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1 INTRODUCTION 

Recent developments for acquiring and distributing remotely-sensed data have greatly increased data 
availability to the user community. The past two decades have witnessed an explosion in data acquisition 
by a variety of ground, airborne and orbital sensors. The popularization of Unmanned Aerial Systems 
(UAS) and the development of reduced cost orbital platforms should guarantee that even higher data vol-
umes will be available to future analysts. The past decades also saw the opening of image data archives 
(e.g., Landsat, CBERS, Sentinel), making access to a rich database of moderate resolution satellite images 
a reality across the globe. This increased volume and variety of remotely-sensed data increases the demand 
for methods and procedures for data handling and information extraction. This chapter, Image Processing 
and Analysis Methods, describes recent efforts to expand the analyst’s data processing toolset and includes 
the theory and strategies used in manipulating remotely-sensed data by digital systems. The text focuses on 
presenting algorithms and techniques for image processing and analysis and emphasizes recent develop-
ments not covered by previous editions of the ASPRS Manual of Remote Sensing. Although the main topics 
covered by the chapter involve the direct processing of images, the text also covers concepts involved in 
processing remote sensing data that may not have been collected or stored as images, such as spectral curves 
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acquired by spectroradiometers. Several sections of this chapter match this description, including Spectral 
Vegetation Indices and Spectral Mixture Analysis. Image processing includes not only the analysis of im-
ages, but also the necessary steps involved in preparing images for analysis, such as geometric correction, 
atmospheric correction and several techniques associated with image enhancement. Spectral indices result-
ing from the combination of multiple spectral bands are presented, with emphasis on the description of 
vegetated targets. A detailed treatment is given to the mixture problem resulting from the contribution of 
multiple materials within the instantaneous field of view (IFOV) of a given sensor. Because multiple appli-
cations can benefit from the increased explanation power provided by a large number of spectral bands, 
hyperspectral data processing is also presented and discussed. Further, the chapter addresses the benefits 
and challenges involved in combining datasets acquired by different systems (Data Fusion). Image classi-
fication addresses multiple strategies involved in assigning classes to images (e.g., Support Vector Machine, 
and Decision Trees); and includes advances in Object-Based Image Analysis (OBIA), particularly those 
related to image segmentation in preparation for classification. Given the increasing length of remotely-
sensed data time series, particular attention is given to preparing sequences of images and data, including 
multiple techniques for smoothing, spike removal and the retrieval of metrics associated with temporal 
variations of targets. The chapter also brings multiple examples of use of products derived from processing 
remotely-sensed data as input to a variety of workflows, including modeling and analysis efforts. Finally, 
very current topics involving recent advances in image acquisition and availability, are presented for gen-
erating 3D surfaces from multiple images using Structure from Motion (SfM); processing of very large 
datasets (Big Data); and processing of images in the cloud are presented. 

2 GEOMETRIC CORRECTION 

2.1 Introduction 

Remotely-acquired images and data are ubiquitous and traditional aerial- and satellite-based images are 
now only a part of the data being collected and made available to the public. With expanding use of sensor 
technology and innovative platforms such as small satellites, unmanned aerial systems, and stationary sen-
sor fields, many new image and data forms are available. Uses of these remotely-sensed data in combination 
with other data sources, particularly geospatial data in geographic information systems (GIS), require geo-
metric correction to ground coordinate systems. The traditional approach to geometric correction comes 
from photogrammetry and early satellite image correction systems. These methods of geometric correction 
include physical and mathematical models. Ground control points (GCPs) are essential to these mathemat-
ical models and may also be used with physical models. These basic models are described below and are 
well documented in current remote sensing textbooks and college courses.  

Many factors can affect the characteristics and geometric quality of remotely-acquired data, ultimately 
defining the ability to identify targets correctly and to measure their physical, chemical or biological prop-
erties accurately. Physical models attempt to describe mathematically all the various types of distortion 
resulting from the platform, sensor, and Earth systems during the data collection process. These distortions 
include the position, velocity, and orientation of the platform; view angles, IFOV, and panoramic effects of 
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the sensor; the ellipsoid and relief representations of the Earth; and the cartographic projection (Toutin, 
2004). 

2.2 Sources of Geometric Distortion 

Sources of geometric distortion in images can be categorized into observer and observed components 
(Toutin, 2004). Observer component parts of the image generation system include the platform and sensor. 
Geometric distortion also results from observed components which include the atmosphere and Earth sys-
tem, and the cartographic projection (Toutin, 2004). A detailed presentation of different types of distortion 
is presented in Bernstein (1983). 

2.2.1 Platform 
The platform from which sensor data are acquired contributes to geometric distortion because of depar-

tures from the nominal altitude. The orbital period, eccentricity, and the actual inclination of the platform 
with respect to the Earth’s surface also contribute distortion to orientation and shapes in the acquired image 
data. In addition, velocity variations change line-spacing or create line gaps and overlaps in images. 

2.2.2 Sensor 
Distortions specific to the sensor are a function of sensor characteristics and design, including frame, 

mode of acquisition (whiskbroom, push broom), and viewing geometry (nadir, fore, aft, and across-track 
views). The effects of viewing geometry can be particularly relevant in some active systems, such as radar, 
LiDAR, and sonar. Uncertainty in the calibration of focal length and the IFOV for visual and infrared sen-
sors, and timing for synthetic aperture radar (SAR) are sources of geometric distortion. The attitude of the 
sensor, including roll, pitch, and yaw; the scan skew for scanning sensors; and the velocity of the platform 
relative to the area of the Earth being sensed introduce distortion in the final images. 

2.2.3 Earth System 
The Earth system causes distortion in image geometry because of rotation, curvature, and terrain relief. 

Rotation causes displacements between image lines that are latitude-dependent. Curvature causes variation 
in pixel spacing and relief creates parallax in the scanner direction (Toutin, 2004). 

2.2.4 Cartographic Projection 
Map projection distortions are approximated to a reference ellipsoid of the geoid and the projection of 

the reference ellipsoid on a tangent plane. These distortions are well understood and covered amply in the 
literature (Usery et al., 2009). The nature of the "correction" depends upon the ultimate use of the data. For 
area measurements, one should use an equal area projection, and for shape measurements one should use a 
projection that preserves the angular relationships of the scene. 



ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

636 
 

2.3 Correction Models 

2.3.1 Physical Models 
Many methods exist for correcting distortions and these are often characterized as physical and/or general 

models (Toutin, 2004; Dave et al., 2015). A physical model can describe all distortions mathematically. 
These include: the platform’s position, velocity, or orientation; the sensor’s view angles, IFOV, panoramic 
effects; the Earth’s ellipsoid and relief; and the cartographic projection. Such a model needs both-orbit and 
sensor information, as well as a small number of GCP’s to compute and refine the parameters of the math-
ematical model. 

2.3.2 General Models 
General models for geometric correction have a long history and were developed with the original Land-

sat images by the National Aeronautics and Space Administration (NASA) and others (Bernstein, 1983). 
These models represent a generalized form of the collinearity equations between object space coordinates, 
X,Y,Z and image space coordinates x,y as in Equation 7-1. 

�
𝑥𝑥 − 𝑥𝑥0 = −𝑓𝑓 𝑚𝑚00(𝑋𝑋−𝑋𝑋𝑐𝑐)+𝑚𝑚10(𝑌𝑌−𝑌𝑌𝑐𝑐)+𝑚𝑚20(𝑍𝑍−𝑍𝑍𝑐𝑐)

𝑚𝑚02(𝑋𝑋−𝑋𝑋𝑐𝑐)+𝑚𝑚12(𝑌𝑌−𝑌𝑌𝑐𝑐)+𝑚𝑚22(𝑍𝑍−𝑍𝑍𝑐𝑐)

𝑦𝑦 − 𝑦𝑦0 = −𝑓𝑓 𝑚𝑚01(𝑋𝑋−𝑋𝑋𝑐𝑐)+𝑚𝑚11(𝑌𝑌−𝑌𝑌𝑐𝑐)+𝑚𝑚21(𝑍𝑍−𝑍𝑍𝑐𝑐)
𝑚𝑚02(𝑋𝑋−𝑋𝑋𝑐𝑐)+𝑚𝑚12(𝑌𝑌−𝑌𝑌𝑐𝑐)+𝑚𝑚22(𝑍𝑍−𝑍𝑍𝑐𝑐)

 (7-1) 

where: XC, YC, ZC are the spatial coordinates of the perspective center of the sensor at the instant the 
image was taken; f is the focal length, x0, y0 represent the image coordinates of the principal point; and mij 
are the elements of an orientation matrix which is determined entirely by three rotation angles (v, f, k ). 

The standard model uses two and three dimensional polynomials and is a standard process taught in 
remote sensing curricula, as shown in Equations 7-2 and 7-3. 

𝑃𝑃2𝑑𝑑 �𝑋𝑋, 𝑌𝑌) =  ∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑌𝑌𝑗𝑗𝑛𝑛
𝑗𝑗=0

𝑚𝑚
𝑖𝑖=0  (7-2) 

𝑃𝑃3𝑑𝑑 �𝑋𝑋, 𝑌𝑌, 𝑍𝑍) =  ∑ ∑ ∑ 𝑎𝑎𝑝𝑝
𝑘𝑘=0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑌𝑌𝑗𝑗𝑛𝑛

𝑗𝑗=0
𝑚𝑚
𝑖𝑖=0 𝑍𝑍𝑘𝑘  (7-3) 

In the last 15 years or so, the form of polynomials has shifted to the rational function model (Yang, 1997; 
Dowman and Dolloff, 2000; Di et al., 2003). The rational functional model uses ratios of polynomials as 
shown in Equation 7-4 and 7-5 (after Yang, 1997). 

𝑥𝑥𝑓𝑓 = 𝐹𝐹1(𝑋𝑋𝑚𝑚,𝑌𝑌𝑚𝑚,𝑍𝑍𝑚𝑚)
𝐹𝐹2(𝑋𝑋𝑚𝑚,𝑌𝑌𝑚𝑚,𝑍𝑍𝑚𝑚)

 (7-4) 

𝑦𝑦𝑓𝑓 = 𝐹𝐹3(𝑋𝑋𝑚𝑚,𝑌𝑌𝑚𝑚,𝑍𝑍𝑚𝑚)
𝐹𝐹4(𝑋𝑋𝑚𝑚,𝑌𝑌𝑚𝑚,𝑍𝑍𝑚𝑚)

 (7-5) 

where: Fi is a polynomial with the following form: 

𝐹𝐹(𝑋𝑋, 𝑌𝑌, 𝑍𝑍) = ∑ ∑ ∑ 𝑐𝑐𝑛𝑛 × 𝑋𝑋𝑖𝑖−𝑗𝑗 ×𝑗𝑗
𝑘𝑘=0

𝑖𝑖
𝑗𝑗=0

𝑁𝑁
𝑖𝑖=0 𝑌𝑌𝑗𝑗−𝑘𝑘 × 𝑍𝑍𝑘𝑘  (7-6)  

where: N is the polynomial order, cn are coefficients, and the subscript n is determined by: 

𝑛𝑛 = 𝑖𝑖×(𝑖𝑖+1)×(𝑖𝑖+2)
6

+ 𝑗𝑗×(𝑗𝑗+1)
2

+ 𝑘𝑘. The total number of coefficients for each polynomial is: 
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(𝑁𝑁+1)×(𝑁𝑁+2)×(𝑁𝑁+3)
6

. For example, when N = 3, Equation 7-6 becomes a 3rd order three-dimensional 
polynomial with 20 coefficients (Equation 7-7), which is the most common form used by software vendors. 

𝐹𝐹(𝑋𝑋, 𝑌𝑌, 𝑍𝑍) = 𝑐𝑐0 + 𝑐𝑐1𝑋𝑋 + 𝑐𝑐2𝑌𝑌 + 𝑐𝑐3𝑍𝑍 + 𝑐𝑐4𝑋𝑋2 + 𝑐𝑐5𝑋𝑋𝑋𝑋 + 𝑐𝑐6𝑋𝑋𝑋𝑋 + 𝑐𝑐7𝑌𝑌2 + 𝑐𝑐8𝑌𝑌𝑌𝑌 + 𝑐𝑐9𝑍𝑍2 +
𝑐𝑐10𝑋𝑋3 + 𝑐𝑐11𝑋𝑋2𝑌𝑌 + 𝑐𝑐12𝑋𝑋2𝑍𝑍 + 𝑐𝑐13𝑋𝑋𝑋𝑋2 + 𝑐𝑐14𝑋𝑋𝑋𝑋𝑋𝑋 + 𝑐𝑐15𝑋𝑋𝑋𝑋2 + 𝑐𝑐16𝑌𝑌3 + 𝑐𝑐17𝑌𝑌2𝑍𝑍 +
𝑐𝑐18𝑌𝑌𝑌𝑌2 + 𝑐𝑐19𝑍𝑍3 (7-7) 

The first order rational functions above become the formulation of the direct linear transformation (DLT). 
The collinearity equations are similar and translatable directly to rational functions if the sensor has a single 
perspective center, the interior orientation is linear, and the object space is the same as the map coordinate 
system (Yang, 2000). 

Replacement sensor model (Dowman and Dollof, 2000) is a generic term for methods using ratios of 
polynomial functions that provide a transformation from object space to image space by fitting to a regular 
spatial grid. There are four approaches to developing this replacement sensor model: polynomials and ra-
tional functions as discussed above, grid interpolation methods, and an extended version of the Universal 
Sensor Model (USM) abstract specification (OGC, 1999). The Rational Functional Model (RFM) is con-
sidered to be a generic sensor model (Hu et al., 2004) and, compared to polynomial models, it is more 
generic and technically applicable to all types of sensors including frame, pushbroom, whiskbroom, and 
SAR (Tao et al., 2000; Hu and Tao, 2002). Tao and Hu (2001) address the theoretical properties and prac-
tical aspects of the RFM and derive both the direct and iterative least squares solutions under terrain inde-
pendent and terrain dependent scenarios. 

2.4 Application to Data Types for Geometric Corrections 

The RFM has been applied to many different sensors beginning with Space Imaging Inc.’s adoption of 
the RFM as an alternative sensor model for image exploitation. Tao and Hu (2001); Palsule et al. (2004); 
Singh et al. (2008); and Yilmaz et al. (2004) applied the RFM successfully to model Cartosat-1 data. 
Maglione et al. (2014) successfully applied RFM to WorldView-2 data in a project to extract coastlines. 

2.5 Conclusions and Outlook 

Geometric corrections of remotely-sensed images are readily available in products from providers, either 
as corrected images, physical model parameters for the spacecraft and sensor, or as coefficients of rational 
functions for the simulated model. Users have the alternative to perform geometric correction if needed, 
and the methods are well documented and available in commercial and open source software. Educational 
materials on geometric correction for remotely-sensed images are available from universities and other 
educational institutions on the World Wide Web. 
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3 TOP OF THE ATMOSPHERE CORRECTION OVER LAND SURFACES 

3.1  Theoretical Background, History and Recent Advances 

Atmospheric effects have a non-negligible impact on Earth observations acquired by polar-orbiting or 
geosynchronous satellites. Those systems, designed initially to produce “pictures” in the visible solar spec-
trum of the earth and clouds, have evolved into complex sensing systems capable of acquiring quantitative 
measurements of the radiation field at several wavelengths, directions, and polarizations, which are the 
input data for sophisticated inversion algorithms for retrieval of land, ocean and atmosphere physical prop-
erties. Specifically, over land and ocean, the process that decouples the signal coming from the surface, and 
from the atmosphere above it, to obtain “surface reflectance” is called “atmospheric correction” or “atmos-
pheric compensation” to allude to the fact that the process is not perfect.  

The difficulty is achieving a high level of accuracy in deriving the surface reflectance, or the reflectance 
“value as measured by an ideal sensor held at the same view geometry and located just above the Earth’s 
surface assuming an absence of atmosphere”. It is impossible to validate reflectance without any assump-
tion/calculation, except on the surface of the moon for example, which has limited value as far as Earth 
monitoring is concerned. Another problem in the validation is scale. Remotely-sensed observations aver-
aged over several decameters or kilometers are compared typically to ground-based decimeter radius ob-
servations acquired by handheld validation instruments. Even though some sensing systems nowadays have 
high spatial resolution (≥ one meter), the signal measured over the “validation” target is also coming from 
the surrounding areas up to a fairly large distance at short wavelengths (i.e., the so-called adjacency effect), 
making it necessary to rely on a model and iterative processes to come to closure on validation.  

Atmospheric correction over land, even if imperfect, is needed as input for higher-level surface geophys-
ical parameters, including Vegetation Indices (VIs), Bidirectional Reflectance Distribution Function 
(BRDF)/Albedo, Leaf Area Index (LAI)/Fraction of Photosynthetically Active Radiation (FPAR), Burned 
Areas, Land Cover, Thermal Anomalies, and Snow Cover. It is also necessary to use the surface reflectance 
product in multitemporal or multispectral (MS) image-based applications aimed at detecting and monitoring 
changes on Earth’s surface (e.g., anthropogenic impacts, red-green-blue images). 

Rather than discuss all approaches extensively for atmospheric correction in various domains, it is per-
haps better to focus on the physically-based approach adapted to continuous near global application instead 
of episodic local studies. Thus, we present the theoretical basis for modeling the atmospheric effect in the 
solar spectrum based largely on the Second Simulation of a Satellite Signal in the Solar Spectrum Vector 
(6SV) code formalism (see Vermote et al., 1997), and used practically in solving the problem of large data 
volume inversion. In the following, we discuss briefly the performances of several radiative transfer codes 
available to the public, along with their merits and limitations. We then focus on the main challenge of 
atmospheric correction in the solar Spectrum; namely, the aerosol effect. We present several near-opera-
tional approaches for aerosol inversion and discuss their strengths and weaknesses. The next part will be 
devoted to a detailed error analysis and performance evaluation using the Moderate Resolution Imaging 
Spectroradiometer (MODIS) surface reflectance product as an example. Finally, we conclude with recom-
mendations for improving land surface reflectance and its validation. 
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3.2 Theoretical Basis 

3.2.1 Simplified Formalism 
The atmospheric “perturbation” of a directional surface reflectance signal depends on the type and char-

acteristics of atmospheric particles interacting with incident solar radiation. Different gas molecules scatter 
radiation according to Rayleigh’s law (i.e., molecular scattering) and absorb it within specific spectral bands 
whose bandwidths vary among gas species and depend on the vertical atmospheric pressure and temperature 
profiles. Aerosols are particles with sizes ranging from ∼10-3µm to ∼20µm that scatter and absorb radiation 
in accordance with the Mie and Geometric Optics theories.  

In the idealized case of a Lambertian Surface1 and within narrow spectral bands outside of the main 
absorption features of water vapor, the top-of-atmosphere (TOA) reflectance can be simulated as Equation 
7-8: 

𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇(𝜃𝜃𝑠𝑠, 𝜃𝜃𝑣𝑣 , 𝜑𝜑, 𝑃𝑃, 𝜏𝜏𝐴𝐴, 𝜔𝜔0, 𝑃𝑃𝐴𝐴�������
𝐴𝐴𝐴𝐴𝐴𝐴

, 𝑈𝑈𝐻𝐻2𝑂𝑂 , 𝑈𝑈𝑂𝑂3) =

𝑇𝑇𝑔𝑔𝑂𝑂𝑂𝑂(𝑚𝑚, 𝑃𝑃)𝑇𝑇𝑔𝑔𝑂𝑂3(𝑚𝑚, 𝑈𝑈𝑂𝑂3) �
𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎(𝜃𝜃𝑠𝑠, 𝜃𝜃𝑣𝑣, 𝜑𝜑, 𝑃𝑃, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑈𝑈𝐻𝐻2𝑂𝑂) +
𝑇𝑇𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎(𝜃𝜃𝑠𝑠, 𝜃𝜃𝑣𝑣 , 𝑃𝑃, 𝐴𝐴𝐴𝐴𝐴𝐴) 𝜌𝜌𝑠𝑠

1−𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴)𝜌𝜌𝑠𝑠
𝑇𝑇𝑔𝑔𝐻𝐻2𝑂𝑂(𝑚𝑚, 𝑈𝑈𝐻𝐻2𝑂𝑂)� (7-8) 

where: ρTOA is the reflectance at the TOA; ρatm is the atmosphere intrinsic reflectance, Tratm is the total 
atmosphere transmission (downward and upward); Satm is the atmosphere spherical albedo; and, ρs is the 
surface reflectance to be retrieved by the atmospheric correction procedure; 

The geometrical conditions are described by the solar zenith angle θs, the view zenith angle θv, and the 
relative azimuth φ (or the difference between the solar and view azimuth angles); 

P is the pressure that influences the number of molecules and the concentration of absorbing gases in the 
atmosphere, Tg designates the gaseous transmission by water vapor (TgH2O), ozone (TgO3), or other gases 
(TgOG), UH2O is the integrated water vapor content, UO3 is the integrated ozone content, and m is the so-
called “air-mass” computed as 1/cos (θs)+1/cos(θv); 

τA, ω0, and PA describe the aerosol properties and are spectrally dependent: τA is the aerosol optical thick-
ness, ω0 is the aerosol single scattering albedo, and PA is the aerosol phase function. 

The effect of water vapor on intrinsic atmosphere reflectance can be approximated as: 
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 (7-9) 

where: ρR represents the reflectance of the atmosphere due to molecular scattering (Rayleigh) and ρR+Aer 
represents the reflectance of the mixture of molecules and aerosol particles. Accounting correctly for the 
mixing and the so-called coupling effect (Deschamps et al., 1983) is important for achieving a high accu-
racy of atmospheric effect modeling. This approximation conserves the correct computation of the coupling 

 
1 Accounting for surface BRDF is necessary in a rigorous approach for modeling the so-called surface BRDF-Atmosphere cou-
pling (see Vermote et al., 1997), however it represents a second order effect and is expected to introduce only a consistent bias 
and not to influence an inter-annual variability analysis (see Franch et al., 2013). 
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and assumes that water vapor is mixed with aerosol particles and that molecular scattering is not affected 
by water vapor absorption. 

3.2.2 Radiative Transfer and Practical Implementation 
In addition to the geometrical conditions, several key parameters are required to perform the forward 

modeling of the problem (computation of the different terms that describe the atmosphere of Equations 
 7-8 and 7-9): the aerosol characteristics (optical thickness, size distribution, refractive indices, and vertical 
distribution2), the atmospheric pressure, the ozone amount, and the column integrated water vapor. 

Forward modeling is done using the 6SV Radiative Transfer Model (RTM) code. 6SV is an advanced 
RTM designed to simulate reflection of solar radiation by a coupled atmosphere-surface system, including 
polarization effects. This code was developed on the basis of its scalar predecessor, 6S, which was the 
underpinning of the MODIS atmospheric correction algorithm (Vermote et al., 1997). 6SV provides a va-
riety of options to simulate an aerosol atmosphere including a special option to incorporate Aerosol  Robotic 
Network (AERONET) measurements. Ground surface modeling includes simulations of homogeneous and 
in-homogeneous surfaces with, or without, a directional effect. The code operates on the basis of the Suc-
cessive Order of Scattering (SOS) method, and accounts for polarization of radiation in the atmosphere by 
calculating the Q and U components of the Stokes Vector (Lenoble et al., 2007). 6SV has been validated 
extensively since its release by comparison with other commonly used radiative transfer (RT) codes and 
valuable benchmarks such as Monte Carlo simulations and Coulson’s tabulated values (Coulson et al., 
1960). The code’s overall theoretical accuracy is within 1%, which conforms to the standard RT code ac-
curacy requirement (Muldashev et al., 1999). The complete validation effort is summarized in two manu-
scripts (Kotchenova et al., 2006; Kotchenova and Vermote, 2007) that are available on the official 6SV 
Web site (http://6s.ltdri.org/).  

