than multitemporal imagery, which is often difficult
to acquire as cloud free over large areas; (2) success is not based on
wetness measures, which have low classification accuracy relative to
our results (e.g., Skakun et al. 2003); (3) the magnitude of the errors
and therefore accuracy is not density dependent—low densities of
tree mortality can be estimated within approximately the same range
of error as pixels with higher densities (although the direction of
error, i.e., tendency to over- or underestimate, is density depen-
dent); and (4) we are not restricted to mapping trees in the red stage
and include trees in the gray stage in our definition of “mortality.”
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