The 6SV validation effort also demonstrates the importance of using vector code for atmospheric cor-
rection. In the majority of modeled cases, ignoring the effects of polarization leads to a large relative error 
of up to 7.2% for a mixed molecular-aerosol atmosphere in simulated TOA reflectances.  

The 6SV is used to build look-up tables for each spectral band where the TOA signals are computed for 
a reduced set of geometrical conditions: solar zenith from 0.0 to 80.0 degrees by steps of 5 degrees, view 
zenith from 0.0 to 75.0 degrees by steps of 2.0 degrees, relative azimuth from 0.0 to 180.0 by variables 
depending on solar and view angle to maintain a maximum difference in scattering angle between two 
successive geometry of 2.0 degrees.  

For each geometric situationy, the signal is computed at 20 discrete values of Aerosol Optical Thickness 
(AOT) at 550nm (from 0. to 5.0), seven levels of atmospheric pressure, and four basic aerosol types.  

The gaseous absorptions (TgH2O, TgO3 and TgOG) are computed separately (see Equations 7-8, 7-9) using 
a semi-empirical method that depends on air-mass and absorber amounts. 

 
2 The size distribution is usually assumed (even in AERONET retrieval (Dubovik et al., 2000)), although 
it could have an impact on the accuracy of the forward modeling in specific instances (Dechamps et al., 
1983). 

http://6s.ltdri.org/
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3.3 Aerosol Inversion 

3.3.1 Method 
In practice, several sources of ancillary data could be used for most atmospheric parameters (e.g., ozone, 

water vapor, atmospheric pressure) but the most problematical parameter to obtain is the aerosol that needs 
to be obtained at a suitable temporal (e.g., near-coincident in time) and spatial resolution (on the order of 
1km or better, if possible) with a reasonable accuracy. Fundamentally, aerosols are concentrated in the lower 
layers of the atmosphere and their average lifetime is a few days. This is the reason for their high spatial 
and temporal variability. The most important aerosol characteristic is the optical depth that drives several 
terms of Equation 7-8 directly, and needs to be estimated from the data themselves. Early efforts, tried to 
detect dark targets in the image automatically, where the surface reflectance could be approximated to be 
negligible (e.g., the Case-I ocean color algorithm for atmospheric correction in the near-infrared (NIR) and 
at longer wavelengths) and the signal observed is the atmospheric intrinsic reflectance, ρatm, from which 
the optical depth can be inverted. One problem over land is the difficulty in finding such dark targets relia-
bly. One solution is to use the shorter blue wavelength where most surfaces are dark (e.g., 412nm) as is 
done in the Deep Blue algorithm (Hsu et al., 2006), in which case one still must estimate the surface reflec-
tance at 412nm and possibly account for directional effects. This usually results from a database derived 
from carefully selected data (i.e., composite). 

Some other methods used on instruments capable of acquiring directional observations, such as the 
Multi-angle Imaging SpectroRadiometer (MISR) (Diner et al., 1998), use the hypothesis that the directional 
effect from the surface is the same at two different wavelengths (e.g., red and NIR), thereby reducing the 
number of unknowns in the problem and allowing for inversion of some key aerosol properties (Aerosol 
Optical Depth (AOD), size range, single scattering albedo.) The performances of the aerosol inversion from 
MISR have been evaluated extensively over land surfaces (Kahn et al., 2010). Roughly, between 50% (dust 
and hybrid case) and 75% (biomass burning, continental and urban) of the AOD retrievals at 550nm are 
within the 0.05 or 20% x AOD error bars.  

The MODIS aerosol group developed the MOD04 algorithm that uses spectral correlation between 
Shortwave Infrared (SWIR) (2.1μm) and Visible (0.47μm and 0.67μm), once again to reduce the number 
of unknowns and derive AOD and Angstrom Exponent3. Levy et al. (2010) provides a very detailed assess-
ment of the performance of the so-called MODIS dark-target aerosol algorithm, overall the 77% of the 
AOD retrieval is within expected error bars, ± (0.05+0.15 AOD); although one limitation of this algorithm 
is that over-bright targets such as a desert site (e.g., one of the AERONET locations called Solar Village), 
the AOD is not retrieved, given the relatively simple form of the basic spectral relation used in the retrieval. 

An alternative approach has been under development and validation in the past few years that aims at 
making the relationship used in the MOD04 retrieval less generic and more variable, both spatially and 
temporally. Basically, it uses a time series of data instead of a single observation to infer a better estimate 
of the ratio between SWIR and Visible bands. Some preliminary evaluation of this approach over seven 
AERONET sites (Lyapustin et al., 2011) shows that Multi-Angle Implementation of Atmospheric 

 
3 The performance of Angstrom Exponet retrievals over land are marginal and will be removed from fu-
ture versions of the algorithm (Levy et al., 2010). 
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Correction (MAIAC) and MOD04 have similar accuracy over dark and vegetated surfaces, and that MAIAC 
generally improves accuracy over brighter surfaces and provides aerosol retrievals over the Solar Village 
AERONET site (bright desert).  

The flexibility of MAIAC has been combined with the simplicity of MOD04, and the availability of 
MISR retrievals over a variety of surfaces from 2000-2010, to design the MOD09 Collection-6 aerosol 
retrieval portion of the algorithm (i.e., atmospheric correction over land surfaces). See Vermote and 
Kotchenova (2008) for the Collection-5 algorithm.  

The Collection-5 algorithm uses the red band (670nm) and four bands in the blue and SWIR (412nm, 
443nm, 470nm, 490nm and 2130nm) to derive both the AOT and the most suitable aerosol model (chosen 
from four candidate models) by minimizing the “model residual” computed as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ �𝜌𝜌𝑖𝑖
𝑠𝑠−𝑟𝑟𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠 �24
𝑖𝑖=1

4
 (7-10) 

where: ρs
red is the surface reflectance retrieved at 670nm by using the optical thickness derived from 

470nm, assuming a constant ratio, 0.5, between ρs
red and ρs

470nm, and ri,red are empirical spectral coefficient 
(ratios) between the 412nm, 443nm, 490nm, 2130nm bands and the 670nm band. 

In the Collection-5 algorithm, the ratio between 670nm and the other bands are fixed and correspond to 
values typically observed over vegetation (i.e., 0.4 at 412nm, 0.45 at 443nm, 0.5 at 470nm, 0.54 at 490nm 
and 2.0 at 2130nm).  

In the Collection-6 algorithm the ratio values are location and time dependent. The time dependence is 
achieved by allowing the ratios to vary linearly with the Normalized Difference Water Index (NDWI) such 
as: 

r = rcte+rslope NDWI (7-11) 
 

where: 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝜌𝜌870𝑛𝑛𝑛𝑛−0.5𝜌𝜌2130𝑛𝑛𝑛𝑛)
(𝜌𝜌870𝑛𝑛𝑛𝑛+0.5𝜌𝜌2130𝑛𝑛𝑛𝑛) (7-12) 

The time and location dependence are established by correcting the MODIS Terra TOA data from the 
Climate Modeling Grid product (i.e., 0.05 degree latitude, longitude resolution) using the available MISR 
data on a daily basis for 2000 to 2010. An example of the spatial variation of the ratio at 470nm is shown 
in Figure 7-1. Over vegetated areas other than dense forest, the ratio is around 0.5 (i.e., yellow and orange 
on the color scale), which was the value assumed in Collection-5 over dense forest. In Brazil, central Africa, 
South East Asia, and Canada, the ratio is higher ~0.8 (i.e., red to dark red); but, since the reflectance is 
smaller at 670nm, the resulting “error” on the aerosol optical depth is not large compared to other sources 
of error (e.g., aerosol absorption, size distribution etc.). Over arid surfaces like the Sahara, Middle East, 
Central Australia, and South Africa, the ratio is slightly lower ~0.4-0.3 (i.e., green and blue on the color 
scale); but, having an accurate ratio over those bright surfaces is particularly important as a small error in 
the ratio translates to a bigger error on the assumed surface reflectance; and subsequently, on the AOT. 
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Figure 7-1. Map of the ratio between MODIS Terra band 3 (470nm) and band 1 (670nm). This is the average ratio 
observed over a period of 10 years using coincident MODIS/MISR observations and the optical thickness from MISR 
to perform atmospheric correction. 

3.3.2 Aerosol Optical Depth Validation 
Evaluation of the MODIS Collection-6 aerosol over land was performed over the same sites used by 

Lyapustin et al. (2011). A collection of “dark” and “bright” sites tested the limit of the inversion. Validation 
was conducted for both Aqua and Terra from 2000 to 2014. The analysis was performed by averaging the 
aerosol retrievals over a subset of 11×11 pixels centered on the AERONET instrument location. Cloud, 
snow and water were excluded in the averaging, but no other filtering was done (i.e., MOD04 and MAIAC 
exclude some of the highest or lowest AOT retrieval before averaging). The results are presented in Figure 
7-2 for the East Coast sites (i.e., Goddard Space Flight Center (GSFC), Stennis, Walker Branch and Wallops 
Island); Figure 7-3 for the West Coast sites (i.e., UCLA and Fresno); and Figure 7-4 for the Solar Village 
site (i.e., a bright desert site in Saudi Arabia). The results are highly similar both in slope and correlation to 
those presented in (Lyapustin et al., 2011), and even show better correlation (0.88 versus 0.66) and lower 
intercept (0.04 versus 0.13) for the Solar Village site that is particularly challenging in terms of aerosol 
retrieval. It should be noted that MOD04 and MOD09 Collection-5 do not retrieve aerosols over Solar 
Village. MOD09 Collection-6 shows good performance in aerosol retrieval on a site by site basis based on 
the correlation observed, although there is a systematic bias in the slope of the relationship over the Lya-
pustin et al. (2011) analysis. This systematic bias could be due to an inadequate choice of the aerosol model 
used in the inversion that is currently limited to four basic types based on (Dubovik et al., 2002): (1) Urban 
clean (based on the GSFC site); (2) Urban polluted (based on the Mexico City site); (3) Smoke low absorp-
tion (based on Amazonian and Bolivian sites); and, (4) Smoke high absorption (based on the Mongu site in 
Southern Africa). The results are presented in the next section. To some extent, surface reflectance valida-
tions indicate that the bias in optical thickness is partially compensated in the atmospheric correction pro-
cess, where the same model is used for the inversion and the correction. 
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Figure 7-2. Scatterplot of the MOD09 AOT at 550nm versus the AERONET measured AOT at 550nm for East Coast 
sites: GSFC (top left), Stennis (top right), Walker Branch (bottom left) and Wallops (bottom right). 

 
Figure 7-3. Scatterplot of the MOD09 AOT at 550nm versus the AERONET measured AOT at 550nm for the West 
Coast sites: UCLA (top left); La Jolla (top right); Fresno (bottom left); and Table Mountain (bottom right). 
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Figure 7-4. Scatterplot of the MOD09 AOT at 550nm versus the AERONET measured AOT at 550nm for a very bright 
site in Saudi Arabia (Solar Village).  

3.4 Surface Reflectance Validation 

The direct validation of land surface reflectance is problematical since there are no systematic measure-
ments of the spatial and spectral resolutions that would permit validation of aerosol optical thickness using 
AERONET. Like many others, an indirect approach using the AERONET data associated with an accurate 
radiative transfer code is applied to provide a validation proxy. This indirect approach is described in detail 
in Vermote and Kotchenova (2008) for analyzing the Collection-5 MOD09 product. It relies on a reference 
dataset created by 6SV using AERONET measurements as input to determine the accuracy, precision, and 
uncertainty (APU) of the surface reflectance product. The APU were originally defined by the National 
Polar-Orbiting Operational Environmental Satellite System (NPOESS) project to evaluate a variety of Earth 
Data Records (EDR) and are computed as follows in Equations 7-13, 7-14, and 7-15: 

   (7-13) 

 (7-14) 

 (7-15) 

where: in this case, µe  is the operational surface reflectance of the sensor considered and µt is the surface 
reflectance ‘truth’. 

Table 7-1 and Figures 7-5, 7-6 and 7-7 present the APU for the MODIS Collection-6 shorter central 
wavelength bands usable over land: band 4 (550nm) and band 1 (645nm). The blue bands are excluded from 
this analysis because they are used in the aerosol inversion, and therefore are meaningless after correction 
(Vermote and Kotchenova, 2008). The APUs for these bands are almost always within, or better than, 
specification (magenta line), even for the West Coast and Solar Village sites that had a systematic bias in 
the AOT retrieval, and that a compensation effect is occurring. 
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Table 7-1. Performance of MODIS APU Band 4 Surface Reflectances. 
Site      Number of Points   Average Truth   Accuracy   Precision   Uncertainty 
GSFC     67365       0.07159      -0.00084   0.00417    0.00436 
Stennis     7163        0.04853      0.00196    0.00262    0.00331 
Walker Branch  15605       0.05723      0.00085    0.00324    0.00350 
Wallops     16961       0.06381      -0.00024   0.00336    0.00338 
UCLA     8457        0.06844      0.00229    0.00352    0.00464 
La Jolla     9766        0.09018      -0.00371   0.00350    0.00529 
Fresno     29914       0.10513      -0.00250   0.00482    0.00553 
Table Mountain  72679       0.08338      -0.00352   0.00321    0.00478 
Solar Village   125952       0.25639      -0.00580   0.00590    0.00860 

 
Figure 7-5. APU of the reflectance product for MODIS Terra green band over the East Coast sites: GSFC (top left), 
Stennis Space Center (top right), Walker Branch (bottom left) and Wallops (bottom right). 
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Figure 7-6. APU of the reflectance product for MODIS Terra green band over the West Coast sites: UCLA (top left), 
La Jolla (top right), and Fresno (bottom left) and Table Mountain (bottom right). 
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Figure 7-7. APU of the reflectance product for MODIS Terra (green band) for the Solar Village site. 

3.5 Conclusion 

Progress in atmospheric correction over land during the past 20 years has been impressive. Critical to 
those improvements was launching high quality instruments designed for land observations in the Earth 
Observing System (EOS) era, among them MODIS and MISR. Equally critical was the availability of sys-
tematic, accurate and detailed measurements of aerosols from the AERONET global network, which were 
developed during the period. Direct validation of surface reflectance is limited by the availability of sys-
tematic spectral surface reflectance measurements at the proper spatial scale. The application of the above 
method currently underway for the Landsat class of sensor of 30m or better spatial resolution is a first step 
toward direct validation, provided that the current surface radiation measurement networks are upgraded 
with spectral measurements. In the meantime, the “indirect” approach that uses AERONET measurements 
is a valid alternative for providing a robust statistical assessment of surface reflectance products. However, 
a detailed protocol for using AERONET needs to be specified to ensure consistency between the surface 
reflectance products from different approaches and instruments. 

4 MULTI-DOMAIN ANALYSIS AND IMAGE TRANSFORMS 

4.1 Fractals 

Fractal-based texture analysis is a relatively novel class of spatial technique that has generated consider-
able interest in the remote sensing community in the past three decades (Pentland, 1984; De Cola, 1989; 
Lam, 1990; De Jong and Burrough, 1995; Myint, 2003; Sun, 2006; Sun et al., 2006; Ju and Lam, 2009; Liu 
et al., 2012; Silvetti and Delrieux, 2013; Riccio and Ruello, 2015; Xie et al., 2015; Feng et al., 2017).  
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Fractal techniques are well suited to the analysis of textural features in remotely sensed images, as the 
environmental features captured in the image are often complex and fragmented (Burrough, 1981; Lorimer 
et al., 1994). A remotely sensed image can be viewed as a hilly terrain surface whose “elevation” is pro-
portional to the image grey level value. Technically, an image can be interpreted as a 3D space where the 
x, y coordinates represent 2D position on the image plane and the z coordinate represents the grey level 
values or digital numbers (DN). 

This Section focuses on the state-of-the-art of fractal analysis techniques in remote sensing. First, three 
key concepts of fractals are introduced, i.e., fractals, fractal dimension, and self-similarity. The section then 
presents and describes seven commonly used methods for estimating the fractal dimension of remotely 
sensed imagery. Fractal applications in remote sensing are subsequently presented. Results from empirical 
studies applying fractal techniques are compared. Directions for future research are also discussed. The 
section is concluded with a brief discussion of the limitations of the fractal approach. 

4.1.1 Fractals, the Fractal Dimension, and Self-Similarity 
Fractal geometry was introduced and popularized by Mandelbrot (1977, 1982) to model complex natural 

phenomena as well as other complex objects that classical Euclidean geometry fails to analyze. In Euclidean 
geometry, dimensions are integers or whole numbers, (e.g., 1 for lines, 2 for areas, and 3 for volumes). 
These are called topographic dimensions. Topographic dimensions remain constant no matter how irregular 
a line or an area may be.  

In fractal geometry, on the other hand, dimension is treated as a continuum and is called fractal dimen-
sion. The fractal dimension, denoted as D, is a central construct of fractal geometry. The D value can be a 
non-integer and can be used as an indicator of the complexity of curves and surfaces. For example, a curve’s 
fractal dimension can take on any non-integer value between 1 and 2, depending on the degree of irregu-
larity of its form. The more contorted a line is, the higher its dimension. Similarly, a surface’s fractal di-
mension may be a non-integer value between 2 and 3.  

According to Mandelbrot (1977) the term fractal comes from the Latin adjective fractus, which is also 
the root for fraction and fragment and means “irregular or fragmented.” Formally, a fractal is defined as a 
set for which the Hausdorff-Besicovitch (or fractal) dimension strictly exceeds the topological dimension 
(Mandelbrot, 1977). It is called the fractal dimension because it is a fractional (or non-integer) number. 

A fundamental characteristic of fractal objects is that their measured metric properties, such as length or 
area, are a function of the scale of measurement. A classic example to illustrate this property is the “length” 
of a coastline (Richardson, 1961; Mandelbrot, 1967). When measured at a given spatial scale δ, the total 
length of a crooked coastline L(δ) is estimated as a set of N straight-line segments of length δ. Because 
small details of the coastline (e.g., peninsulas) not recognized at lower spatial resolutions become apparent 
at higher spatial resolutions, the measured length L(δ) increases as the scale of measurement δ increases. 
Mandelbrot (1967, 1977) generalized and expanded on Richardson’s (1961) empirical findings and showed 
that the relationship between length and measuring scale can be described by the power law: 

L(δ) = Kδ(1-D) (7-16) 

where: the exponent D is called the fractal dimension, and K is a constant. 
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The idea of using D to describe irregular shapes is a powerful one, because it captures what is lost in 
classical geometric representation of form. Figure 7-8 displays three fractal surfaces and their correspond-
ing images representing D = 2.1, 2.5, and 2.9.  The fractal surfaces are generated using the shear displace-
ment method (Saupe, 1988). A higher fractal dimension value means a more spatially complex surface.  

 
Figure 7-8. Three fractal surfaces and their corresponding images, representing D = 2.1 (a), 2.5 (b), and 2.9 (c), gen-
erated using the shear displacement method. 

Self-similarity is another key concept of fractals. Self-similarity is defined as a property where a subset, 
when magnified to the size of whole, is indistinguishable from the whole (Mandelbrot, 1977; Voss 1988). 
The property of self-similarity implies that the form of an object is invariant with respect to scale. In other 
words, a strictly self-similar object can be thought of as being constructed of an infinite number of copies 
of itself.   

In the geosciences, the property of self-similarity may be better termed scale-independence (Clarke, 
1986). The forms of natural phenomena are often erratic as “chance” or random factors often play an im-
portant role in their generating processes (Mandelbrot, 1977). As such, unlike mathematical fractals, natural 
objects generally do not display exact self-similarity. Instead, they may exhibit a certain degree of statistical 
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self-similarity over a limited range of scales. Statistical self-similarity refers to scale-related repetitions of 
overall complexity, but not of the exact pattern (Voss, 1988).  

Self-similar objects are isotropic (i.e., rotation invariant) upon scaling. If rescaling of an object is aniso-
tropic, then the object is said to be self-affine. Formally, with self-affine fractals the variation in one direc-
tion scales differently than the variation in another direction (Mandelbrot, 1985). 

Remotely sensing images are not only spectrally and spatially complex, but they often exhibit certain 
similarities at different spatial scales (Lam and De Cola, 1993a). How to extract the complex and erratic 
textures in the image and use spatial information to improve image understanding and classification has 
been a major research issue in remote sensing for decades (Haralick et al., 1973; Gong and Howarth, 1990; 
Gong et al., 1992; Tso and Mather, 2009). In this context, fractal geometry is especially appealing because 
it offers important tools for charactering complex objects and land surface patterns in remotely sensed im-
agery. 

4.1.2 Methods to Compute Fractal Dimension 
The fractal dimension D of strictly self-similar objects can be derived mathematically and is given by 

(Mandelbrot, 1977):  

𝐷𝐷 = log(𝑁𝑁)
log (1/𝑟𝑟)

  (7-17) 

where: N represents an object of N parts scaled down by a ratio of r. The D derived from Equation 7-17 
is called the shape’s similarity dimension (Mandelbrot, 1977). Figure 7-9 illustrates the relationship be-
tween the number of parts or steps (N) and the similarity ration (1/r). The D value of a curve, such as a 
coastline, is estimated by measuring the length of the curve using various step sizes. 

 
Figure 7-9. Relationships between fractal dimension (D), number of steps (N), and similarity ratio (1/r) (after Lam, 
1990). 

For non-mathematical objects, however, the fractal dimension cannot be derived analytically. Instead, it 
must be empirically estimated. A variety of methods have been proposed to compute the fractal (monofrac-
tal) dimension of natural objects. Sun et al. (2006) provide a review of six commonly used methods for 
estimating the D of surface features, such as topographic surfaces and image intensity surfaces. These 
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methods use some version of the statistical relationship between the measured quantities of an object and 
step sizes to derive the estimates of D. The “quantity” of an object is expressed in terms of, for example, 
length, area, or number of boxes (cells) needed to cover the object. “Step size” refers to the scale or reso-
lution of measuring units used. The procedure common to most of the methods discussed in this section 
consists of three steps: 

• First, measure the quantities of the object under consideration using various step sizes. 
• Second, plot log (measured quantities) versus log (step sizes) and fit a least squares regression 

line through the data points. The log-log plot is often referred to as the Richardson plot. 
• Third, use the slope of the regression line to derive the D of the object. 

4.1.2.1 The Triangular Prism Method 
The triangular prism method was developed by Clarke (1986) primarily to calculate the D of topographic 

surfaces, but it has been applied extensively to remotely sensed images. The method makes use of a raster 
representation of the elevations of the Earth’s surface such as in a digital elevation model (DEM). Based 
on this data structure, the method takes elevation values or the equivalent of DN values in an image at the 
corners of squares (i.e., analysis windows), interpolates a center value, divides the square into four triangles, 
and then computes the top surface areas of the prisms which result from raising the triangles to their given 
elevations. By repeating this calculation for geometrically increasing square sizes (δ), the relationship be-
tween the total upper surface area of the prisms (i.e., the sum of areas A, B, C, and D in Figure 7-10) and 
the spacing of the squares (i.e., step size δ) can be established, and used to estimate D (Table 7-2). The only 
input parameter required in this method is the number of step sizes.  

Several modifications have been proposed. Clarke’s original algorithm used step size squared (δ2) in the 
regression. Lam et al. (2002) have shown that step size (δ) instead of step size squared should be used to 
derive the correct D. Sun (2006) has proposed three implementations of the triangular prism method. Sun's 
methods differ from Clarke’s method in the choice of alternative pixels other than corner pixels of the 
square and the use of actual DN of the central pixel. Sun (2006) shows that the modified triangular prism 
methods perform better than Clarke’s (1986) original method when applied to images with complex tex-
tures. Ju and Lam (2009) introduced a new algorithm of the triangular prism method for extending its ap-
plications within a local window, called the divisor-step method. It is a sampling strategy and is used to 
improve the window coverage.  

 
Figure 7-10. 3D view of the triangular prism method (after Clarke, 1986). 
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Table 7-2. Methods for Computing the Fractal Dimension (D) of Surface Featuresa. 
Method    Relation used     Basic formula        Estimate of D 
Triangular   Total area of the tops  A(δ) ∝ δ2 – D        Plot log A(δ) versus log (δ), 
 prism     of prisms vs. side   A(δ) = area        slope is (2 – D) 
       length of analysis   δ = side length of analysis   D = 2 – slope 
       windows      windows 
 
Differential  Number of boxes   N ∝ (1/r)– D        Plot log N versus log (1/r), 
 box counting   needed to cover an   N = number of boxes     Slope is –D  
       image vs. box size   r = s/M          D = -slope 
               s = side length of boxes 
               M = side length of the image 
 
Isarithm    Length of contour   L(δ) ∝ δ1 – Dcontour      For each contour line, plot log 
       line vs. step size   L(δ) = length of contour line  L(δ) versus log (δ), 
               (i.e., number of boundary cells) slope is (1 – Dcontour) 
               δ = step size        D = average of all Dcontour + 1 
 
Variogram   Mean squared     E[(Zp – Zq)2] ∝ (dpq)2H     Plot log E[(Zp – Zq)2] versus log 
       elevation (or DN)   Zp, Zq = elevations or DNs at  (dpq) 
       difference vs.    points p and q        slope is 2H 
       distance      dpq = distance between p and q  D = 3 – H = 3 – slope/2 
 
Robust fractal  Length of profile vs.  L(δ) ∝ δ 1 – Dprofile      For each cell, take the average of 
 estimator    step size      L(δ) = length of profile    Dprofile in both EW and NS 
               δ = step size        directions 
                           D obtained by combining fractal 
                           dimensions of each cell using a 
                           weighted average and adding 1 
 
Hurst     Greatest difference in  E[(BVb – BVd)] ∝ (dpc)H    Plot log E[(BVb – BVd)] versus 
 coefficient    brightness within a   BVb, BVd = DNs of brightest   log (dpc) 
       neighborhood vs.   and darkest pixels b and d   Slope is H   
       distance      dpc = distance between pixel p  D = 3 – H 
               and the center c of the 
               neighborhood 
 
Power    Fourier power    P(f) ∝ f –(5 - 2Dprofile)      Plot log P(f) versus log (f), 
 spectrum    spectral density vs.   P(f) = the power       slope is – (5 – 2Dprofile) 
       the frequency    f = the frequency      D = Dprofile + 1 
a Dcontour = fractal dimension of a contour line; Dprofile = fractal dimension of a profile. For references see 
section 4.1.2. 

4.1.2.2 The Differential Box-Counting Method 
The differential box-counting (DBC) method was proposed by Sarkar and Chaudhuri (1992) to compute 

the D of digital images. This method can be thought of as a variant of the well-known box-counting ap-
proach (Goodchild, 1980; Voss, 1988). In the DBC, N in Equation (7-17) is counted in the following man-
ner. If an image of size M×M pixels is scaled down to a size s×s, where   M/2 ≥ s > 1 and s is an integer, 
then we have a ratio of r = s/M. Consider the image as a 3D space with (x, y) denoting the image plane and 
(z) denoting the grey level. The (x, y) space is partitioned into grids of size s×s. On each grid there is a 
column of boxes of size s×s×s’. If G denotes the grey level range of the image (e.g., 256), s’ is calculated 
by [G/s’] = [M/s]. This ensures that the grey level range G is also scaled down by a ratio of r. Let the 
minimum and maximum grey level of the image in (i,j)th grid fall in box number zmin and zmax, respectively. 
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Then n (i,j) = zmax – zmin +1 is the contribution of N in (i, j)th grid. Taking contributions from all grids, we 
have: 

𝑁𝑁 = ∑ 𝑛𝑛(𝑖𝑖, 𝑗𝑗)𝑖𝑖,𝑗𝑗   (7-18) 

For different values of r, that is, different values of s or step sizes, the quantity of N is counted. D is then 
computed from the least-squares linear fit of log (N) versus log (1/r) (Table 7-2). In a sense, the DBC 
method makes a digital approximation of thickness of the blanket that covers the image intensity surface at 
a particular resolution. 

4.1.2.3 The Isarithm Method 
The isarithm method (Shelberg et al., 1983) is based on the premise that the complexity of isarithm or 

contour lines may be used to approximate the complexity of a surface. It is based on the widely accepted 
walking-divider method for calculating the fractal dimension of line features (Klinkenberg, 1992). The 
method starts with a matrix of z-elevations (i.e., DN values), an isarithm interval is selected and isarithm 
lines are constructed on the surface. For each isarithm line, its lengths are calculated in terms of the number 
of boundary cells over a number of step sizes, log (number of boundary cells) is regressed against log (step 
size), and the slope of the regression line is used to derive the D of the isarithm line. This process is repeated 
for every isarithm line. The surface’s D is obtained by averaging the D values of all the isarithm lines that 
have R2 ≥0.9 and adding one (1) (Table 7-2). Three input parameters must be specified by the user: 1) the 
number of step sizes; 2) the isarithm interval; and 3) the direction in which the computation is implemented 
(row, column, or both). 

4.1.2.4 The Variogram Method 
In this method, the mean of the squared elevation (or DN) difference (i.e., variance) is calculated for 

different distances, and D is estimated from the slope (b) of the regression between the logarithms of vari-
ance and distance (see Figure 7-11) so that D=3 – b/2 (Mark and Aronson, 1984; see also Table 7-2). 
Variations of the variogram method exist. Roy et al. (1987), for example, calculated D using four different 
implementations of the variogram method. The variogram method is based on the assumption that the sur-
face being analyzed is a fractional Brownian surface. However, studies have shown that natural phenomena 
are not truly fractal (Mark and Aronson, 1984; Roy et al. 1987). Another issue that requires attention in 
variogram analysis is the sampling strategy used to determine the point pairs (Klinkenberg, 1994; Roy et 
al. 1987). The method is computationally intensive. 

 
Figure 7-11. The log (variance) versus log (distance) plot used in the variogram method. 
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4.1.2.5 The Robust Fractal Estimator 
The robust fractal estimator was proposed by Clarke and Schweizer (1991) in an attempt to provide 

stability in the computation of D. Using the walking-divider method, the robust fractal estimator computes 
for each cell the D of each profile in both the east-west and north-south directions and places the average 
of the two in a new array. The D of the entire surface is obtained by combining the D values of each cell 
using a weighted average and adding one (1). Clarke and Schweizer (1991) noted that the method is pri-
marily designed to calculate D for natural surfaces using data from United States Geological Survey 
(USGS) DEMs, but it should work equally well on any gridded surface data. 

4.1.2.6 The Hurst Coefficient 
A particularly efficient method for computing the fractal dimension of surfaces (e.g., elevation images) 

is the Hurst coefficient, or rescaled range analysis (Hurst et al., 1965; Feder, 1988; Russ, 1990). Hurst 
coefficient computation technique has been used for various segmentation applications. Originally applied 
to time-series data, the Hurst coefficient was expanded by Russ (1990) to estimate fractal dimensions of 
two-dimensional images.   

Russ (1990) described how two-dimensional circular filters were used for computing the Hurst coeffi-
cient. The algorithm examines the pixels in the neighborhood (window) around each pixel location in the 
original image, with a radius (distance) typically from 5 to 10 pixels. For each window, the distance of each 
pixel from the center of the window is calculated and is put in distance classes. The number of pixels at 
each distance within the window is also counted. The brightest and darkest pixel values in each of the 
distance classes are found, and their differences are used to construct a Hurst plot. Performing a least-
squares fit for the log (brightness difference) versus log (distance) relationship, determines a slope of the 
regression line. The slope is the Hurst coefficient. It is directly related to fractal dimension D: D = 3 – H 
(Russ, 1993). 

An enhanced method to estimate the Hurst coefficient in surfaces was proposed by Silvetti and Delrieux 
(2013), where a quadratic self-correlation coefficient is evaluated. In this method, the determination of 
brightness variation takes into account all pairs of pixels in each distance class within the window, not just 
those involving the central pixel. Silvetti and Delrieux (2013) introduced a method, called the normalized 
integral fit, an alternative to the least squares fit. This method is used to overcome the inherent instabilities 
that the least squares fit might introduce (Russ, 1993, 2017). The normalized integral fit performs a 
weighted average of localized brightness variation exerting more influence at smaller distances. 

4.1.2.7 The Fourier Power Spectrum Method 
Another technique for computing the D of surface features is the use of Fourier analysis. The Fourier 

method uses the power spectrum derived from the surface (Pentland, 1984; Burrough, 1981). It can be 
shown that the Fourier power spectrum, P(f), of a fractional Brownian function (f) is proportional to f(-2h-1), 
where h=2 – Dprofile (Pentland, 1984). The fractal dimension of the profile (Dprofile) is obtained from the 
slope of the regression line of the log-log plot of P(f) versus f. The D of the surface is computed as          
D=Dprofile + 1 (Table 7-2). Detailed descriptions of the steps required to perform a spectral analysis for 
fractal applications can be found in Peitgen and Saupe (1988) and Turcotte (1992). Spectral methods should 
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only be applied to self-affine curves (i.e., profiles) since they will always return a D=1 for self-similar 
curves (Peitgen and Saupe, 1988).  

4.1.3 Applications of Fractal Techniques to Remote Sensing Image Analysis 
A main application of fractal techniques to remotely sensed imagery is to measure the roughness or 

texture complexity of land surface features. This section focuses on the use of computed D in four major 
application areas: 1) to characterize the overall spatial complexity of an image, 2) to supply image classifi-
cation with textual information, 3) to describe the geometric complexity of the shape of feature classes in a 
classified image, and 4) to examine the scaling behavior of environmental phenomena. 

4.1.3.1 Using D to Characterize the Overall Spatial Complexity of Remotely Sensed Imagery 
The use of D to characterize the overall textural complexity of remotely sensed imagery is perhaps the 

most obvious utility of fractal models in image analysis (Lam, 1990; Qiu et al., 1999; Read and Lam, 2002). 
Only a single D is computed for the entire image. Such a global D can be calculated for remotely sensed 
data of different land cover types, sensor, and bands. This type of application is attractive because global D 
values can be computed without the need to first classify the image. 

Lam (1990), for example, used the isarithm method to measure the spatial complexity of three Landsat 
Thematic Mapper (TM) images representing three different land cover types in coastal Louisiana. Results 
showed that the estimated D values of three TM surfaces were generally higher than those of most real-
world terrain surfaces. Among the three land cover types, the highest D occurred in an urban area, followed 
by a complex coastal area, and a rural area. The work also compared the D values of the three land cover 
types across seven spectral bands and found that the D values of the same land cover type turn out to be 
quite different in different bands. The urban landscape has its highest D values occurring in bands 2 and 3, 
whereas the coastal and rural areas both exhibit high D values in band 1. 

In an analysis of two Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images of the Los An-
geles area, Qiu et al. (1999) found that the computed D values for urban landscapes were higher than those 
for rural landscapes. The authors confirmed Lam’s (1990) finding that the estimated D values of the same 
land cover type varied significantly across bands. The work by Qiu et al. (1999) shows that textures of land 
cover types may be better characterized by certain band(s) than by others. As such, identifying the bands in 
which the contrast in computed D between different land cover types is most distinct may be a necessary 
step when working with MS images.    

A global D has been considered useful when incorporated into image metadata, or when employed as a 
tool for data mining and change detection (Jaggi et al., 1993; Lam et al., 2002). In addition, D can be used 
as an initial screening tool for examining information contained within different spectral bands. Variations 
in D values across bands may be used as a guide for identifying noisy bands or for selecting bands for image 
classification (Lam, 1990; Qiu et al., 1999).  

4.1.3.2 Use of D as a Texture Measure to Segment and Classify Images 
Several investigations have applied fractal techniques to describe image textures and segment various 

types of images (Pentland, 1984; Keller et al., 1989; De Jong and Burrough, 1995; Myint, 2003; Zhou and 
Lam, 2005; Sun et al., 2005; Sun, 2006; Ju and Lam, 2009; Silvetti and Delrieux, 2013). These works 
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consider that local variations in computed D can be used as texture measures and that different land cover 
types may have characteristic textures or roughness that could be described by different D values. Ideally, 
if there were a one-to-one relation between the texture of a land cover type and a unique D value, then the 
D could be viewed as the “fractal signature” of that land cover type and used to exact it from the image. 
Pentland (1984) considered the image intensity surface as a fractal Brownian function (fBf) and estimated 
D from Fourier power spectrum of fBf. The work successfully segmented several types of images using 
computed D values. 

De Jong and Burrough (1995) proposed a so-called “local D algorithm,” a method that can be thought of 
as a local implementation of the triangular prism concept (Clarke, 1986). In the “local D algorithm,” a 
kernel (window) of 9 by 9 pixels is moved over the image and, at each position of the kernel, a D is com-
puted within the kernel, resulting in a new image file containing the estimated local D values. This new 
layer of D values was then used as texture measures in the classification procedure. The “local D algorithm” 
was applied to the classification of six Mediterranean vegetation types in two remotely sensed images. The 
results seem somewhat mixed. While the “local D algorithm” appeared effective in separating five of the 
six land cover types in a Landsat TM image, the method could not sharply distinguish between any of the 
six land cover types in an airborne Geophysical Environmental Research Imaging Spectrometer (GERIS) 
image. This result was explained by the poor quality of the GERIS image and authors concluded that, alt-
hough local D values for TM imagery seemed to reflect different land cover types, D values by themselves 
were insufficient for the classification of TM images.  

In a study comparing the discriminatory power of several texture analysis methods, Myint (2003) found 
that the computed D values for the same image vary with the computational method and spectral band used. 
The work concluded that fractal-based textual discrimination methods are applicable, but these methods 
alone may be ineffective in identifying different land cover types in remotely sensed images.   

Ju and Lam (2009) compared the accuracy and robustness of three sampling methods. In that study, a set 
of small simulated surfaces with 16 sizes ranging from 9 x 9 to 69 x 69 pixels were generated. These window 
sizes were selected because this series cover most windows used in the previous image classification or 
segmentation research related to local fractal measurements (De Jong and Burrough, 1995; Emerson et al., 
2005; Myint and Lam, 2005). For each window size, 50 surfaces were generated for each of the five theo-
retical fractal dimensions (i.e., 2.1, 2.3, 2.5, 2.7, and 2.9). The divisor-step algorithm (Ju and Lam, 2009) 
was tested using 4,000 simulated surfaces and an IKONOS subset, and is found to be more robust and 
accurate than the geometric-step and arithmetic-step sampling algorithms (Quattrochi et al., 1997; Lam et 
al., 1998; Emerson et al., 2005). 

Silvetti and Delrieux (2013) reported that the quadratic self-correlation coefficient gives more precise 
local fractal estimations than the Hurst coefficient (linear self-correlation method), but at the expense of a 
higher computation cost. They compared four methods, that is, quadratic self-correlation with least squares 
fit, quadratic self-correlation with normalized integral fit, linear self-correlation, and divisor step, in term 
of precision, accuracy, and invariance properties both with synthetic and real remote sensing images using 
different window sizes (e.g., 3, 5, 7, 9, and 11). The work demonstrated how the normalized integral fit and 
least squares fit make quadratic self-correlation a robust tool which allows for both precise and accurate 
local fractal estimations. 
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4.1.3.3 Fractal Characterization of Classified Image Features 
Fractal analysis can be of descriptive value when investigating the spatial complexity of classified image 

features. Lovejoy (1982), for example, analyzed the perimeter - area relationship of rain and cloud areas 
identified from satellite and radar images. Results showed that the degree of contortion of the perimeter of 
cloud regions could be described by D=1.35 over a range of cloud sizes.  

De Cola (1989) used the perimeter-area relationship to describe the shape of regions of eight land cover 
classes extracted from a Landsat TM image of north-west Vermont. The work associated land cover types 
with D values (e.g., forests had high D and large regions, while agriculture activities had large regions with 
D inversely related to the intensity of cultivation, and urban land use yielded small regions with relatively 
high D). Fractal descriptions of those land cover types were then used as input to GIS. Results demonstrated 
how the analysis of individual land cover regions can be used to investigate the location and description of 
individual regions and to check the reliability of classification. 

Finally, fractal description of classified image features can provide useful descriptive statistics for char-
acterizing the aggregate feature classes. In this context, knowledge about the characteristic D values of 
different feature classes may be valuable in understanding the processes that generate the phenomena under 
consideration (Lovejoy, 1982).  

4.1.3.4 Scaling Characteristics of Remotely Sensed Images 
Fractal models have been used to study the scaling behavior of geographic features and the knowledge 

generated by this type of research may be valuable for determining the optimum resolution of pixels used 
in remote sensing (Goodchild, 1980; Lovejoy, 1982; Mark and Aronson, 1984; Goodchild and Mark, 1987; 
Emerson et al., 1999; Lam et al., 2002; Sun and Southworth, 2013; Feng et al., 2017).  

Emerson et al. (1999) examined the effect of changing pixel size on the computed D values of Normal-
ized Difference Vegetation Index (NDVI) images of two study areas. In the example of Huntsville Alabama, 
it was found that the estimated D values of NDVI images of agriculture, forest, and urban areas responded 
differently to aggregation. The image of the agriculture area grew more complex as the pixel size was 
increased from 10m to 80m, while the D value of forested area grew slightly smoother and the complexity 
of urban area remained approximately the same. The analysis of the image data of the East Humboldt Range 
in Nevada showed a more complex relation between pixel size and D, and this relation changes between 
seasons. 

Feng et al. (2017) proposed to use spatial resolution as the modified scale parameter to calculate the 
fractal dimension D. The work analyzed the relationship among fractal dimension, spatial resolution, and 
the size of geo-object in remotely sensed imagery. Results showed that it is possible to choose feature scales 
to best characterize the specific objects or phenomena under consideration. The analysis indicates that fea-
ture scales are related to the actual sizes of the geo-object. With high spatial resolution image data, such as 
QuickBird, the optimal observation scale is no longer equivalent to the actual size of the geo-object. On the 
contrary, the actual size of the geo-object may be a multiple of the optimal observation scale (i.e., spatial 
resolution or pixel size). These results suggest that the modified fractal methods appear effective in captur-
ing the pixel-based scale effect existing in remotely sensed data.  
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4.1.4 Discussion 

4.1.4.1 Performance of Various Computational Methods 
The utility of D as a texture measure depends to a large extent on the reliability of computational meth-

ods. Seven computational methods have been introduced and most of them have their theoretical and/or 
practical limitations. Generally, the triangular prism method is the most accurate for images having higher 
spatial complexity and is less computationally intensive than other methods, such as the variogram or Fou-
rier power spectrum methods (Clarke, 1986; Lam et al., 2002; Ju and Lam, 2009). Sarkar and Chaudhuri 
(1992) have shown that the DBC method is both accurate and computationally efficient. Despite this, the 
method has not been widely applied to remote sensing problems (Tso and Mather, 2009). Shelberg et al. 
(1983) pointed out that the isarithm method can be used to estimate the D for non-self-similar surfaces and 
it is one of the most often used methods in the field (Lam, 1990; Lam and De Cola, 1993b, Qiu et al., 1999, 
Emerson et al., 1999, Lam et al., 2002). 

Klinkenberg and Goodchild (1992) found that the variogram method produced consistent estimates of D 
when applied to topographic data. Clarke and Schweizer (1991), on the other hand, reported that for the 
same dataset, the variogram method yielded consistently higher D values than those obtained from the 
triangular prism method and the robust fractal estimator. Lam et al. (2002) suggested that the variogram 
method was a comparatively poor estimator for all the simulated surfaces in their study. Clarke and 
Schweizer (1991) reported that the robust fractal estimator consistently yielded a lower D value than those 
obtained from the triangular prism and variogram methods. Further, several investigations have pointed out 
that the power spectrum method involves sophisticated data preprocessing and is computationally complex 
(Fox and Hayes, 1985; Clarke, 1986). 

4.1.4.2 Factors Influencing Computed D Values 
Remotely sensed images with different textural characteristics are expected to have different D values. 

However, differences in image texture are not the only factor influencing the computed D values. Many 
studies have reported that different fractal computational methods often yield significantly different D val-
ues for the same feature and/or same dataset (Roy et al., 1987; Lam, 1990; Clarke and Schweizer, 1991; 
Klinkenberg and Goodchild, 1992; De Jong and Burrough, 1995; Lam et al., 2002; Myint, 2003; Sun et al., 
2006).  

Several factors may be responsible for the differences in estimated D using different methods (Klinken-
berg, 1994). First, fractal methods are not all measuring the same fractal quantity. For example, the isarithm 
method measures the length of isarithm lines, while the triangular prism methods measure the area of tri-
angles, and the DBC method the number of boxes. Second, fractal methods may be inappropriately applied. 
For example, the robust fractal estimator can only be applied to self-affine data (Clarke and Schweizer, 
1991). Violation of this requirement could lead to erroneous results.  

Third, the choice of input parameter values may also affect the resulting D values. This means that the 
selection of the smallest and largest step sizes and the interval spacing is critical as these parameters may 
affect the slope of the regression line and hence the computed D. However, there are no established guide-
lines for choosing the beginning or ending step size. Shelberg et al. (1982) proposed to use one-half of the 
average distance between every pair of adjacent points as the smallest step size. In practice, the smallest 
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step size is often chosen to be close to the limiting resolution of the datasets used (Clarke and Schweizer, 
1991). Several investigations have suggested using a reduced largest step size. It is widely accepted that for 
statistical reasons, step size should increase as a power of two (i.e., geometric step). 

The divisor-step algorithm proposed by Ju and Lam (2009) utilizes the entire window fully and computes 
the number of steps according to the window size (W is an odd number). The step size should be a divisor 
of (W-1). Using a set of divisor steps of (W-1) will guarantee 100% coverage of the entire window at all 
steps. For example, in an 11 x 11 window, there are four steps and step sizes are 1, 2, 5, and 10. 

It should be noted that local D values provide meaningful results only for image portions larger than the 
smallest step size used. In other words, texture variations at scales smaller than the smallest step size will 
be overlooked in fractal analysis. This is often referred to as the blurring effect. How to choose an “appro-
priate” window size and how to deal with the boundary effect, as well as the blurring effect, are two im-
portant issues that deserve attention in computing local D values. 

4.1.4.3 Are Remotely Sensed Images Fractal? 
The self-similarity property underlying the fractal model predicts that for truly fractal surfaces, the com-

puted D should be constant at all scales, at all locations, and in all directions. Numerous studies have shown 
that the estimated D values of most natural phenomena are unstable with respect to scale, location, and/or 
orientation (Mark and Aronson, 1984; Roy et al., 1987; Klinkenberg and Goodchild, 1992; Burrough, 
1993). The consensus is that, as far as natural phenomena are concerned, self-similarity is exhibited only in 
a statistical sense and such statistical self-similarity, when present, is exhibited only in limited regions and 
over limited ranges of scale (Goodchild and Mark, 1987; Milne, 1991).  

Are remotely sensed images fractal? Most research published to date has suggested that real remotely 
sensed images are not true fractals and that the estimated D is stable only over limited ranges of scale. A 
number of studies have found that the estimated D of real remotely sensed images vary with the resolution 
of the image used and the region and direction in which D was computed (Lam, 1990; De Jong and Bur-
rough, 1995; Emerson et al., 1999; Lam et al., 2002; Sun et al., 2006). De Jong and Burrough (1995) 
suggested that most remotely sensed images are not strictly self-similar; instead, they may be at most only 
statistically self-similar over a limited range of pixel sizes. The observation that most remotely sensed im-
ages may not be even statistically self-similar brings up an important issue, that is, does it make sense to 
use D to describe image textures? Some researchers argued that lack of self-similarity is not a limitation to 
the fractal technique, and it could be simply seen as a method for extracting information from the Richard-
son plot (Orford and Whalley, 1983; Kennedy and Lin, 1986; Normant and Tricot, 1993). There is still 
considerable uncertainty regarding to what extent remotely sensed images are statistically self-similar. 
More research is clearly needed in this area.  

De Jong and Burrough’s (1995) demonstrated how to locally compute the D of real remotely sensed 
images. Few studies have attempted to systematically calculate local D values and use such information to 
classify real images. How to develop efficient algorithms to compute local D values from real images and 
use local D values as information to improve image classification is an area that holds great potential for 
future research. 
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4.1.5 Conclusions 
Fractal geometry provides a useful tool for charactering textural features in remotely sensed images be-

cause most of what we measure in remote sensing – boundaries of land covers, patched of landscapes, rivers 
and water bodies, tree crowns, etc. – is discontinuous, complex, and fragmented. Fractal techniques have 
been applied to measure the “roughness” or geometric complexity of land surface features in unclassified 
and classified images. Quantitative information about local variations in estimated D values has been used 
as a texture measure to segment and classify remotely sensed images. Fractal techniques have also been 
used to investigate the scaling behavior of environmental phenomena and the results from this stream of 
research may prove valuable for choosing “optimal” resolutions for the study of environmental phenomena 
at different scales in remote sensing and GIS. 

Despite the potential utility of fractal techniques, several methodological and practical measurement is-
sues have been encountered. For example, the computed D is supposed to capture the differences in the 
characteristic of image textures. However, a host of factors other than image texture, such as the computa-
tional method used, the choice of input parameter values, input images, and so forth, may all have an effect 
on the computed D. Research has shown that significant variations in computed D can be introduced by 
computational methods. Therefore, the choice of method is an important issue.  

A major drawback in fractal techniques is that they can be applied only to single bands. It appears desir-
able to develop what may be called “multivariate fractal methods”. Such multivariate fractal methods 
should enable the analysis of all bands together and would represent a tremendous improvement to the 
existing methods. Existing fractal techniques rest mostly on the assumption that image textures can be 
described by a single (i.e., monofractal) dimension. Evidence suggests that the structures underlying most 
natural phenomena are most likely multifractals. Further research is needed to determine whether multifrac-
tal models could do a better job in characterizing image textures.  

While fractal dimension appears able to capture certain aspects (i.e., geometric complexity of the shape) 
of the surface properties of remotely sensed images, use of D alone cannot sufficiently describe image 
textures and achieve satisfactory classification results. Other factors such as the size and distribution of a 
textural feature and its spatial relations to other features may also play an important part in differentiating 
one type of texture from another. It appears that the utility of D may be explored to a fuller extent when it 
is used in conjunction with other texture measures and perhaps spectral classification approaches as well. 

4.2 Domain Transforms and Analyses Using Fourier and Wavelets 

4.2.1 Introduction 
Remotely-sensed data can be processed and analyzed considering multiple data representation domains 

(e.g., spatial, temporal, frequency). Analyses in the spatial domain are widely used in remote sensing and 
image processing and have traditionally employed multiple forms of convolution and digital filtering to 
enhance or reduce feature contrast, to delineate boundaries and to manipulate signals with low or high 
spatial variability, among multiple other applications. Some of these approaches have been successfully 
applied in analyses involving the temporal domain (e.g., smoothing of time series of satellite images for 
spike removal).  
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An alternative way of representing and characterizing datasets in remote sensing draws from signal pro-
cessing and the analysis of harmonic series, and uses amplitude oscillations, including their frequencies, to 
represent the variability of targets or phenomena over space and time. These analyses consider that data 
acquired by remote sensors can be described and represented by variations in DNs or brightness values, 
such as high or low frequency of change (i.e., oscillations) and sudden changes in values (i.e., transients). 
In two-dimensional analyses, for instance, smooth regions in images indicate reduced variation in bright-
ness, while boundaries or sharp transitions represent abrupt changes. 

The ability to explain the spatiotemporal variability in signal oscillations and shap changes in brightness 
using the frequency domain is a powerful tool in image processing and two related analytical approaches 
(e.g., Fourier and Wavelets) have found multiple applications in remote sensing. Section 3.2 addresses the 
frequency domain in data analysis and introduces those two approaches. Examples of applications are pre-
sented and include noise removal, image fusion, data compression and time series analysis. 

4.2.2 Fourier 
Fourier transforms and analyses, including the linear decomposition of spatial or time signal into sine 

and cosine components, have found multiple applications in a variety of fields, including remote sensing. 
The analysis is based on the ability to explain spatiotemporal variability of data series by using infinity 
bound sinusoids at different frequencies and phases and the transformation of signals (e.g., images or other 
remotely-sensed data) from the spatial or time domain into the frequency domain. This section presents an 
overview of techniques involved in Fourier analysis. For a more mathematical and in-depth review on the 
topic the reader is directed to a variety of texts exploring Fourier and Fourier Transforms, including 
Brigham (1988) and Bloomfield (2000). 

Among other applications, Fourier-based transformations of remotely-sensed images from spatial to fre-
quency domains have been used for noise removal, image matching and registration, and in support of 
pattern/feature recognition (e.g., Chen et al., 1994; Fattahi et al., 2009; Zacharov and Toutin, 2012; Var-
ghese et al., 2016). Using the frequency domain, specific frequencies in the original data can be identified 
and individually analyzed and processed (e.g., frequencies characteristic of noise can be removed). An 
inverse transformation can then be used to convert the frequency domain image back to the spatial domain. 
Figure 7-12 exemplifies this workflow and shows the results of multi-step image processing involving: 1) 
a forward Fast Fourier Transform (FFT) to transform an image to the frequency domain; 2) the computation 
of a power spectrum to identify a threshold to filter out noise; 3) the application of a Hanning mask to the 
FFT image; and 4) the use of an inverse FFT to transform the image back to the spatial domain. Processing 
involved adding noise to the original image (Figures 7-12a and 7-12b). A shifted FFT is presented in Figure 
7-12c. Figure 7-12d shows reduced noise following filtering using a Hanning filter and the transformation 
of results back to spatial domain. Figure 7-12e to 7-12j illustrate the use of Fourier analysis to reduce regular 
noise added to Figure 7-12e. Figure 7-12f shows the shifted FFT transform for the original image. Figures 
7-12g and 7-12h show the representation of horizontal lines in the spatial and frequency domains. Figure 
7-12i has the frequency of horizontal lines identified and masked out. Figure 7-12j shows results from the 
transformation of the frequency domain image back to the spatial domain.  
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Figure 7-12(a-j). Noise removal using forward FFT image filtering and inverse FFT (see text for description of im-
ages).  

Figure 7-13(a,b,c) illustrates a one-dimensional analysis and decomposition of a time series of sinusoid 
signals into two frequencies of different amplitudes. Figure 7-13a shows the combined signal, which is 
analogous to a temporal cross-section of digital values for a given single pixel and multiple dates showing 
two seasonality patterns. The components of the time signal are decomposed into individual frequencies 
(Figure 7-13b). Figure 7-13c shows the results of an FFT analysis of the signal and resulting plot indicating 
frequencies (50 Hz and 200 Hz) and amplitudes (1 and 1.5) for the data.  

 
Figure 7-13 a, b, c. One-dimensional representation of time signal decomposition by sinusoids: (a) original time series; 
(b) decomposition of time series into two frequencies; and (c) representation of the original time series (time domain 
data) in the frequency domain indicating frequencies and amplitudes of the original data. 
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Harmonic analysis of time series through the decomposition of the time signal has been used to investi-
gate spatio-temporal variations in seasonalities and plant phenology using a variety of remotely sensed data 
and over large spatial domains (e.g., Jakubauskas et al., 2001; Wagenseil and Samimi, 2006; White et al., 
2009). For instance, White et al. (2009) used a 1982-2006 time series of NDVI data derived from Advanced 
Very High Recolution Radiometer (AVHRR) and multiple approaches, including the Harmonic Analyses 
of NDVI Time-Series – Fast Fourier Transform (HANTS-FFT), to derive spring phenology in North Amer-
ica. The work fitted multiple frequencies to the NDVI time series and coefficients from the FFT were then 
used to generate a daily NDVI series and to derive a start of the season metric. The approach can be ex-
tended to the decomposition of time series into sets of images of amplitude and phase and the identification 
of periodic components from the vegetation signal to identify specific phenological patterns and to map 
vegetation-soil-climate complexes (Azzali and Menenti, 2000). Other applications of Fourier in time series 
analysis include time series reconstruction by denoising and gap filling (e.g., Roerink et al., 2000; Zhou et 
al., 2016). 

Limitations to the use of the frequency domain by Fourier analysis include the loss of localization asso-
ciated with the technique. Fourier transforms present limitations also when regions of steep variability (i.e., 
abrupt changes in space or time) need to be characterized. In its original form, sum of sine and cosines that 
extend to infinity reduce the efficiency of representing abrupt changes in signals or images. Variations of 
the Fourier transform, including the Short-Time Fourier Transform (STFT) address some of these limita-
tions. Some of these solutions, however, provide localization in space or time, at the cost of reducing the 
frequency resolution. The next section introduces an alternative approach to frequency domain characteri-
zation based on wavelets. 

4.2.3 Wavelets 
Wavelets bring advantages over the use of sines-cosines by Fourier analysis, as wavelets are defined by 

finite intervals or duration and have spatial or frequency localization. Spatio-frequency localization includ-
ing temporal localization when processing time series, is critical in determining abrupt changes in the data 
series over the dimension of analysis and is key for the characterization of sharp changes in data values and 
edge detection. Wavelet analysis can be based on one or more "mother wavelets", which represent oscilla-
tions starting at zero amplitude, reaching a maximum/minimum and then reaching zero amplitude again. A 
variety of wavelet configurations has been proposed to address data variability (Figure 7-14). The approach 
provides flexibility to define functions represented by infinite series of wavelets and/or different mother 
wavelets. 
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Figure 7-14. Examples of wavelet configurations proposed to address data variability. 

Wavelet transforms use versions of wavelets that are scaled in space or time, by shrinking or stretching 
mother wavelets. By stretching a wavelet (i.e., increasing scale), the frequency of the wavelet is reduced. 
Conversely, increased frequency and transients or abrupt changes in space or time can be represented by 
compressed (i.e., reduced scale) versions of the wavelet. In addition to scaling, shifting of the scaled wavelet 
over the extent of the domain is used to capture and represent the variability presented by the remotely-
sensed signal. Figure 7-15 illustrates the use of scaling and shifting a Morlet wavelet (i.e., blue lines) in the 
one-dimensional space by using a temporal profile of a single MODIS NDVI pixel (i.e., red line). Readers 
interested in a more complete description of wavelets are invited to visit Mallat (2009).  

 
Figure 7-15. Wavelet analysis using scale and shifting of a mother wavelet (Morlet) over a temporal profile of MODIS 
NDVI. 

Wavelets have found multiple applications in image processing and remote sensing, including image 
compression (Dragotti et al., 2000; Karami et al., 2012); dimensionality reduction (Bruce et al., 2002; 
Kaewpijit et al., 2003); image fusion (Ranchin, et al., 2003; Amolins et al., 2007); crop phenology detection 
(Sakamoto et al., 2005; White et al., 2005); feature and change detection (Niedermeier et al., 2000; Bovolo 
and Bruzzone, 2005); and retrieval of biophysical variables (Blackburn and Ferwerda, 2008; Cheng et al., 
2014); among many others. Widely used methods include a variety of wavelet transforms (e.g., Discrete 
Wavelet Transform (DWT); Continuous Wavelet Transform (CWT), Stationary Wavelet Transform – 
(SWT)) with specific implementations/behaviors when performing wavelet scaling and shifting. Figures 7-
16 to 7-19 provide examples of image processing using wavelets, including wavelet decomposition, noise 
removal, image fusion and image compression. Figure 7-17 shows the use of SWT for noise removal con-
sidering a one-dimensional time series (7-17a to 7-17c) and a 2D image (7-17d and 7-17e). 
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Figure 7-16. Wavelet decomposition for 2D image (a) original image, (b) image decomposition using DWT; (c) syn-
thesized image resulting from (IDWT.) 

 
Figure 7-17. Noise removal using SWT: (a) one-dimensional time series with noise; (b) time series after noise removal 
overlaid to time series with noise; (c) time series after noise removal; (d) image with noise; (e) image after noise 
removal. 

Image fusion capabilities of wavelets is demonstrated by Figure 7-18. The fusion technique involves the 
DWT of images to be fused and the decomposition of the original images. Fusion methods include the 
fusion of decompositions, followed by IDWT. 

 
Figure 7-18. Use of wavelets for image fusion and detail enhancement: (a) image with reduced detail in region 1; (b) 
decomposition of image "a" using a DWT; (c) image with reduced detail in region 2; (d) decomposition of image "c" 
using a DWT; (e) fusion of decompositions; (f) fused image using an IDWT. 
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Wavelets have shown remarkable ability to compress images and have been widely used for image com-
pression and storage. The JPEG 2000 compression standard and its lossless compression results from the 
incorporation of wavelet transform (Christopoulos et al., 2000). Figure 7-19 shows the use of wavelets for 
image compression by wavelet-based image decomposition. 

 
Figure 7-19. Image compression using wavelet-based image decomposition: (a) original image; (b) wavelet decom-
position of original image; (c) compressed image (76.33% compression); (d) wavelet decomposition of compressed 
image. 

5 SPECTRAL VEGETATION INDICES 

5.1 Introduction 

Vegetation indices (VIs) are spectral measures of the green foliage status of a canopy, commonly referred 
to as ‘greenness’. They are highly robust and transparent satellite measurements computed seamlessly 
across all pixels in time and space, irrespective of land cover, sun-view geometry, and soil background. 
They are computed easily from measurements made with spectroradiometers and spectral cameras hand-
held or mounted on towers, unmanned aerial vehicles (UAV), and aircraft; and thus, are amenable to cross-
sensor comparisons and validation with satellite sensors. As a result, they are among the most widely used 
satellite products that provide key measurements of vegetation productivity and phenology for biogeochem-
ical modeling and biodiversity studies. They have become indispensable tools across an array of climato-
logical, ecological, hydrological, and agricultural resource management, and public health applications. 
Following a comprehensive review of Huete et al. (2014), this Section presents the current status and recent 
developments in satellite VIs with a focus on operational satellite VI products. The section concludes with 
a discussion on future research needs for the development of robust satellite VI products. 
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5.2 Description of Vegetation Indices 

The theoretical basis for VIs can be understood by comparing leaf spectral reflectance to those of a soil 
and senesced plant (Figure 7-20). The reflected energy from a green leaf is very low in the visible spectrum 
due to high absorption of visible light, referred to as photosynthetically active radiation (PAR), by leaf 
pigments. In the NIR, nearly all of the radiation is scattered (i.e., reflected and transmitted) in a manner 
dependent on leaf type, morphology and cellular structure. Maximum contrast will occur in healthy, struc-
turally-developed leaves, and minimal contrast will occur in stressed, diseased, and senesced leaves. VIs 
are spectral transformations of two or more bands that quantify the contrast between the red and NIR re-
flectances, sensitive measures of variations in leaf physiological status (e.g., leaf age, morphology and pig-
ment content), foliage amount and structure (e.g., vegetation fraction, leaf angles, and leaf area), and area-
averaged canopy photosynthetic capacity. 

 
Figure 7-20. Spectral reflectance of green leaf, senesced leaf, and dark soil. Courtesy, Alfredo Huete.  

5.2.1 Index Formulations 
A variety of ways in which two or more spectral bands may be combined to quantify the red-NIR contrast 

have been introduced, resulting in a multitude of VI formulas that vary from two-band ratios, normalized 
differences, linear spectral band combinations, angle based VIs, and optimized band combinations. The 
NDVI in Equation (7-19) is the most commonly used VI in remote sensing (Tucker, 1979): 

NDVI = (SR − 1) (SR + 1)⁄ = (𝜌𝜌NIR − 𝜌𝜌red) (𝜌𝜌NIR + 𝜌𝜌red)⁄  (7-19) 

where: 𝜌𝜌red = red reflectance; 𝜌𝜌NIR = NIR reflectance; and SR = simple ratio. This normalized version of 
the simple ratio of NIR to red reflectances (Rouse et al., 1973) constrains values between −1 and +1.  

Linear band combination indices (LCI), such as the Tasseled Cap greenness index (Kauth and Thomas, 
1976) and spectral mixture analysis (SMA) have been applied to Landsat imagery and MODIS imagery 
(Justice et al., 1998; Crist and Cicone, 1984; Lobser and Cohen, 2007), as shown in Equations 7-20 and 7-
21. These indices have the added advantage of generating multiple measures of components within a pixel, 
including vegetation, soil, shade, and other scene elements (Souza et al., 2003): 
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LCI = 𝑎𝑎 ∙ 𝜌𝜌NIR + 𝑏𝑏 ∙ 𝜌𝜌red + ∑ 𝑐𝑐𝑖𝑖 ∙ 𝜌𝜌𝑖𝑖
𝑛𝑛−2
𝑖𝑖=0  (7-20) 

where: 𝜌𝜌 = reflectance; a, b, and c = weights of each band to the VI; and n = number of bands.  
Optimized indices employ simplified radiative transfer theory of soil-vegetation interactions (e.g., Huete, 

1988; Gobron et al., 2000). The soil-adjusted vegetation index (SAVI) is an optimized combination of red 
and NIR bands designed to extract canopy greenness independent of the underlying canopy background 
(soil, water, and litter) brightness variations. 

SAVI = (1 + 𝐿𝐿) ∙ (𝜌𝜌NIR − 𝜌𝜌red) (𝜌𝜌NIR + 𝜌𝜌red + 𝐿𝐿)⁄  (7-21) 

where: L = canopy background adjustment factor. 
 The structure of the SAVI equation encompasses a large proportion of existing VIs, including the NDVI 

and linear combination indices through the ‘L’ term, which is based on Beer’s law. When L = 0, the SAVI 
becomes the NDVI, Equation (7-19) and when L is very large (i.e., L > 10 to infinity), the SAVI becomes 
the LCI, Equation (7-20). 

5.2.2 Vegetation Index and Vegetation Biophysical Isolines 
Having VIs fixed to be constant, VI models such as Equations (7-19) to (7-21) can be seen as relation-

ships between the red and NIR reflectances. The relationship formed from a set of reflectance spectra, or 
the line of a constant VI value, is the vegetation “index isoline.” The index isolines define the manner in 
which VIs quantify the subpixel amount of vegetation present in a pixel and, thus, depict key theoretical 
differences among VIs (Price, 1992). The paragraphs below describe relationships between different VIs 
illustrated in Figure 7-21.  

In Figure 7-21, the isolines of three different VIs (i.e., NDVI, SAVI, and perpendicular vegetation index 
(PVI)) are compared in the NIR-red reflectance space. Diverging out from the origin are the NDVI isolines 
which are characterized with steeper slopes for higher NDVI values but zero-intercepts for the entire NDVI 
dynamic range. The PVI, representing LCIs, forms parallel index isolines with a constant slope, but increas-
ing NIR intercepts with increasing index values. The SAVI isolines are similar to the NDVI isolines, but 
different from them in that the origin of the SAVI isolines is shifted away from that of the NIR-red reflec-
tance space. Therefore, both the slope and intercept of the SAVI isoline increase with increasing index 
values.  

Plotted also in Figure 7-21 are “actual” red and NIR reflectances of a cotton canopy over different soil 
backgrounds measured at various growth stages over a growing season. Red and NIR reflectances of bare 
soil form a “soil line” above the 1:1 line, representing the boundary condition of “zero” vegetation (Rich-
ardson and Wiegand, 1977). Each set of reflectance spectra, or a set of red-NIR reflectance pairs, measured 
at a certain growth stage, i.e., constant biophysical conditions (e.g., any fixed LAI, and structural arrange-
ment) but varying soil background reflectances, also forms a line with a specific slope and intercept to the 
biophysical condition (Figure 7-21). This line of constant vegetation is referred to as the vegetation “bio-
physical isoline” (Huete 1988; Baret and Guyot, 1991; Verstraete and Pinty 1996; Yoshioka et al., 2000a). 
The biophysical isoline can be considered as the optical representation of vegetation biophysical conditions 
and therefore are subject to change with leaf physiological status and sun-target-view geometric conditions 
even for the same LAI and structural arrangement.  
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Comparing the VI isolines with the vegetation biophysical isolines provides a means of improving or 
designing optimal VIs and, thus, the development of optimized VIs has been influenced to some extent by 
the shape of the biophysical isolines (Huete, 1988; Verstraete and Pinty, 1996; Yoshioka et al., 2000b). The 
SAVI, one of optimized VIs, was derived by shifting origin of the index isolines with the L adjustment 
factor, which best aligned its index isolines with the observed biophysical isolines (Huete, 1988). 

 
Figure 7-21. Vegetation index isolines for NDVI, SAVI, and PVI in NIR-red crossplot. The isolines are superimposed 
on the triangular cloud of actual crop (cotton) canopy spectral measurements over a growing season. Adapted from 
Huete et al. (2014). 

5.2.3 Hyperspectral Indices 
A large number of hyperspectral indices have been formulated and proposed, utilizing narrow spectral 

bands to capture fine resolution biochemical spectral variability associated with species, leaf age, and plant 
stress variations (Carter and Knapp, 2001). These indices offer higher sensitivity in the retrieval of foliage 
biochemical properties than broadband VIs and quantify canopy absorption processes associated with pig-
ments, water, and ligno-cellulose compounds from litter and woody material (Ustin et al., 2004). The pho-
tochemical reflectance index (PRI), Equation (7-22) uses two narrow bands and provides a scaled light-use 
efficiency (LUE) measure (Gamon et al., 1992; Middleton et al., 2011): 

PRI = (𝜌𝜌531nm − ρ570nm) (𝜌𝜌531nm + 𝜌𝜌570nm)⁄  (7-22) 

Spectral variations at 531nm are associated closely with the dissipation of excess light energy by xan-
thophyll pigments to protect the photosynthetic leaf apparatus (Ripullone et al., 2011). Other examples of 
hyperspectral indices include the modified chlorophyll absorption ratio index (MCARI) and transformed 
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chlorophyll absorption ratio index (TCARI) (Haboudane et al., 2004; Tan et al., 2013). Various studies also 
applied and compared the normalized difference of every pair of bands in a hyperspectral dataset to assess 
their optimum relationships and correlations with biophysical parameters of interest (e.g., Thenkabail et al., 
2013). Launches of new hyperspectral missions such as the Hyperspectral Infrared Imager (HyspIRI) and 
Hyperspectral Imager Suite (HISUI) should provide opportunities for scaling and extending leaf physio-
logic processes and phenology from species to ecosystem scales, as well as from ecosystem to regional and 
global scales, through data fusions with coarse resolution satellite VIs. 

5.2.4 Operational Indices 
Current operational satellite VI products include the NDVI and the enhanced vegetation index (EVI). 

The EVI is an optimized combination of red, NIR, and blue bands, designed to extract canopy greenness, 
independent of the underlying canopy background brightness and atmospheric aerosol variations, with ex-
tended sensitivity into higher biomass regions (Huete et al., 2002) Equation (7-23). The index gains its 
heritage from the SAVI and the atmospherically-resistant VI (Kaufman and Tanré, 1992): 

EVI = 2.5 ∙ (𝜌𝜌NIR − 𝜌𝜌red) (𝜌𝜌NIR + 𝐶𝐶1 ∙ 𝜌𝜌red − 𝐶𝐶1 ∙ 𝜌𝜌blue + 𝐿𝐿)⁄  (7-23) 

where: 𝜌𝜌blue = blue reflectance; L = canopy background adjustment factor; and C1 and C2 = aerosol 
resistance weights. The EVI coefficients of L = 1; C1 = 6 and C2 = 7.5 were adopted for Landsat Enhanced 
Thematic Mapper Plus (ETM+) and MODIS spectral bands (Huete et al., 2002). The EVI can be computed 
from many sensors that have a blue band, including SPOT-VEGETATION (Xiao et al., 2003) and Ad-
vanced Earth Observing Satellite-II (ADEOS-II) Global Imager (GLI) (Yamamoto et al., 2005). 

A two-band enhanced vegetation index (EVI2), which is functionally equivalent to the EVI, was devel-
oped for use in sensors without a blue band by Jiang et al. (2008), Equation (7-24): 

EVI2 = 2.5 ∙ (𝜌𝜌NIR − 𝜌𝜌red) (𝜌𝜌NIR + 𝐶𝐶1 ∙ 𝜌𝜌red + 𝐿𝐿)⁄  (7-24) 

where: L = 1 and C1 = 2.4 are the EVI2 coefficients derived for Terra and Aqua MODIS. The EVI2 has 
been found useful even for those sensors equipped with a blue band (e.g., Pfeifer et al., 2012; Morton et 
al., 2014). The consistency of EVI values across different sensors may be more problematic than that of the 
NDVI due to variable and more difficult atmospheric correction schemes of the blue reflectance (Fensholt 
et al., 2006a).  

Although many VIs are well correlated with one another and some (e.g., NDVI and simple ratio vegeta-
tion index (SR)) are functionally equivalent, there are important differences in the way VIs depict vegeta-
tion foliage as described in Section 5.2.2; and, thus, the use of multiple VIs offers a more complete charac-
terization of canopy properties (Huete et al., 2014). The EVI, SAVI, PVI, and Tasseled Cap greenness are 
more sensitive spectrally to the NIR and contain information from multiple canopy leaf layers, whereas the 
NDVI is most sensitive to the canopy-absorbing red band and senses primarily the uppermost leaf layers. 
This spectral sensitivity difference, for example, allows the first set of indices to have extended sensitivity 
over high LAI/biomass areas where the NDVI saturates (Fensholt et al., 2004; Huete et al., 2006). The 
NDVI and ratio-based VIs, on the other hand, have the advantage of minimizing noise and influences at-
tributed to variations in irradiance and topography. 
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5.3 Developing Satellite Vegetation Index Products 

A sequence of data processing steps is generally applied to derive satellite VI products of high quality, 
i.e. cloud-free, atmosphere-corrected, and globally consistent VI values. First, satellite-measured radiances 
are normalized by exoatmospheric solar irradiances to TOA reflectances that are then corrected to varying 
degrees for atmospheric effects such as molecular scattering and absorption influences, stratospheric aero-
sols, or all of atmospheric constituents including tropospheric aerosols, to better approximate field- and 
tower-based VI measurements. Finally, the retrieved indices are composited temporally and spatially to 
produce globally consistent VI values. In this final step, cloud masks are often utilized to remove pixels 
contaminated with cloud, cloud shadow, and/or heavy aerosol artifacts. 

One key process in generating high quality satellite VI products is temporal compositing. In this process, 
sequential input reflectance images over a set time interval (e.g., 7-day, 10-day, or 16-days) are composited 
into a single image consisting of least cloud- and atmosphere-contaminated, near-nadir viewing pixel ob-
servations. 

5.3.1 Maximum Value Compositing and Constraint View Angle Maximum Value Compositing 
Standard compositing methods used in coarse resolution satellite data are based on the maximum value 

composite (MVC) concept developed for AVHRR NDVI time series data by Holben (1986). In the MVC 
method, the highest NDVI value over a compositing period is selected to represent the greenness status of 
a given pixel for that period. In the early AVHRR era, the highest NDVI was presumed to occur on days 
with the least cloud and atmospheric contamination, and for the smallest atmospheric optical depth (i.e., 
the closest-to-nadir viewing geometry). The compositing method was applied to data that were not corrected 
for atmospheric or sun-target-sensor geometry effects. For vegetated surfaces, the atmosphere increases red 
reflectance and decreases NIR reflectance, resulting in a negative bias in the NDVI (e.g., Vermote and 
Kotchenova, 2008). The Global Inventory Modeling and Mapping Studies (GIMMS) AVHRR NDVI3g 
time series data have been temporally composited with the MVC method (Table 7-3). 

The MVC approach has become less useful as advancements in operational atmospheric correction have 
evolved. The sun-target-sensor geometry effect, described by the bidirectional reflectance distribution func-
tion, becomes more prominently revealed in the atmospherically-corrected data. The sun-target-sensor ge-
ometry alters the effective proportion of sunlit and shaded vegetation viewed by a sensor and illuminated 
by the sun, which can alter the spectral contrast drastically between red and NIR reflectances, resulting in 
angular biases in VIs (Cihlar et al., 1997; Schaaf et al., 2002). In general, the NDVI decreases in backscat-
tering direction because of high red reflectances relative to NIR, whereas the NDVI increases in forescatter-
ing direction as red reflectances are reduced more strongly due to shadowing relative to the scattered NIR 
(Fensholt et al., 2006b). The EVI varies in an opposite manner, having a positive bias in the sunlit, backscat-
tering direction due to the stronger NIR signal (Sims et al., 2011). For the atmospherically-corrected data, 
the MVC method has been shown to confuse high NDVI values associated with lower residual cloud/at-
mosphere contamination with those caused by off-nadir viewing (Cihlar et al., 1994; van Leeuwen et al., 
1999). In the atmospherically-corrected data, overcorrection of atmosphere may also result in high NDVI 
values due to a negative bias in red reflectances, further complicating the effectiveness of the MVC ap-
proach.  
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The MODIS VI algorithm has adopted a constraint view angle MVC (CVA-MVC) approach (Huete et 
al., 2011). This method improves upon the MVC approach by attempting to restrict pixel selections to 
within ±30° view zenith angles by choosing the closest-to-nadir view pixel from 2 or 3 highest NDVI values 
in the compositing period (i.e., minimized for BRDF influences). In the MODIS VI algorithm, per-pixel 
quality assessment (QA) information is also used to filter out problematic and noisy pixels potentially con-
taminated by residual clouds, cloud shadow, and/or high aerosol loadings, and/or due to large viewing 
geometries before the CV-MVC application. Chuvieco et al. (2005) found that the MODIS VI compositing 
procedure provided close to nadir observation angles and good spatial coherency, while the traditional MVC 
method provided poor results for mapping burned area over the Iberian Peninsula. This CV-MVC procedure 
was also used in generating AVHRR NDVI and EVI2 global temporally-composited datasets (Table 7-3) 
(Didan et al., 2015). 
Table 7-3. Comparison of AVHRR Global Vegetation Index Time Series Datasets. 
        GIMMS 3g       LTDR V4         VIP 
        (Pinzon and Tucker, 2014)  (http://ltdr.nascom.nasa.gov)  (Didan et al., 2015) 
Index      NDVI         NDVI          NDVI, EVI2 
Grid resolution   0.08°          0.05°           0.05° 
Temporal     15-day         Daily           Daily, 7-day, 15-day,  
  resolution                                monthly 
Temporal coverage  1981-2013        1981-present        1981-1999 
Source data    AVHRR GAC      AVHRR GAC       LTDR V4 AVHRR 
Source coverage   07/1981-02/1985 NOAA-7  06/1981-02/1985 NOAA-7   06/1981-12/1999 LTDR V4 
        03/1985-10/1988 NOAA-9  01/1985-11/1988 NOAA-9 
        11/1988-08/1994 NOAA-11 11/1988-09/1994 NOAA-11 
        09/1994-01/1995 NOAA-9  01/1995-12/1999 NOAA-14 
        01/1995-10/2000 NOAA-14 11/2000-12/2005 NOAA-16 
        11/2000-12/2003 NOAA-16 07/2005-12/2009 NOAA-18 
        01/2004-12/2008 NOAA-17 05/2009-present NOAA-19 
        01/2009-12/2011 NOAA-18 
        01/2012-12/2013 NOAA-19 
Radiometric    Ocean and cloud vicarious  Ocean and cloud vicarious   Adopted from LTDR V4 
  calibration    calibration (Vermote and   calibration (Vermote and 
        Kaufman, 1995), and desert  Kaufman, 1995) 
        calibration (Los, 1993) for 
        NOAA-7 to 14; desert 
        vicarious calibration (Cao et 
        al., 2008; Wu et al., 2010) 
        for NOAA-16 to 19 
Orbit drift     Empirical mode      BRDF-based normalization   Adopted from LTDR V4 
  correction    decomposition (Pinzon et al., to nadir view and 45° sun 
        2005) for NOAA-7 to 14   zenith angle (Vermote et al., 
                   2009) 
Atmospheric    Corrected for El Chichon   Corrected for molecular and   Adopted from LTDR V4 
  correction    and Mt. Pinatubo strato-   aerosol effects 
        spheric aerosol effects 
        (Vermote et al., 1997) 
Temporal     Maximum NDVI (Holben,  N/A           Constraint view-angle 
  compositing    1986)                     maximum NDVI (van 
                               Leeuwen et al., 1999) 
Inter-sensor    Inter-calibrated across    None           Cross-calibrated to MODIS 
  calibration    platforms using Bayesian               using per-pixel simple linear 
        Methods with SeaWiFS               regression 

http://ltdr.nascom.nasa.gov/
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5.3.2 BRDF-based Compositing 
BRDF models may be employed to further reduce angular variations in VI products. This has been ac-

complished in the MODIS Nadir BRDF-Adjusted Reflectance (NBAR) product. NBAR reflectances are 
adjusted to nadir through BRDF model inversions applied to seven or more good quality, cloud-free obser-
vations within a composite cycle (Schaaf et al., 2002). The MODIS NBAR reflectances are adjusted for 
local solar noon angle, whereas the MODIS VI product is produced at local solar zenith angle (as they 
represent actual observations). Therefore, these datasets contain seasonal sun angle variations, which how-
ever do not present a problem in inter-annual time series data and trend analyses, given there is no sensor 
calibration or orbital drift (Wang et al., 2012). AVHRR Land Long-term Data Record (LTDR) reflectance 
and NDVI datasets are standardized for a nadir viewing and constant solar zenith angle geometry using 
MODIS BRDF kernels (Table 7-3).  

In contrast to other BRDF products, the MAIAC is based on a radiative transfer model that does not 
make a Lambertian assumption in correcting for atmosphere (Lyapustin et al., 2012). The MAIAC compo-
siting approach is based on a cloud screening and atmospheric correction algorithm that takes advantage of 
an adaptive time series analysis with processing of groups of pixels, to derive atmospheric aerosol concen-
tration and surface reflectance. It was first derived for Amazon forests and then extended to the African 
tropics and has been a key product in resolving debates and controversies on dry-season and drought satel-
lite greening studies in Amazonian rainforests (Morton et al., 2014; Saleska et al., 2016). Whereas Morton 
et al. (2014) reported no seasonality in Amazon forests, evidence from MAIAC-based studies (Guan et al., 
2015) and in situ and tower flux studies, show tropical forest ‘greening’ during higher sunlight and annual 
dry seasons, suggesting they are limited more by light than water. In summary, satellite products may use 
models to correct artifacts (e.g., MAIAC and NBAR) or compositing algorithms designed to minimize such 
artifacts (e.g., standard MODIS VIs). Any of these data products, however, will typically output either 
climatological values or lower quality pixels when there is an absence of better-quality pixels, and for this 
reason, it is important to employ QA filtering of such products. 

5.4 Vegetation Index Continuity Among Sensor Systems 

There is a need for accurate, long term satellite measurements to assess climate change impacts on eco-
systems. VI datasets from a number of Earth observing satellites can fill this need as they can be used to 
generate seamless, continuous long-term data records for climate change studies. The Visible Infrared Im-
aging Radiometer Suite (VIIRS) sensor series on the Joint Polar Satellite System (JPSS) program will con-
tinue the VI data streams initiated with National Oceanic and Atmospheric Administration (NOAA) 
AVHRR and NASA Earth Observing System MODIS (Cao et al., 2014). Both NDVI and EVI have been 
selected as geophysical products for the JPSS program (Vargas et al., 2013). It is of great importance to 
investigate multi-sensor VI continuity/compatibility (e.g., among AVHRR, MODIS, and VIIRS) and to 
develop a mechanistic understanding of VI continuity across disparate sensor systems.  

Numerous investigations have evaluated NDVI continuity and consistency empirically across multiple 
AVHRR sensors (e.g., Los, 1993; Roderick et al., 1996). Many of these investigations have focused on 
ensuring consistent calibration over time and across sensors (Vermote and Kaufman, 1995; see also Table 
7-3) as AVHRR sensors were not equipped with on-board calibration devices and as orbital drift created 
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trends in NDVI time series through the BRDF effects with gradually increasing solar zenith angles. A strong 
emphasis has been placed on calibration for the current and newer sensors (Slater et al., 2001).  

With the launch of a new generation of satellite sensors, including AVHRR/3, MODIS, and Landsat-7 
ETM+ in the late 1990s, attempts to reconcile multi-sensor VI data for sensor characteristics and algorithm 
differences evolved (Teillet et al., 1997). Many studies developed empirical inter-sensor spectral calibration 
equations using: (1) quadratic regression for the NDVI (Trishchenko et al., 2002; Miura et al., 2006; Tri-
shchenko, 2009; Gonsamo and Chen, 2013); (2) simple linear regression for the NDVI (Steven et al., 2003); 
and (3) for the EVI and EVI2 (Kim et al., 2010) across a large number of sensors, including MODIS, 
VEGETATION, AVHRR, Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Landsat ETM+, and 
VIIRS. Several studies employed weighted averaging of two or more narrow spectral bands to derive a 
broadband-based AVHRR-equivalent NDVI from MODIS (Gitelson and Kaufman, 1998; Gao, 2000) and 
Medium Resolution Imaging Spectrometer (MERIS) (Gunther and Maier, 2007). Using SeaWiFS NDVI 
data as a bridge, Pinzon and Tucker (2014) applied Bayesian methods to cross-calibrate AVHRR/2-NDVI 
and AVHRR/3-NDVI. Yet another approach was proposed by Yoshioka et al. (2012), which used vegeta-
tion biophysical isolines to inter-calibrate two-band indices spectrally, including NDVI, SAVI, and EVI2, 
across sensors. Obata et al. (2013 and 2016) extended this isoline-based translation approach to the EVI 
and derived a MODIS-compatible EVI from VIIRS spectral bands. This bottom-to-top theoretical approach 
provided a better mechanistic understanding and predictive modeling of cross-sensor relationships for the 
NDVI, EVI, and input reflectances. It is noted, however, that all these methods have been designed to 
compensate for spectral bandpass differences across sensors.  

Consideration of additional factors is required to derive long term VI records from disparate sensor sys-
tems. They include spatial resolution differences and platform orbital differences that result in view and 
sun angle differences, and algorithmic differences associated inherently with sensor characteristics (e.g., 
van Leeuwen et al., 2006; Swinnen and Veroustraete, 2008; Miura et al., 2013). The historical AVHRR 
record will continue to serve as a critical dataset for climate science and establishing the continuity or 
compatibility with the AVHRR record remains a challenge. It may also be beneficial to extend backwardly 
the EVI2 and other 2-band VIs to the historical AVHRR record to complement the NDVI (Marshall et al., 
2016). Overall, more rigorous examinations of inter-sensor VI continuity and compatibility are desired and 
will be critical in support of climate science and ecosystem sustainability studies. 

5.5 Validation of Satellite Vegetation Index Products 

Validation is an essential part of satellite VI product development to evaluate their quality, and spatial 
and temporal consistency, and to provide accuracy and reliability information for research and applications. 
Earlier validation efforts involved finer resolution airborne and satellite imagery, field radiometer measure-
ments, biophysical field sampling, and automated ground observation networks (Privette et al., 2000), all 
having an objective to validate VIs through independent radiometric and biophysical measurements. Accu-
racy and precision values for the MODIS VIs are generally within 0.02 to 0.05 VI values (MODIS Land 
Team, 2015).  

In context of the Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) 
subgroup, validation of a satellite product is achieved progressively from Stage 1 to Stage 3 by expanding 
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the areal coverage and time period from which product quality and accuracy are assessed (URL: 
http://lpvs.gsfc.nasa.gov). This is necessary and logical as the quality of satellite VI retrievals vary in space 
and time because of geographic and seasonal variations in cloud cover, quality of atmospheric correction, 
and sensor performance (Miura et al., 2000; Wolfe et al., 2002; Samanta et al., 2010). Recently, the CEOS 
LPV subgroup has developed an additional stage, Validation Stage 4, and proposed a framework for achiev-
ing its implementation. This framework consists of a citable protocol, fiducial reference data, and automated 
subsetting, recommending the adoption of more systematic, automated validation exercises than previous 
protocols (e.g., Fernandes et al., 2014). Below are methods and approaches that have been used to validate 
MODIS VIs and VIIRS VIs with a brief discussion on infrastructures that can be utilized for Stage 4 vali-
dation of satellite VI products. 

5.5.1 Reflectance-based Vegetation Index Validation 
Independent, top-of-canopy (TOC) and nadir reflectance measurements are means to validate satellite 

VI products (Huete et al., 2002; Fensholt et al., 2006a). VIs are readily computed from TOC reflectances 
measured with ground-based spectroradiometers, tower-mounted sensors, and airborne instruments. Cali-
brated and traceable "transfer radiometers" mounted on light aircraft or UAVs can be flown at altitudes of 
10m to 300m above ground level (AGL) to acquire TOC reflectances with nadir looks at prescribed sun 
angles for independent characterization of VIs (Huete et al., 1999). This extends locally-constrained, sub-
canopy scale field radiometric measurements to kilometer length scales, suitable for validating coarse res-
olution VI products. This approach is primarily to validate satellite reflectances and provide uncertainties 
in atmosphere correction which may be translated to accuracies and uncertainties in the satellite VI 
measures (Vermote and Kotchenova, 2008). Such nadir, TOC reflectance values can also aid in character-
izing the uncertainties in a satellite VI compositing scheme by assessing the extent to which the compositing 
algorithm is able to retrieve close-to-nadir VI values. 

5.5.2 Ground Observation Networks 
In situ observation networks have evolved into highly calibrated and traceable sensor systems that offer 

great potential for providing temporally-continuous, higher quality (e.g., finer spatial and temporal resolu-
tion) measurements than the satellite. These networks complement field and airborne validation data ac-
quired as spatial snapshots in time that can enhance quality, reduce uncertainty, and permit cross-sensor 
continuity assessments of satellite VIs. They include the AERONET (Holben et al., 2001), Baseline Surface 
Radiation Network (BSRN)/Surface Ratiatin Budget (SURFRADS) (Augustine and Dutton, 2013), Pheno-
Cam (Richardson et al., 2009), and global tower flux network FLUXNET (Running et al., 1999). 

5.5.2.1 AERONET 
The AERONET Surface Reflectance Validation Network (ASRVN) collects operational satellite data at 

over 100 AERONET sites and retrieves surface reflectances from these satellite data with a rigorous atmos-
pheric correction algorithm and in situ AERONET atmospheric measurements (Wang et al., 2009). Com-
puted VIs from ASRVN surface reflectance data can be compared against their equivalent satellite products 
(Huete et al., 2014). Compared to ground-based, aircraft, and finer resolution satellite measurements, this 
approach has the advantage of identical spectral, spatial, and observation geometry sampling with the 

http://lpvs.gsfc.nasa.gov/
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satellite measurement. The sun photometer-based atmosphere correction is applicable to relatively large 
areas around an AERONET site for more rigorous spatial analysis. It is also applicable to off-nadir viewing 
conditions that allow realistic assessments of accuracies and uncertainties in VIs due to variability in at-
mosphere and over a range of sensor observation viewing angles. Recently, Shabanov et al. (2015) evalu-
ated the performance of VIIRS TOC NDVI and EVI using their respective counterparts produced with in 
situ AERONET atmospheric measurements as a reference. 

5.5.2.2 Surface Radiation Networks 
Many towers are now instrumented with sensors measuring PAR and shortwave solar radiation fluxes at 

high temporal frequencies. A broadband version of the NDVI and EVI2 can be derived from these radiation 
measurements (Huemmrich et al., 1999; Rocha and Shaver, 2009), which are useful to monitor and quantify 
vegetation seasonal changes and land cover dynamics, and thus suitable for validation of the satellite coun-
terparts. Wilson and Meyers (2007) demonstrated how well these tower-derived NDVI time series data 
could trace MODIS NDVI across numerous tower sites as independent verifications of NDVI data over 
smaller, but homogeneous footprint areas. Wang, Q. et al. (2004) found the tower-based broadband NDVI 
to be a good index to describe physiological activity of a pine forest during certain periods, providing a 
means for obtaining other physiological parameters that are required by ecosystem models. 

5.5.2.3 Global Tower Flux Network 
FLUXNET coordinates observations from micro-meteorological tower sites, and their regional and 

global analysis (Running et al., 1999). The tower sites use eddy covariance methods for continuous meas-
urements of carbon dioxide, water vapor, and energy exchanges between terrestrial ecosystems and the 
atmosphere. This provides potential opportunities to evaluate satellite VI measures of vegetation growth, 
phenology, and seasonal dynamics. Strong, multiple-biome satellite EVI relationships with tower gross 
primary production (GPP) measurements have been reported for MODIS and the SPOT VEGETATION 
satellite data across AmeriFlux tower sites and tropical forests in the Amazon and Southeast Asia (Xiao et 
al., 2004 and 2005; Rahman et al., 2005; Sims et al., 2006; Huete et al., 2008). High resolution tower GPP 
time series measurements have been used as a means to validate the temporal trajectory of reconstructed 
daily EVI2 from LTDR AVHRR data (Zhang, 2015). 

5.5.3 Biophysical Validation 
Field-based vegetation biophysical sampling may be useful for validating and assessing VI performance 

in space and time. Numerous studies examined relationships between VIs and vegetation biophysical prop-
erties using field experimental and radiative transfer model simulated data (e.g., Asrar et al., 1984; Gao et 
al., 2000; Fensholt et al., 2004; Gitelson et al., 2014). A good correspondence between VIs and field bio-
physical measurements reported in these and other studies provides confidence in using VIs as surrogates 
for biophysical variables that are otherwise difficult to sample in the field.  

Although results from these studies have contributed to biophysical validation of VIs across numerous 
environments, most VI-biophysical relationships derived from empirical field measurements are at local 
scales, which therefore have limited spatial extension to other areas or different spatial scales. Another 
dilemma in using LAI and FPAR to validate VIs is that these biophysical parameters do not distinguish 
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among quality of greenness (chlorophyll levels) nor phenological age of the leaf (i.e., young, developing, 
mature); total FAPAR and LAI encompass a variety of leaves of different levels of maturity of varying 
levels of greenness and photosynthetic efficiency. Yet, another complication in the biophysical validation 
of VIs is a lack of consensus on what VIs explicitly measure about a canopy and how to interpret a VI 
value. The large number of co-varying canopy properties makes it difficult to quantify explicitly one vari-
able from the others, and hence to retrieve specific biophysical details from the integrative VI 'greenness' 
signal (Huete et al., 2014). 

5.6 Recent Findings and Development 

5.6.1 Phenology Studies 
VI time series data derived from moderate resolution sensors, including MODIS, AVHRR, and VEGE-

TATION, are now widely used to characterize seasonal dynamics of vegetation and their inter-annual var-
iability with quantifiable metrics, such as the onset date of greening‚ peak greenness date, and growing 
season length, at regional to global scales (Zhang et al., 2006; Reed et al., 2009). Phenology is the study of 
recurring biological events (van Vliet et al., 2002) and is an important integrative science for quantifying 
vegetation responses and feedbacks to climate change (Penuelas et al., 2009). 

Zhang X. et al. (2014) extracted the two phenological metrics of the onset date of greening and the 
growing season length from AVHRR and MODIS EVI2 time series data and analyzed the metrics for in-
terannual variability and trends for a period of 1982 to 2010 across the entire globe. They report that the 
trends of vegetation phenology were substantially variable across the globe during the last three decades. 
Their trend analysis was conducted conservatively by separating the two periods of 1982–1999 and 2000–
2010 because of different qualities and some inconsistencies observed between AVHRR LTDR (see Table 
7-3) and MODIS data.  

Recently, Melaas et al. (2013) presented a method for characterizing both long-term average and inter-
annual dynamics of the phenology of temperate deciduous broadleaf forests using multi-decadal Landsat 
EVI time series data. Spring and autumn phenological transition dates extracted from Landsat EVI data 
agreed closely with in situ phenology measurements at these forest sites. Their results indicate the potential 
utility of high-resolution satellite VIs not only for landscape-scale phenology studies, but also for bridging 
in situ phenological measurements to those extracted from coarse resolution sensors such as MODIS, 
AVHRR, and VIIRS. 

5.6.2 Ecosystem Resilience 
Satellite data can reveal useful information on vegetation dynamics and provide opportunities to measure 

ecosystem changes and responses to climate variability. The AVHRR-NDVI data record is widely used to 
assess vegetation resilience, land degradation, and drought responses to climate variability. For example, 
Brandt et al. (2015) reported a greening trend in the Sahel region of Africa based on trend analysis of long 
time series rainfall and AVHRR-NDVI data (1987–2013). They showed a 36% increased greening re-
sponse, due to increasing tree cover, driven by a 40% increase in rainfall over this period.  
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Some studies normalize the vegetation response by the magnitude of changes to the climate signal, as in 
the approach used by Ponce-Campos et al. (2013), who applied rain use efficiency (RUE) and water use 
efficiency (WUE) measures to assess vegetation responses and resilience during the early 21st Century ex-
treme hydroclimatic events. Comparisons of vegetation resilience across different parts of the world are 
difficult to assess without accounting for variations in magnitude of climatic disturbances. RUE enables 
cross-biome comparisons and establishes a hypothetical threshold beyond which ecological transitions or 
ecosystem collapse may occur.  

DeKeersmaecker et al. (2015) used the GIMMS3g AVHRR-NDVI to assess and quantify vegetation 
sensitivity and resilience of global biomes while simultaneously taking climate variability into account. 
Seddon et al. (2016) formulated the Vegetation Sensitivity Index (VSI) using monthly MODIS EVI-green-
ness responses to variability in water availability, cloudiness and air temperature. The VSI quantifies pat-
terns and drivers of ecological sensitivity by identifying ecologically sensitive areas that exhibit either am-
plified or slowed responses to climate variability in comparison to other regions, and includes a ‘weighting’ 
for the various climate factors that contribute to ecological change. 

5.6.3 Solar-induced Fluorescence 
Spectral VIs convolve leaf chlorophyll content, leaf demography and ontogeny, biomass, and canopy 

structure, to provide aggregate measures of their variations at moderate, weekly to monthly, time scales. 
Complementing VI measurements, space-based estimates of Sun-Induced chlorophyll Fluorescence (SIF) 
have recently become available. SIF is an electromagnetic signal emitted in the 650-850nm spectral window 
as a by-product of photosynthesis, representing a more direct measure of photosynthesis (Meroni et al., 
2009).  

In contrast to spectral VIs and other satellite vegetation products such as LAI and fAPAR, chlorophyll 
fluorescence provides estimates of actual photosynthetic rates, and has been shown to be highly correlated 
with GPP estimates (Guanter et al., 2012). SIF is more dynamic than greenness, and will respond much 
more quickly to environmental stress, through both change in stress-induced LUE and canopy light absorp-
tion (Porcar-Castell et al., 2014). It is thus seen as one way to increase the effective temporal remote sensing 
of vegetation photosynthesis, essentially to near real-time with promising potential capabilities to improve 
carbon cycle models and provide more accurate projections of ecosystem productivity and climate impacts 
on production.  

The first global maps of SIF were derived using data from the Greenhouse Gases Observing Satellite 
(GOSAT) (Guanter et al., 2012), and more recently, a global SIF data set with better spatial and temporal 
sampling than that from GOSAT was produced using spectra from the Global Ozone Monitoring Experi-
ment-2 (GOME-2) instrument onboard the Meteorological Operational (MetOp-A) platform (Joiner et al., 
2013). Several future missions are also being prepared, including the European Fluorescence Explorer 
(FLEX) satellite mission (Meroni et al., 2009) and the Sentinel-5 Precursor Tropospheric Monitoring In-
strument (TROPOMI) satellite mission (Veefkind et al., 2012). 
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5.7 Future Directions and Challenges 

New challenges and demands for robust remote sensing tools address up-coming ecological challenges. 
More accurate and longer term VI data records will be needed for climate and ecosystem sustainability 
studies, requiring multi-sensor data fusions and continuity/compatibility analyses. Despite the success of 
VIs, there are increasing demands to better define what VI values represent and measure in characterizing 
a canopy. Future advancements in hyperspectral and solar-induced fluorescence offer much potential in 
advancing remote sensing based landscape monitoring and applications. VIs will continue to be used widely 
and may become the preferred products for monitoring Earth’s changing ecosystems. This is due primarily 
to their consistency, robustness, and overall transparency. Thus, VIs are an important first step in looking 
at the state of an environment, and from which higher level products and/or in situ datasets can be involved 
to assess important mechanisms responsible for VI signal variance. 

6 SPECTRAL MIXTURE ANALYSIS 

6.1 Introduction 

Early in the history of MS remote sensing, it was recognized that the relatively coarse spatial resolution 
of spaceborne sensors would result in multiple materials being present in any given ground instantaneous 
field of view (GIFOV) of a sensor; thus creating a “mixed pixel”. The potential of “unmixing” coarse spatial 
resolution MS data was first proposed by Horowitz et al. (1971), prior to the launch of the Landsat systems. 
SMA is one of several terms used to describe the process by which a spectrum produced by light reflecting 
from multiple materials within an IFOV is unmixed using “pure” spectra, called endmembers, to generate 
estimates of fractional abundance for each material. Alternative terms include “mixture decomposition” 
(Hall et al., 1995), “spectral unmixing” (Keshava and Mustard, 2002) and “mixture modeling” (Ichoku and 
Karnieli, 1996) to name a few. In this review, we use the term SMA.  

One of the earliest applications of SMA was in planetary geology. Singer and McCord (1979) used a 
two-component mixture to better understand the impact of aeolian dust on Martian spectra. This work was 
followed subsequently by laboratory-based studies of synthetic mixtures using lunar samples collected dur-
ing the Apollo Missions (Johnson et al., 1985), and synthetic mixtures of alluvial fan materials of varying 
composition and particle size (Shipman and Adams, 1987) and analysis of imagery collected by the Viking 
Lander (Adams et al., 1986), in which the impact of changing illumination was modeled by including a 
shade component. The first refereed publication focused on terrestrial vegetation was published by Smith 
et al. (1990), who applied SMA to Landsat TM data acquired over Owens Valley, California to estimate 
shrub cover. Other early adoptions included Shimabukuro and Smith (1991), who proposed using con-
strained least squares regression for fraction estimation and related changes in shade fraction to Eucalyptus 
stand ages. Gillespie (1992) further proposed a thermal unmixing approach by introducing the concept of 
virtual cold; and Quarmby et al. (1992), who applied a mixing model to estimate crop area fraction in 
AVHRR data.  

From these early beginnings, SMA has become a mainstream analysis tool applied routinely to broad-
band MS and hyperspectral data. Using Google Scholar and primarily targeting refereed sources, the 
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authors identified over 330 highly ranked manuscripts focused on SMA or one of its variants (Figure 7-22). 
As can be observed, research focused on SMA has increased steadily from early applications in 1990, peak-
ing at 24 papers between 2005 and 2006, with a steady stream of papers published each year since 2006. It 
should be noted that more recent publications are underestimated because poorly cited or uncited papers 
will be ranked low in a search. The important contribution of these studies has been recognized by a large 
number of citations, totaling close to 40,000 according to Google Scholar™ and over 20,000 in the Web of 
Science in September, 2015. It should also be noted that many papers use SMA products, but do not include 
any indication of mixture analysis in the title, key word or abstract and thus go unrecognized by this type 
of analysis. 

 
Figure 7-22. The number of SMA publications from 1971 to 2014. 

SMA has broadened considerably from its early origins in planetary geology. Ecological applications 
have become prominent, focusing on issues as diverse as estimating forest structure (e.g., Hall et al., 1995; 
Lu et al., 2004; Roberts et al., 2004; Sonnentag et al., 2007), mapping tropical deforestation (e.g., Shima-
bukuro et al., 1994; Roberts et al., 2002; Souza et al., 2013), selective logging and forest degradation (e.g., 
Asner et al., 2004; Souza et al., 2005), pasture degradation (e.g., Numata et al., 2007; Davidson et al., 
2008), fire severity and post-fire recovery (e.g., Riano et al., 2002; Quintano et al., 2006; Veraverbeke and 
Hook, 2013), sub-pixel tree-fall gaps (e.g., Negrón-Juárez et al., 2011), plant species (e.g., Dennison and 
Roberts, 2003a,b; Plourde et al., 2007; Youngentob et al., 2011; Somers and Asner, 2013, 2014). Urban 
remote sensing has also been a strong focus area, with a primary interest in estimating impervious surface 
fraction and vegetation cover (e.g., Small, 2001; Phinn et al., 2002; Wu and Murray, 2003; Powell et al., 
2007; Weng and Lu, 2008; Roberts et al., 2012). Precision agriculture and crop mapping have also been a 
common application, including: (a) crop area mapping (e.g., Quarmby et al., 1992; Lobell and Asner, 2004; 
Ozdogan, 2010); (b) estimates of crop production (e.g., Somers et al., 2009a/b; Tits et al., 2012) and (c) 
mapping plant pathogens and diseases (e.g., Fitzgerald et al., 2004; Coops et al., 2006). Other applications 
include snow-grain size/snow-covered area mapping (e.g., Painter et al., 1998; 2003), fire temperature and 
area estimation (e.g., Dennison et al., 2006; Eckmann et al., 2008; Matheson and Dennison, 2012), sediment 
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estimation in water (e.g., Mertes et al., 1993; Warrick et al., 2004), estimates of kelp biomass (e.g., 
Cavanaugh et al., 2011) and extensive use in biological microscopy (e.g., Zimmerman et al., 2003). Meth-
odological developments have always been, and remain to be a major focus in SMA, with over 100 papers 
published since 1990 incorporating some methodological elements that include innovations in fraction in-
version (e.g., Shimabukuro and Smith, 1991; Heinz and Chang, 2001; Nascimento and Dias, 2005), 
endmember extraction (e.g., Winter, 1999; Xiong et al., 2011; Roth et al., 2012), or the strategic use of 
spatial information (e.g., Martin and Plaza, 2011; Zare et al., 2013; Deng and Wu, 2013); temporal infor-
mation (e.g., Dennison and Roberts, 2003b; Ozdogan, 2010; Somers and Asner, 2013) or spectral subsets 
(e.g., Asner and Lobell, 2000; Somers et al., 2009b; 2010a).  

This section has provided a brief introduction to SMA. The concept of linear and non-linear mixtures 
and important concepts such as endmembers, fraction constraints, and endmember variability have been 
introduced. We have provided graphical examples of the unmixing process and an example of simple and 
multiple endmember SMA applied to AVIRIS data used to map vegetation and impervious surface cover. 
We conclude with a discussion of current research needs and future directions. Several excellent reviews 
exist and the reader is encouraged to read early reviews on SMA by Adams et al. (1993), Ichoku and Kar-
nelli (1996), Keshava and Mustard (2002), Adams and Gillespie (2006) and reviews focused specifically 
on hyperspectral SMA (e.g., Bioucas-Dias et al., 2012) and endmember variability (e.g., Somers et al., 
2011; Zare and Ho, 2014). At least one journal special issue is devoted entirely to SMA (e.g., Plaza et al., 
2011). 

6.2 The Mixing Problem 

A spectral mixture occurs whenever the reflectance, reflected radiance, or emitted radiance within the 
IFOV of an instrument originates from two or more spectrally distinct materials. In the case where photons 
only interact significantly with one material along their path between the source, surface and sensor, the 
mixture is often called a “checkerboard mix”, in which the measured spectrum is the sum of the spectra of 
each component within the (FOV), weighted by the areal fraction of each material in the FOV (Figure 7-
23). 

 
Figure 7-23. Black and white image of a checker-board: a) represents a checkerboard consisting of a majority of white 
squares while b) has many more black squares. Aggregated into a single pixel, the spectrum on the left would have 
higher reflectance because of the larger proportion of white pixels. A graphical representation of a two component, 
single band mixture is shown below the images. DN is “digital number” but could be reflectance or radiance as well. 
Subscripts refer to white (w) or black (b). 



ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

683 
 

A defining property of the “checkerboard” mixing case is that, provided the pure spectrum of each com-
ponent is properly identified and noise is minimal, the areal abundance retrieved using SMA and the actual 
fractional cover will be the same. This is called a linear spectral mixture and is based on the assumption 
that no photon interaction occurs between materials in the FOV. In the example shown above, with only 
two components, the fraction of the white endmember can be calculated as the brightness difference be-
tween the mixture and the dark component, divided by the brightness difference between the bright and 
dark endmember (fw = (DN-DNb)/(DNw-DNb). Gramm-Schmidt Orthogonalization operates on a principle 
similar to this example, but in n-dimensional space.  

In cases where photons interact with more than one material between the source, surface and sensor, it 
is called an intimate mixture, and the mixing process is considered to be non-linear. Intimate mixtures were 
first described in detail by Nash and Conel (1974), in which two to three component mixtures of powdered 
plagioclase, pyroxene and ilmenite were created in the laboratory. Whereas mineral mixtures between the 
transparent minerals plagioclase and pyroxene produced spectra that were intermediate in proportion to the 
amount of each mineral in the mixture, mineral mixtures involving the opaque mineral ilmenite produced 
surface darkening far in excess of the percentage of ilmenite in the mixture. In other words, fractions deter-
mined by a linear model with ilmenite did not match mineral abundance (Figure 7-24). 

 
Figure 7-24. Illustration of a 75%/25% plagioclase/ilmenite mixture. In this two-component mixture, the fraction of 
plagioclase is calculated as fp = (DN-DNi)/(DNp-DNi). Spectrally a 75/25% mixture of plagioclase and ilmenite grains 
looks like a 40/60% mixture. Numbers extracted from Conel and Nash (1974). 

Intimate (non-linear) mixtures occur whenever photons encounter more than one component along their 
path. In theory, non-linear mixtures should dominate all mixtures, but provided multiple scattering is min-
imal, non-linear mixtures can often be neglected. Examples where this is not the case include intimate 
mineral mixtures (Nash and Conel, 1974; Shipman and Adams, 1987), sediments in water (Mertes et al., 
1993), highly absorbing particulates in snow, or transparent vegetation over a bright substrate (Huete, 1987; 
Roberts, 1991; Somers et al., 2009a). For other applications, the simplest case assuming linear mixing is 
the dominant model. 

6.3 Linear Unmixing 

6.3.1 Simple Mixing Models 
In simple mixing models, photon interactions between materials are neglected and linear mixing between 

a constant set of spectra is used to model every pixel in an image. In this case, a measured spectrum is 
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modeled as the sum of two or more pure spectra, called endmembers, each weighted by the spectral fraction 
of the material within the IFOV, Equation (7-25). 

λλλ ε+⋅= ∑
=

n

z
zz fEMM

1

 (7-25) 

where: a mixed spectrum, M, is modeled as the sum of n endmembers, EMz, each weighted by fraction 
fz. Whatever spectral information cannot be accounted for by the model is contained in a spectral residual, 
ελ. The spectral residual can also be considered a measure of model fit and is often summarized as the Root 
Mean Square Error (RMSE) (Equation 7-26): 

∑ −=
m

i
mRMSE )1/(2

λε  (7-26) 

where: m equals the number of bands used in the model. Mixing solutions are often constrained, forcing 
fractions to sum to one (e.g., Adams et al., 1993; Settle and Drake, 1993), or to sum to one with all fractions 
being positive (e.g., Shimabukuro and Smith, 1991; Heinz and Chang, 2001). Theoretically, the number of 
endmembers that can be included in a spectral mixture is equal to one more than the number of bands, 
although the actual number of endmembers that can be included is often significantly fewer because of 
spectral degeneracy (i.e., collinearity) between endmember combinations (Sabol et al., 1992; Van Der Meer 
and de Jong, 2000; Chen X. et al., 2011). More typically 3 to 4 endmembers are included in a model (Rob-
erts et al., 1993). 

6.3.2 Endmembers 
An important notion is the concept of an endmember and many techniques have been developed specif-

ically to define endmembers for SMA. Endmembers can be derived from many sources including imagery 
(i.e., image endmembers; e.g., Dennison and Roberts, 2003a), laboratory measurements (e.g., Smith et al., 
1990), field spectra (e.g., Roberts et al., 2004), radiative transfer (e.g., Painter et al., 1998; Dennison et al., 
2006; Sonnentag et al., 2007; Tits et al., 2012) or as virtual endmembers that enclose the potential mixing 
space (e.g., Gillespie, 1992; Tompkins et al., 1997). While reference endmembers (i.e., spectra of known 
materials measured in the laboratory or the field) are desirable, it is often impractical to use them because 
of a lack of adequate spectral libraries that capture large numbers of materials as well as the spectral varia-
tion within specific material types. In addition, reference endmembers may not match those in the image 
due to differences in sensors, atmospheric effects and illumination conditions (e.g., Tompkins et al., 1997). 
Examples of studies that have used reference endmembers to unmix broad-band and hyperspectral images 
include Smith et al. (1990), Roberts et al. (1993; 1997b; 2002; 2004), and Negrón-Juárez et al. (2011).  

A more common practice is to use image endmembers, spectra selected from the image that are assumed 
to consist of a single cover class. Candidate image endmembers can be identified using semi-automated 
approaches, such as the Pixel Purity Index (PPI) (Boardman et al., 1995), fully automated approaches such 
as N-FINDR (Winter, 1999), Vertex Component Analysis (VCA) (Nascimento and Dias, 2005), and Piece-
wise Endmember Detection (PCE: Zare and Gader, 2010) or fully automated approaches with spatial con-
straints (e.g., Deng and Wu, 2013; Zare et al., 2013). For example, Souza et al. (2013), used PPI to identify 
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a set of candidate endmembers from Landsat TM data, and then used them to generate models of green 
vegetation (GV), non-photosynthetic vegetation (NPV), soil, shade and cloud fraction to map deforestation 
and forest degradation across the Amazon Basin over a ten year period (Souza et al., 2013).  

The concept of image and reference endmembers is illustrated in Figure 7-25. This figure shows a high 
spatial resolution synthetic image consisting of a mixed pixel of tree, shadows and soil (Figure 7-25a). This 
image was generated with a physically-based ray-tracer (PBRT) (Pharr and Humphreys, 2004), using a 
virtual citrus orchard which was calibrated using field spectral measurements (Stuckens et al., 2009). The 
resulting spectrum of the mixed pixel is shown in Figure 7-25b and image endmembers of tree canopy and 
soil extracted from the image are shown in Figure 7-25c. In two-dimensional array space, the Soil, Tree 
and Shade endmembers define a triangle, with all possible mixing combinations contained within the trian-
gle (Figure 7-25d). Image endmembers define the vertices of the triangle representing the extremes present 
within the scene. Reference endmembers plot outside of the triangle defined by the image endmembers, 
since they are more pure representatives then the image endmembers (Figure 7-25d). In this example, the 
image endmember for tree includes some shadows and minor gaps and is thus a mixed pixel. The image 
endmember for soil is nearly identical to a reference endmember. 

 
Figure 7-25. A mixed pixel consisting of three endmembers: Tree, Soil and Shade. A fine spatial resolution image is 
shown in (a). The resulting “mixed pixel”, calculated as the average of all spectra within the field of view is shown in 
(b). Frame (c) shows image endmembers identified as extremes of the mixing triangle (d) for Green Vegetation and 
Soil. Reference endmembers (d) lie outside of the triangle defined by image endmembers, representing more pure 
components. 
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In a naturally vegetated system, common endmembers include GV (also called photosynthetic vegeta-
tion), NPV (e.g., Roberts et al., 1993), soil or some other substrate and shade. For reflectance data, the 
shade endmember is often modeled as spectrally flat (i.e., photometric shade), although some models in-
clude a variable shade (i.e., vegetation shade: e.g., Roberts et al., 1993; Fitzgerald et al., 2005), while others 
do not include shade (e.g., Okin, 2007; Tits et al., 2012). For radiance data, the shade endmember can 
include an atmospheric scattering component (e.g., Dennison et al., 2006). Thus, a typical forested ecosys-
tem may be modeled as a mixture of GV, exposed branches (NPV), architecturally dependent shadows (i.e., 
shade) and potential exposed soil. In an urban environment a common endmember would be impervious 
surface; ash or char would be important endmembers in a fire scar; snow or ice spectra would be important 
in frozen terrain; and lakes and rivers may require water spectra with sediments. Essentially, the endmem-
bers used in a mixing model depend on the scene content and objectives of the research. They are also scale 
dependent. For example, a sun lit crown may be an appropriate endmember at a forest scale, but a sun lit 
branch or leaf may be more appropriate at sub-canopy scales. 

6.3.3 Abundance Estimation and Limitations 
Numerous approaches have been proposed to solve for fractions given a population of endmembers. 

Examples include constrained and weighted least squares (Shimabukuro and Smith, 1991), Gramm-
Schmidt orthogonalization (e.g., Adams et al., 1993), singular value decomposition (Boardman, 1989), and 
fully-constrained least squares (Heinz and Chang, 2001) with its variants (e.g., Wang L. et al., 2013). 

The unmixing process can be illustrated graphically considering cases of two endmember unmixing with 
no shade (Figure 7-26a), two endmember mixing with shade (Figure 7-26b), three endmember mixing with 
a third band (Figure 7-26c) and four endmember mixing showing a mixing volume (Figure 7-26d). In 
Gramm-Schmidt orthogonalization, fractions are always calculated as the projection of a mixed pixel onto 
mixing lines, planes or volumes defined by the endmembers. Figure 7-26a shows the case of a two-endmem-
ber mixture of soil and tree with no shade included in the model. Here the soil fraction is calculated as the 
distance between the tree endmember and the projection of the mixture on the line, divided by the spectral 
distance between the soil and tree endmembers (Figure 7-26a). Comparison to the checkerboard mixed case 
(Figure 7-23) shows that the form is identical except with a two-band system and two endmembers, the 
departure off the mixing line provides a measure of error (RMSE). When a third endmember (shade) is 
added, the three endmembers form a mixing triangle (Figure 7-26b). Given two bands and three endmem-
bers, all combinations fall within a plane and there is thus no longer a measure of error. In this case, fractions 
are calculated as the projected distance between the mixture and the mixing line between two of the 
endmembers. For example, tree fraction is calculated as the distance between the mixture and the soil-shade 
mixing line, divided by the spectral distance between the tree endmember and this line. In the two-endmem-
ber case that involves a bright endmember and shade, the bright endmember fraction is simply the projected 
distance along the shade-endmember mixing line. 

Adding a third wavelength with three endmembers generates a mixing plane (Figure 7-26c). In this case, 
the mixture is projected on to the plane and fractions are calculated as shown in Figure 7-26b. However, 
with three bands and three endmembers, we also have a measure of fit error, calculated as the distance 
between the mixed spectrum and the mixing plane (Figure 7-26c). Wavelength specific differences between 
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the measurement and model are the residuals. Adding a fourth endmember, defines a mixing volume (Figure 
7-26d). With four endmembers and three bands, all combinations are possible and there is no RMSE. Frac-
tions are calculated as the projected distance between the mixed pixel and a mixing plane defined by the 
other endmembers. Thus, the tree fraction is calculated as the distance between the mixed pixel and the 
mixing plane defined by Shade, NPV and Soil, divided by the distance between the tree endmember and 
this same plane. With four or more bands, four or fewer endmembers can be included in the model while 
retaining a fit error. With imaging spectrometers, there is the potential for an immense number of endmem-
bers but, due to spectral degeneracy the number of endmembers is typically far fewer than the number of 
bands. 

 
Figure 7-26. Examples of two-, three-, and four-endmember cases. Figure 7-26a shows a mixing model between tree 
and soil with no shade included. In 7-26b, tree and soil endmembers are the same, but a shade endmember has been 
added to accommodate the spectral misfit resulting in no measure of error. In 7-26c a third (SWIR) wavelength defines 
a mixing plane and RMSE again expresses the error between the model and measurement. Figure 7-26d shows a 
mixing volume consisting of four endmembers (GV, NPV, Soil and Shade). In this example, given four endmembers 
and three wavelengths, RMSE will be zero. 

A significant limitation for all simple mixing models is the fundamental assumption that a single set of 
endmembers can be used to unmix an entire scene. The general assumption with a simple mixing model is 
that: (a) all pixels can be represented by the same set of endmembers; (b) all endmembers are equally 
separable and; (c) spectral variation within an endmember category is negligible. More often, the number 
of endmembers required to unmix a pixel varies within an image. For example, a well irrigated lawn may 
be modeled adequately with a two-endmember mixture consisting of GV and shade, whereas natural shrub-
lands may require GV, Soil, NPV and Shade. In the simple case, a four endmember model applied to a pixel 
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that only has two materials present may generate erroneous fractions for materials that were absent, while 
a two endmember model applied to the more complex shrubland will generate error for materials that were 
present, but not included in the model. Spectral contrast is also an important concept. Materials that have 
high spectral contrast (e.g., GV and Soil) will be readily separable with low error, but materials that have 
low contrast (e.g., NPV and Soil) may be difficult to include in the same model without generating error 
(Roberts et al., 1993; Okin et al., 2001; Asner and Heidbrecht, 2002). The importance of spectral contrast 
is illustrated in Figure 7-27. In this example, four endmembers (i.e., GV, NPV, Soil and Shade) and three 
wavelengths are shown. The endmembers define a mixing volume. High spectral contrast between GV, Soil 
and Shade results in physically reasonable fraction estimates. Low spectral contrast between NPV and Soil 
is manifested as a mixing volume that only shows minor departures from a mixing plane. Even minor var-
iation that causes mixed spectra to plot outside of the mixing volume will result in large super positive 
(>100%) or negative fractions. 

 
Figure 7-27. Spectral contrast can be defined as the spectral difference between one material and another within a 
range of wavelengths. Tree, Soil and Shade spectra have unique spectra at many wavelengths and thus have a high 
spectral contrast, are easily discriminated, and can be unmixed at high accuracy. Soils and NPV spectra can be very 
similar except in the SWIR, where moderately strong ligno-cellulose bands in NPV distinguish them (Roberts et al., 
1993). This low contrast translates to a relatively “thin” mixing volume, generating superpositive (>100%) or negative 
fractions when a mixture lies only slightly outside of the mixing volume defined by the endmembers. 

Natural spectral variation within the same endmember (i.e., endmember variability) is also a source of 
error. Spectral differences between the endmember and the actual materials in the modeled image will result 
in fraction error and/or increased RMSE. For example, a broadleaf deciduous plant endmember used to 
unmix a conifer spectrum will generate errors in fractions as well as model fit. Techniques have been de-
veloped to minimize some of these errors. For example, Somers et al. (2009b) proposed a means to suppress 
the impact of endmember variability by selecting portions of the spectrum that are the least variable within 
a class. Alternatively, spectral contrast between endmember classes can be accentuated, as in van der Meer 
and de Jong (2000). Non-linear mixing models, such as Artificial Neural Networks (ANN) can accommo-
date variability within an endmember class as well (Carpenter et al., 1999). The issue of endmember vari-
ability is discussed in more detail in Section 6.3.5. 
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6.3.4 Example Simple Mixing Model 
To illustrate some of the potential and weaknesses of the simple mixing model, an example is shown of 

a mixed natural and anthropogenic scene imaged by AVIRIS (Figure 7-28). This data set was acquired on 
July 19, 2011 to evaluate the relationship between plant species, fractional cover, and land surface temper-
ature (Roberts et al., 2015); and, to map GV, NPV (i.e., litter, stems and bark), soil, rock, roof and paved 
surfaces in the urbanized zones (Roberts et al., 2016). 

In this example, image endmembers were extracted from reference polygons defining the major biotic 
and abiotic components within the scene (Figure 7-28d). Iterative Endmember Selection (IES) was used to 
identify a subset of 90 spectra that produced accurate fractions for all of the major components (Roth et al., 
2012) (see Section 6.3.5). From that set, one GV, one Soil, and one NPV endmember was selected as the 
single spectrum for each class that modeled the most area within the natural portions of the scene. A com-
mercial roof spectrum is included to show how some impervious surfaces are spectrally distinct from soils. 
Lowest spectral contrast is apparent between the Soil and NPV spectra. 

 
Figure 7-28. (a) Fraction image showing NPV, GV and Soil displayed as RGB. A shade fraction image is shown in 
(b) and RMSE is shown in (c). These images were generated using a four-endmember model of NPV, GV, Soil and 
Shade using the spectra shown in (d). 

Figure 7-28 shows an example from a subset of AVIRIS imagery in the interface between natural vege-
tation to the north and urban surfaces to the south. In this example, NPV has high fractions along the north-
ern half of the scene, mapping large areas of senesced grasslands shown in magenta (Figure 7-28a). GV is 
most abundant along riparian corridors in the north, with the highest GV fractions found in the southern 
portion of the scene for irrigated grasses and parks. Soil fraction is highest in urbanized areas to the south, 
where impervious surfaces are erroneously mapped as soils because they are most similar spectrally to soils. 
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Shade fractions are highest over water in the far south and over dark surfaces such as asphalt roads (Figure 
7-28b). High shade fractions are also evident on northeast facing slopes and in the more forested portions 
of the scene. RMSE errors are low in most of the natural vegetation, but are very high in the urbanized 
areas, where the Soil endmember fits impervious surface spectra poorly, resulting in high RMSE. 

6.3.5 Multiple Endmember Models 
Limitations of simple mixing models were first recognized by Sabol et al. (1992). In that seminal study, 

the authors evaluated the impact of sensor noise, the number of wavelengths and the number of endmembers 
on the accuracy of SMA. They showed that fraction errors increased with an increase in sensor noise; were 
highest for materials with low spectral contrast (i.e., Soil and NPV); were minimized when the correct 
number of endmembers was used in the model; and were lower for hyperspectral data compared to broad 
band data. To illustrate endmember variability, we show spectra of two of seven endmember classes present 
in the AVIRIS scene shown in Figure 7-28. Here, we selected 25 GV spectra from nine vegetation classes 
and 33 roof spectra from eight roof classes. Spectral variability is present within a single species (e.g., the 
curve for avocado trees shown in magenta color in 7-29a) or commercial roof types (commercial roofs 
shown in turquoise in 7-29b), and also occurs within broader classes of materials (e.g., willow vs. oak or 
commercial vs. red-tile roof). All of this variability must be taken into account when applying SMA to a 
scene, yet a single pixel still typically requires only three to four endmembers to account for the mixture 
with low error. 

 
Figure 7-29. Examples of nine GV spectra (a) and seven commercial roof spectra (b) extracted from 2011 AVIRIS 
data are used as endmembers. 

Numerous solutions have been proposed to address the impact of “endmember variability” within an 
endmember class; and/or, the requirement that the number and identity of endmembers required to unmix 
a pixel varies from one pixel to the next (Somers et al., 2011). Among the first were Roberts et al. (1998), 
who proposed Multiple-Endmember Spectral Mixture Analysis (MESMA). Using MESMA, the number 
and types of endmembers are varied on a per-pixel basis. Candidate models are selected from a pre-defined 
spectral library, with viable models constrained such that they meet a fraction requirement (typically set at 
physically reasonable fractions, accommodating some noise) and meet a fit constraint, typically set by a 
maximum RMSE. Given multiple candidates for each pixel, MESMA selects the model that provides the 



ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

691 
 

lowest RMSE (Painter et al., 1998). In the two-endmember case involving shade and a bright endmember, 
MESMA has been used as a classifier based on the type of endmember selected for that pixel (Dennison 
and Roberts, 2003a). Since the introduction of MESMA, spectral variation within an endmember population 
has become recognized widely as a challenge for SMA (Somers et al., 2011).  

A similar approach to MESMA, in which the numbers of endmembers are fixed, but are allowed to vary 
per pixel, was proposed by Maselli (1998). Rogge et al. (2006) proposed iterative spectral unmixing, in 
which a fixed set of endmembers is used, but the number of endmembers is allowed to vary on a per pixel 
basis. Bateson et al. (2000) proposed the concept of endmember bundles, where multiple representatives of 
each endmember class are included in a spectral library. Using the endmember bundle concept, Asner and 
Heidbrecht (2002) developed Automatic Montecarlo Unmixing (AutoMCU), by which candidate spectra 
for each endmember class are drawn randomly from a population and used to generate statistical estimates 
of fractional cover and an error measure (i.e., standard deviation of the fractions). AutoMCU has the ad-
vantage that it is completely automated, provided a representative spectral library for a region has been 
developed. As examples, AutoMCU has been used to estimate changes in fractional cover associated with 
selective logging (Asner et al., 2004), arid land degradation (Asner and Heidebrecht, 2003; 2005) and pas-
ture degradation (Davidson et al., 2008).  

Iterative unmixing procedures can become unwieldy if the number of potential endmembers in each class 
becomes large. Results can also become difficult to interpret. As a solution, several pre-processing steps 
have been suggested for iteratively unmixing methods described above to ensure that an optimal spectral 
library is used as input. Roberts et al. (1997a) proposed an additional component to MESMA, in which a 
candidate spectral library developed for MESMA is subset to identify the endmember sets that provide the 
best separation between endmembers with the fewest number of endmembers used to unmix the image. 
Several approaches have been proposed to improve endmember separability while lowering the number of 
endmembers in a spectral library. Among these are: (a) Count-based endmember selection (COB) (Roberts 
et al., 2003); (b) Endmember Average RMSE (EAR) (Dennison and Roberts, 2003a); (c) Mean Average 
Spectral Angle (MASA) (Dennison et al., 2004); and most recently (d) IES (Schaaf et al., 2011; Roth et 
al., 2012). COB selects the subset of endmembers that models the largest number of spectra within its class. 
EAR operates within each class to select endmembers that model their class with the lowest average RMSE. 
MASA operates similar to EAR but uses the mean spectral angle as the fit metric. 

COB, EAR and MASA do not account for potential confusion between endmember classes, since each 
metric is based solely on performance within the same class. IES is an automated approach that selects 
endmembers that best model their own class while minimizing confusion with other classes as measured 
by the kappa coefficient (Congalton, 1991). For each iteration in IES, the endmember that best improves 
kappa is added to the library. To avoid issues associated with sub-optimal initial selections, IES tests all 
previous endmembers selected by removing them from the library and evaluating whether endmember re-
moval increases kappa. IES continues to add and subtract endmembers until kappa stabilizes (Schaaf et al., 
2011; Roth et al., 2012). Another approach to optimizing endmember library definition and size was sug-
gested by Iordache et al. (2014a) in their Hyperspectral Unmixing via Multiple Signal Classification and 
Collaborative Sparse Regression (MUSIC-CSR) algorithm. Based on the goodness of fit between the image 
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to be unmixed and the reference endmember library, signatures that do not contribute to explaining the 
variability in the image are discarded from the library.  

Numerous studies have used MESMA with endmember selection to: 
• Map plant species (Dennison and Roberts, 2003a; Li et al., 2005; Rosso et al., 2005; Youngentob 

et al., 2011; Roth et al., 2012; Roberts et al., 2015); 
• Monitor crop vitality (Iordache et al., 2014b); 
• Map vegetation and impervious fractions in urban areas (Powell et al., 2007; Franke et al., 2009; 

Roberts et al., 2012; Demarchi et al., 2012); 
• Map arid landforms (Ballantine et al., 2005); and, 
• Map semi-arid vegetation cover (Okin et al., 2001; Thorp et al., 2013). 

Non-biotic studies include retrieving snow covered area and grain size (Painter et al., 1998; 2003), fire 
temperature and area (Dennison et al., 2006; Eckmann et al., 2008), river sediment concentrations (Kilham 
and Roberts, 2011), fire severity (Quintano et al., 2013), surface expression of coal mines (Fernandez-
Manso et al., 2012) and mapping lunar materials (Li and Mustard, 2003). Recently, Somers et al. (2012), 
Deng and Wu (2013) and Zare et al. (2013) extended the MESMA concept to the spatial domain, proposing 
automated approaches for identifying endmember subsets that allow the types of endmembers to vary 
within a region of a scene while automatically extracting the optimal subset from within that region.  

Another option for accounting endmember variability is to suppress their impacts through strategic band 
selection. Asner and Lobell (2000) proposed autoSWIR, in which spectra are normalized to a SWIR-2 band 
that maximizes separability between soil, NPV and GV in the SWIR while minimizing the effect of variable 
brightness and multiple-scattering. Use of the 2078nm band, followed by Monte-Carlo Unmixing generated 
stable, accurate fractions of NPV, soil, and GV at the Jornada Long-Term Ecological Site (LTER) site in 
New Mexico. Somers et al. (2010a) proposed Stable Zone Unmixing (SZU), in which a subset of bands is 
selected that minimizes spectral variation within a class, while optimizing spectral separability between 
classes. Somers et al. (2010a) applied this concept to a set of scenarios generated from in situ measured 
hyperspectral data. The scenarios covered both urban and natural environments under differing conditions. 
Furthermore, refinements included development of Uncorrelated Stable Zone Unmixing (USZU), in which 
band subsets were reduced further to remove highly correlated bands that provided little improvement in 
separation (Somers and Asner, 2013) and weighted SMA (wSMA), in which spectral bands less sensitive 
to endmember variability are given a higher weight in SMA (Somers et al., 2009b). SZU has been applied 
to imaging spectrometry to improve map accuracy of vegetation impacted by marine oil spills (Peterson et 
al., 2015). USZU has been applied to time series data to improve separation between native and invasive 
tree species in Hawaii (Somers and Asner, 2013; 2014), while wSMA has been applied to hyperspectral 
data to improve canopy fraction estimates in an orange grove (Somers et al., 2009b), and to monitor defo-
liation in mixed-aged Eucalyptus plantations using Landsat and Hyperion data (Somers et al., 2010b). 

6.3.6 Example of Multiple-Endmember Spectral Mixture Analysis 
To illustrate the potential of MESMA, an example is included using MESMA to unmix the same AVIRIS 

scene used in Section 6.3.4. However, in this analysis endmember variability is accommodated and the 
numbers of endmembers are allowed to vary on a per-pixel basis. Endmembers were selected initially using 
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IES, generating a library of 563 endmembers. This library was further reduced by removing endmembers 
that performed well in the library, but not on the image (e.g., Powell et al., 2007; Roberts et al., 2012). This 
reduced library, consisting of 376 spectra, became the library used to classify urban images into 23 classes 
based on the endmember that best fit a mixture between a bright endmember and shade (Figure 7-30d). 
Classification is a different process than sub-pixel mapping. For example, a mixed class such as an orchard 
may be a viable class on a map, but may actually consist of a mixture between two other endmember classes, 
e.g., Soil and GV. To unmix a scene into fractions of pure endmember classes, all mixed-class spectra 
should be removed. Removing mixed spectra further reduced the library to 258 endmembers. However, this 
still represents an unwieldy number of combinations and also includes considerable spectral degeneracy – 
spectra that are distinct in two endmember models, but not distinct when included in a three or four 
endmember model. A procedure was developed to reduce spectral degeneracy, resulting in a final model 
consisting of 90 spectra. For a more detailed description of this process see Roberts et al. (2016). This final 
library included 25 GV spectra, 7 NPV, 3 Rocks, 7 Soils, 15 paved spectra and 33 roof spectra. Both natural 
and anthropogenic materials are incorporated into the model, and several surfaces that could not be modeled 
separately using SMA (i.e., rocks, paved, roof) are now modeled. 

Comparison of Figures 7-28 and 7-30 illustrates important differences between simple SMA and 
MESMA. In the first frame, the NPV-GV-Soil model from MESMA is similar for NPV, although there 
tends to be more pure pixels (i.e., pixels mapped as NPV and shade). Endmember variability in NPV tends 
to be modeled as a sub-pixel fraction of soil or a minor amount of GV. The GV fraction image shows high 
GV in the same places, but overall the GV fraction appears higher in MESMA. This is because endmember 
variability manifests itself as brightness differences within GV, and differences in NIR-to-red contrast 
within a plant spectrum or between species, is modeled as modest fractions of soil, NPV or shade; or pos-
sibly negative soil or NPV fractions. The most obvious differences are found in urban areas, which are 
modeled as Soil in simple SMA, but modeled as Roof or Paved Ground in MESMA (Figure 7-30b). The 
Rock-Paved ground-Roof model (Figure 7-28b) distinguishes clearly between impervious and non-imper-
vious surfaces and also distinguishes clearly between paved impervious (green) and roof materials (blue). 
However, confusion between rock fractions and paved ground are evident in some areas. Overall, the RMSE 
is considerably lower in the MESMA model (Figure 7-30c compared to Figure 7-28c) with much lower 
RMSE in urbanized areas and only minor decreases in RMSE in natural areas; notably senesced grasslands 
which were modeled as NPV and shade in the MESMA model. 
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Figure 7-30. Mixing models generated using MESMA and a 90 endmember spectral library. (a) an NPV-GV-Soil 
mixing model displayed as RGB; (b) a Rock-Paved-Roof model; and (c) an RMSE image. It is also possible to use a 
two-endmember model to classify an image based on the endmember that is selected. This is illustrated in (d), gener-
ated from a 376 endmember spectral library that included spectrally degenerate materials within a class (e.g., two GV 
spectra from different species that are similar spectrally) as well as mixed pixels representing a class (e.g., avocado 
orchards containing mixture of canopy and soil). All fractions were shade normalized. 

To illustrate further the advantages of MESMA over the simple mixing model, Figure 7-31 compares 
fractions from the mixing models to fractions derived from validation polygons used by Roberts et al. 
(2012) and Roberts et al. (2016). Fractions were validated for simple SMA using a five endmember model 
(NPV, GV, SOIL, ROOF, PAVED GROUND), and (IMPERVIOUS) using endmembers shown in Figure 
7-28d, and the 90 endmember model shown in Figure 7-30. 
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Figure 7-31. Fraction validation for NPV, GV, SOIL, ROOF, PAVED GROUND and IMPERVIOUS (Roof+Road). 
Reference fractions are shown on the x-axis; MESMA fractions are on the y-axis. 

MESMA fractions are highly correlated linearly to NPV, GV, Soil and Roof fractions, with r2 values 
ranging from a high of nearly 0.9 for NPV to a low of 0.745 for Soil (Figure 7-31). Paved ground, and the 
sum of Paved Ground and Roof is also highly correlated, but the relationship is non-linear, demonstrating 
that MESMA underestimates the paved ground fraction except when the Paved Ground category is high. 
With the exception of the GV fraction, it should be noted that MESMA underestimates fractional cover for 
most surfaces, likely because it is failing to identify every material within a mixed pixel (Slope < 1.0).  

Simple SMA produces lower accuracies than MESMA for all materials except GV. This high accuracy 
is a product of the high spectral contrast of GV relative to the other materials in the scene. NPV fractions 
are also highly correlated and, in fact, show a near 1:1 relationship between the reference fractions and the 
model, even though the scatter is significantly higher (Figure 7-32). This suggests that MESMA is most 
likely adding endmembers erroneously to spectra that were better modeled as either pure NPV or a mixture 
of NPV with minor amounts of exposed soil. Impervious fractions show a remarkably similar pattern be-
tween the models, but the Soil fraction has much lower accuracy. Simple SMA cannot accommodate soil, 
NPV and Impervious without generating significant fraction errors. 
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Figure 7-32. Fraction validation for NPV (litter, bark and stems), GV (green leaves), Soil and Impervious (Roof). 
Reference fractions are shown on the x-axis, SMA fractions on the y-axis. 

6.4 Non-linear Unmixing 

Non-linear mixing results when photons interact with more than one material along the path from source 
target to sensor, as described in Section 6.2. One early solution to the problem with mineral mixtures was 
proposed by Shipman and Adams (1987), who transformed mineral spectra to single scattering albedo, 
effectively linearizing the problem. Similarly, Mertes et al. (1993) linearized the mixing problem by devel-
oping a look up table between estimated sediment fraction and actual sediment fractions in water/ sediment 
mixtures. Sediment concentrations are non-linearly related to water reflectance because increased scattering 
with elevated sediment concentrations increases water absorption along the path, resulting in a progres-
sively smaller increase in reflectance for each equal increase in sediment concentrations. By constructing a 
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look up table between sediment fraction, retrieved using SMA, and actual concentrations, the authors could 
estimate sediment concentrations accurately.  

Non-linear mixing has the potential of impacting SMA significantly with vegetation-soil mixtures be-
cause leaves transmit and scatter NIR radiation (Roberts, 1991; Huete, 1987). As an illustration of how 
much scattering occurs, an image of a highly transparent maple leaf placed in front of a white and black 
background is shown (Figure 7-33). Reflectance transects of red, green and NIR show that leaf reflectance 
is enhanced by almost a factor of two in the NIR compared to the same leaf placed over a black background. 
A prominent NIR halo surrounds the leaf with NIR reflectance increasing and exceeding 100% at the un-
shaded edge of paper adjacent to the leaf. Over the black background, and at red wavelengths where leaves 
are highly absorbing, leaf reflectance does not change and no halo is present. 

 
Figure 7-33. Digital photograph of the same maple leaf positioned over a white (top) and black background. Colors 
displaced are Red (671nm), NIR (905nm) and Blue (460nm) as RGB. From Roberts (1991). 

Importantly, the effect of multiple NIR scattering on endmembers can be modeled. Roberts et al. (1990) 
developed a simple photon scattering model that allowed up to eight multiple scattering events between a 
simulated scene made up of horizontal leaves of varying dimensions placed at varying heights above a 
surface. Comparison between modeled, and measured simulated leaves (Roberts, 1991) demonstrated ex-
cellent correspondence, suggesting that the model was capable of simulating the interaction between two 
scattering surfaces well (Figure 7-34). 
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Figure 7-34. Computer simulation of a synthetic leaf placed over a white background (top), compared to a measured 
image using a digital camera. Simulations were run using the same reflectance and transmittance properties for the 
synthetic leaf and same height above the white background. Elevated reflectance is observed in the NIR along the 
margins of the synthetic leaf and on the adjacent white background. The minimum pixel size of computer simulations 
was one centimeter. 

A computer model offers the opportunity to evaluate how multiple scattering impacts endmembers and 
spectral mixture models. Roberts (1991) evaluated how the spectra of a substrate and overlying leaf changed 
as a function of substrate reflectance and percent cover (Figure 7-35) Considering three cases of sparse 
(1%), intermediate (25%) and dense cover (>70%), one can observe significant changes in the NIR reflec-
tance of the substrate and simulated leaf endmember. At 1% cover, leaf reflectance is influenced strongly 
by adjacent and shaded substrate, resulting in a minor increase in red, but significant increase in NIR re-
flectance. At the same time, the impact of leaf on adjacent substrate is minimal because cover is low. At 
intermediate cover, leaf NIR reflectance begins to drop as more substrate is shaded, while NIR reflectance 
of the substrate increases as more photons scatter between leaves and substrate. At dense cover, leaf NIR 
reflectance is still 20% higher than it would be over a black, non-scattering background, but substrate re-
flectance is now highly elevated and, in fact, has taken on some of the spectral properties of a leaf. 
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Figure 7-35. Computer simulation of how leaf and substrate reflectance change as a function of fractional cover and 
substrate reflectance. Three cases are illustrated graphically on the left, the case of sparse cover (Case 1), intermediate 
cover (Case 2) and dense cover (Case 3). A scatter plot showing changes in NIR and red reflectance is shown on the 
right. Courtesy, D.A. Roberts. 

 
Figure 7-36. NIR to red scatterplot showing how mixing lines of equal cover change as a function of substrate reflec-
tance (left) and zenith angle (right). At nadir illumination, leaf reflectance is over 20% higher than it would be in a 
non-transmittant leaf. The mixing line between 100% substrate (S50) and 100% leaf is curved and lines of equal 
fractional are subparallel to the substrate-shade mixing line. As solar zenith increases, and shade increases, mixing 
lines of equal cover bend towards 0% red, because leaves are nearly opaque in the red, but scatter NIR light. 
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Computer simulations make it possible to observe how the relationship between NIR and red reflectance 
changes as a function of fractional cover, substrate reflectance and solar zenith (Figure 7-36). The strictly 
linear mixing case with no scattering is illustrated by a mixing triangle between leaf (V1), substrate (S50) 
and shade (0% reflectance). In the presence of transparent leaves and NIR scattering, mixing lines between 
pure substrate and pure leaf (GV) are curved and lines of equal GV cover are subparallel to the substrate-
shade mixing line (Figure 7-36, left). By varying solar zenith but fixing substrate reflectance at 50%, lines 
of equal fractional cover bend towards 0% red reflectance. This is because shadows cast by leaves include 
NIR transmitted/scattered photons, but few red photons due to chlorophyll absorption. We find it notable 
that computer simulations in Figure 7-36, are similar to measured relationships observed by Huete et al. 
(1985), when varying canopy fractional cover and substrate reflectance. Using a radiosity-based radiative 
transfer model, Borel and Gerstl (1994) demonstrated similar, significant impacts of multiple NIR scatter-
ing on canopy and substrate reflectance. They also evaluated non-vegetated, rough surfaces, demonstrating 
that non-linear mixing is significant for all scattering surfaces, not just leaf-substrate mixtures.  

When linear SMA with non-scattering endmembers is used to unmix images where NIR-scattering is 
occurring, the linear model overestimates the GV fraction, underestimates shade but determines the soil 
fraction correctly (Figure 7-37). This is because the scattered radiation has the spectral signature of a plant 
and thus adjacent, unshaded substrate is modeled as having some plant cover, and plant-shade substrate is 
modeled as a mixture of vegetation and shade. While this suggests that substrate fraction is correctly mod-
eled, this only holds true as long as shade is included in the model. If, however, the shade fraction is not 
included, or the shade fraction is normalized out (i.e., all non-shade fractions divided by the sum of all 
fractions absent shade), this model suggests that GV will be overestimated, and substrate fraction underes-
timated. The magnitude of error will depend upon leaf/canopy transmittance (i.e., greater opacity equals 
decreased non-linearity) and the brightness of adjacent substrates (i.e., darker substrates will reduce scat-
tering). 

 
Figure 7-37. Ternary diagram showing fraction estimates from a linear mixing model applied to simulated mixtures 
of GV, substrate and shade allowing for multiple scattering. Mixing lines are parallel to the lines of equal soil fraction, 
but exceed 100% for GV (V1). GV is overestimated in all cases, and shade is underestimated. 
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Since all surfaces scatter radiation to some extent, non-linear mixing is present in all cases where two 
spectrally contrasting materials are present in the same pixel. Various approaches have been proposed to 
minimize the impact of non-linear mixing on estimated fractions. Fundamentally, non-linear mixing can be 
viewed as a scale-dependent process. Thus, a mineral mixture between a highly absorbing and non-absorb-
ing mineral will form a non-linear mixture, yet two soils placed adjacent to each other on a flat surface will 
form a linear mixture. Non-linearity can also be accounted for by incorporating multiple scattering into 
endmembers. Thus, for example, a single leaf may represent an inappropriate GV endmember, but a branch 
or canopy spectrum, which includes NIR scattering, may represent a better candidate. However, because 
the canopy spectrum influences adjacent substrates and may be influenced by adjacent substrates, this does 
not fully remove the effect of non-linearity (Somers et al., 2009a).  

Roberts et al. (1993) proposed using “vegetation shade” combined with leaf stacks as a way of reducing 
the impact of non-linearity. However, because vegetation shade itself will vary (Fitzgerald et al., 2005) this 
may not be a viable solution. Ray and Murray (1996) proposed a non-linear mixing model in which the 
interactive terms are included in the model as the multiplicative product between pure endmember spectra. 
Thus a mixing model would include pure GV, pure soil and GV-soil spectrum to model interaction between 
them. Chen and Vierling (2006) also observed significant non-linear effects when comparing spectra meas-
ured from a balloon system, to modeled spectra based on field spectra and estimated surface fractions. 
Similar to Ray and Murray (1996) they proposed a non-linear model that included interactive terms. Somers 
et al. (2009a), when comparing actual surface fractions to linear models of surface fractions in an orange 
orchard, found similar significant non-linear effects. They also proposed a non-linear model that included 
interactive terms, but partitioned the error, artificial fraction of the interactive term, back into the original 
cover estimates with the partitions varying depending upon the cover of the main components. Finally, 
there are numerous situations where non-linear mixing is minimized. For example, mixing models that only 
use non-scattering wavelengths (visible, SWIR) tend to be more linear (Asner and Lobell, 2000; Chen and 
Vierling, 2006). Alternatively, surfaces such as snow-covered terrain mixed with conifer forest also repre-
sent a more linear case. Conifers tend to be less transparent than broadleaf deciduous trees (Roberts et al., 
2004) while snow reflectance decreases significantly as wavelength increases in the NIR, also reducing 
multiple scattering opportunities.  

Heylen et al. (2014) provided a review of non-linear mixing. However, considerable research is still 
needed to address the potential significance of non-linear mixing. In-depth analysis of nonlinear mixing in 
vegetated areas is currently hampered by a critical lack of well-validated datasets. It can also be difficult to 
separate the impact of endmember variability from the impact of non-linear mixing. A full quantitative and 
qualitative assessment of nonlinear mixing effects in vegetated areas would provide crucial inputs for cali-
brating and developing nonlinear mixture models, better modeling the actual mixing process. To this end, 
datasets consisting of mixtures of tree, soil, weeds and shade have been designed and made freely available 
(Tits et al., 2014). With the exact cover fractions (CFs) as well as the exact spectral signature for each 
component known for each pixel and for each component, the datasets enable an objective evaluation of 
different nonlinear mixing models, as exemplified in Dobigeon et al. (2014) for a range of bilinear mixing 
models. However, these remain simulated datasets, and the design of a real hyperspectral benchmark dataset 
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remains crucial in the design and the operational implementation of high-performance nonlinear mixing 
models. 

6.5 Conclusions 

SMA is a powerful technique that has been applied widely to broad band and hyperspectral data to solve 
problems. Since its first introduction in 1971, it has evolved considerably and remains an area of very active 
research and development. A critical element of SMA is endmember selection and the quality of endmem-
bers relates to the validity of the retrieved fractions. Another critical element is the problem of addressing 
endmember variability in which one spectrum is not representative of the diversity of spectra within one 
class. For example, it is neither reasonable, nor desirable, to attempt to define a single vegetation spectrum 
that can unmix every possible type of vegetation on Earth through all seasons and years. Approaches have 
been developed to suppress the impact of endmember variability, while alternate approaches embrace that 
diversity to improve material discrimination.  

Currently, there are several areas where SMA could be improved. First, there is a general absence of 
high-quality validation data sets. Given the immense diversity of techniques developed to extract endmem-
bers and retrieve CFs, it is critical that the community gain a better understanding of the advantages and 
disadvantages of each approach. The absence of key test data sets with sufficient validation has made this 
challenging. It also should be noted that there is likely no single-best solution to each problem. An optimal 
approach for one research application may not be optimal for another. Thus, the solution for improved 
tropical tree species mapping may not be the same as one for mapping impervious surface cover, fire tem-
peratures, water depth, or mineral abundance. Linear mixture models have proven to be very effective tools 
to address numerous environmental situations. However, further research is needed to improve insight into 
nonlinear mixing behavior in real life scenes. 

7 HYPERSPECTRAL IMAGE DATA PROCESSING 

7.1 Introduction 

Hyperspectral remote sensing, also commonly referred to as imaging spectrometry, is a mode of spectral 
data acquisition at a very narrow spectral bandwidth (i.e., fine spectral resolution) with up to a couple 
hundred contiguous spectral bands. Hyperspectral data collection aims to capture a subtle spectral pattern, 
often, spectral reflectance pattern or signature, of the target features, and to use that rich spectral information 
to identify target materials to diagnose the condition of the target; or, more simply, to classify the image 
data.  

Early in the 1980s, the value of hyperspectral remote sensing and its use was exploited actively by the 
geological community and after almost four decades of research efforts involving a wide spectrum of dis-
ciplines, the range of hyperspectral applications is widening. Through laboratory measurements, geologists 
are aware that common minerals exhibit unique spectral reflectance signatures, or spectra, particularly in 
terms of absorptions in the SWIR wavelength region. The MS images observed by early Landsat satellites, 
although their spectral resolving power with broad, MS bands were somewhat limited, suggested: (1) the 
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possibility of determining the mineralogy of the substrate over an extensive area; and, (2) developing crude 
maps of mineral distribution on the Earth’s surface. The big impact of this approach and its future direction 
at that time was well documented in Goetz et al. (1985). In those early days, vegetation cover was often 
considered to be noise. Unlike minerals, vegetation composed of essentially the same kind of cells generally 
exhibited similar spectral signatures. However, through subsequent in-depth investigations, hyperspectral 
data started offering great promise in providing both biophysical and biochemical properties of vegetation. 
A comprehensive summary of such applications can be found in Thenkabail et al. (2012). 

7.2 Advantages and Challenges 

Increased numbers of spectral bands and more detailed spectral signatures support increased accuracy in 
identifying materials. Since hyperspectral remote sensing collects an entire spectrum for every pixel, it is 
able to capture much more detail on every pixel than commonly used MS remote sensing. In addition, since 
hyperspectral data contain a substantial amount of information about atmospheric characteristics at the time 
of image acquisition, the image data themselves can be used with atmospheric models to compute quantities 
such as the total atmospheric column water vapor content (Gao and Goetz, 1990).  

Increased dimensionality poses a challenge for data transfer and processing; handling of hyperspectral 
data is expensive computationally in nature. However, this challenge is now being slowly overcome thanks 
largely to advances in computing. 

What’s more of a pressing challenge is that spectral signatures being recorded by a hyperspectral sensor 
on an aircraft or on a satellite platform contain noise. Remotely-sensed spectra are distorted by the atmos-
phere. This calls for atmospheric corrections that remove atmospheric effects (e.g., attenuation) from the 
spectral signals being recorded. However, atmospheric correction algorithms may not be reliable enough to 
enable “matching” remotely-sensed and terrestrial spectra. 

In many applications, most pixels contain a mixture of materials. A pixel might be 30m by 30m or so 
depending on the hyperspectral sensor; the chance of that pixel containing one material is usually very 
small. So, work is needed to “unmix” spectra into their constituent materials. Doing so either requires a 
spectral library or to pre-identify pure spectra for basic components of a scene (i.e., “endmember”). The 
spectral library consists of spectra of pure materials and often involves using spectroradiometers in the field 
or in the laboratory. In most cases, identifying endmembers still requires some kind of manual identifica-
tion. See section 6 of this chapter for a detailed description of the techniques involved in SMA. 

7.3 Hyperspectral Sensors 

Many operational hyperspectral sensors are available today, with the majority of them being airborne. 
However, multiple spaceborne hyperspectral sensors are now being proposed that should be operational in 
the near future. A brief discussion of those operational and planned hyperspectral sensors is presented be-
low. 
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7.3.1 Commonly Used Hyperspectral Sensors 
Jensen and Yang (2009) provided a comparative description of some commonly used hyperspectral sen-

sors in the 3rd edition of the Manual of Remote Sensing (Table 7-4). The list is still relevant because no 
spaceborne hyperspectral sensors with high spatial resolution have become operational since the time of its 
publication. Detail of these hyperspectral remote sensing systems can be found in Jensen and Yang (2009). 
Table 7-4. Some Widely Used Hyperspectral Remote Sensing Systems (After Jensen and Yang, 2009). 
Hyperspectral  Spectral     Spectral    Number of   Swath   Quantization  Platform 
Sensor    Resolution (nm)  Interval (nm)  Bands    Width*   (bits) 
AVIRIS    400-2500    10      224     667    12      Airborne 
HyMap    450-2500    10-20    100-200    512    12-16    Airborne 
SEPS-H    430-1050    Variable   76      512    16      Airborne 
      1500-1800          32 
      2000-2500          32 
      8000-12500         12 
AISA+    430-970     Programmable 244     512    12      Airborne 
CASI    400-1000    Programmable 288     550    14      Airborne 
      380-1050                1500 
HYDICE   400-2500    7.6-16    210     208    12      Airborne 
Hyperion   400-2500    10      220     7.5km   12      Spaceborne 
                          at nadir 
MODIS    405-14385    Variable   36      10km    12      Spaceborne 
                          at nadir 
*Pixels for airborne; km for spaceborne 

 
Of these existing hyperspectral remote sensing systems, the AVIRIS and Hyperion are particularly 

unique. The AVIRIS system, developed by NASA’s Jet Propulsion Laboratory (JPL) has been collecting 
hyperspectral images for scientific research and applications since 1987. Extensive research was conducted 
and hundreds of publications using the AVIRIS data worldwide representing a variety of application fields 
are available from the AVIRIS workshop (http://aviris.jpl.nasa.gov/). Hyperion, NASA’s first spaceborne 
hyperspectral sensor, collected the first science-grade high spatial resolution hyperspectral images from 
space. The knowledge gained from Hyperion is relevant to future spaceborne hyperspectral remote sensing 
programs (Table 7-5). 

7.3.2 Proposed Spaceborne Hyperspectral Sensors 
Table 7-5 provides description of three future spaceborne hyperspectral sensors soon to be placed in 

orbit. 
Table 7-5. Description of HyspIRI, HISUI, and EnMAP: Three Spaceborne Hyperspectral Remote Sensing Systems.  
Hyperspectral  Spectral     Spectral    Number of   Swath   Spatial    Revisit Cycle 
Sensor    Resolution (nm)  Interval (nm)  Bands    Width (km) Resolution (m) (days) 
HyspIRI-   380-2510    10      210     153    60      19 
VSWIR 
HISUI-    400-970     10      185     30     30      60 
Hyperspectral  970-2500    12.5 
Imager 
EnMAP-   420-1000    6.5     244     30     30      27 
Hyperspectral  900-2450    10 
Imager 
 

http://aviris.jpl.nasa.gov/
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7.3.2.1 Hyperspectral Infrared Imager 
Hyperspectral Infrared Imager (HyspIRI) is a NASA global mission focused on unique and urgent Earth 

science and applications objectives being addressed by continuous spectral measurements in the visible to 
short-wave infrared (VSWIR) portion of the spectrum, and measurements from eight discrete MS bands in 
the thermal infrared wavelength region (http://hyspiri.jpl.nasa.gov/). The VSWIR hyperspectral sensor will 
cover the range 380–2510nm in 10nm contiguous bands. The instrument has a swath of 153km with a spatial 
resolution of 60m at nadir. The dedicated HyspIRI satellite will be in a low Earth orbit at an altitude of 
626km, and will have a revisit cycle of 19 days. Launch is expected to occur after 2022. 

7.3.2.2  Hyperspectral Imager Suite 
Hyperspectral Imager Suite (HISUI) consists of both a hyperspectral and a MS imager being developed 

by the Japanese Ministry of Economy, Trade, and Industry (METI). HISUI will be one of the mission 
instruments of the Japanese Aerospace Exploration Agency (JAXA) Advanced Land Observing Satellite 3 
(ALOS-3), scheduled for launch in 2019. The swath of the Hyperspectral Imager will be 30km at a spatial 
resolution of 30m; however, the sensor will be equipped with a cross-track pointing mechanism which tilts 
the Hyperspectral Imager ±3 degrees. The sensor consists of a reflective telescope and two spectrometers 
that cover the Visible-Near Infrared (VNIR) wavelength region with 10nm spectral intervals, and the SWIR 
wavelength region with 12.5nm spectral intervals. With these two spectrometers, Hyperspectral Imager will 
provide physical properties of the surface materials with 185 bands (Tachikawa et al., 2012). 

7.3.2.3 Environmental Mapping and Analysis Program 
The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mis-

sion that aims to monitor and characterize Earth’s environment on a global scale (http://www.enmap.org). 
The satellite system is being developed entirely in Germany under the guidance of the Space Administration 
Division of the German Aerospace Center (DLR); the German Research Center for Geosciences (GFZ) is 
taking the scientific leadership. Two hyperspectral sensors will record reflected energy from the Earth at 
wavelengths between 420nm and 2450nm with 244 contiguous spectral bands. The swath of EnMAP hy-
perspectral sensors will be 30km at a spatial resolution of 30m. The satellite is scheduled for launch in 2018. 
Further detail of this mission is documented in Kaufmann et al. (2012). 

7.4 Hyperspectral Data Processing 

7.4.1 Pre-processing 
For hyperspectral data to be useful for extracting information of the target features on the ground, the 

raw hyperspectral at-sensor radiance needs to be converted to apparent surface reflectance and ultimately 
to surface reflectance. This requires both radiometric calibration and geometric correction. These proce-
dures are similar to those involving conventional MS data. However, they are particularly important when 
manipulating hyperspectral data because these procedures allow the remotely-sensed spectra to be com-
pared quantitatively with in situ spectra collected on the ground, for instance using a handheld spectroradi-
ometer, or with laboratory-derived spectra (Jensen, 2005). 

http://hyspiri.jpl.nasa.gov/
http://www.enmap.org/
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7.4.2 Radiometric Calibration 
There are different approaches for radiometric calibration of hyperspectral data depending on the avail-

ability of in situ spectral measurements. When in situ spectral measurements are available, the digital num-
bers in the image can be converted directly to reflectance using the empirical line correction method (Kruse 
et al., 1990). This requires concurrent in situ spectral measurements at two or more targets within the image. 
When in situ spectral measurements are not available, the DNs need to be converted to “at-sensor” radiance 
and transformed to radiance or reflectance at the Earth’s surface. Doing so requires sensor calibration, flight 
information, and information about site-specific atmospheric conditions at the time of image acquisition. 
Since direct measurements of atmospheric properties are rarely available, radiative transfer atmospheric 
correction models are commonly used to estimate surface reflectance. Some examples of such models in-
clude the Moderate Resolution Atmospheric Transmission (MODTRAN) radiative transfer code (Berk et 
al., 1987), Atmospheric/Topographic CORrection (ATCOR®) that uses look-up tables calculated with 
MODTRAN code (Richter and Schläpfer 2014a, 2014b), and Fast line-of-sight Atmospheric Analysis of 
Spectral Hypercubes (FLAASH®) (Perkins et al., 2012) which is available in the ENVI® software. When 
neither in situ spectral measurements nor atmospheric data needed for radiative transfer atmospheric cor-
rection models are available, radiometric normalization techniques can be adopted; but they are usually not 
preferred. 

7.4.3 Geometric Correction 
The procedures for geometrically correcting hyperspectral data to a known datum and map projection 

are essentially the same as for conventional MS data. Full description of these procedures is not repeated 
here. However, it is important to note that since most operational hyperspectral data are currently obtained 
on aircraft, correction is required to account for motion and altitude of the aircraft. In such cases, on-board 
global positioning systems (GPS) and Inertial Navigation System (INS) technology are often used. In ad-
dition, geometric correction of hyperspectral data usually takes longer compared to that of MS data because 
there are simply more bands to process. 

7.5 Thematic Information Extraction 

Extracting thematic information accurately and efficiently is an important issue in hyperspectral remote 
sensing. Although standard image processing and analytical techniques developed for conventional multi-
spectral data apply to virtually all hyperspectral data, a wide array of techniques and methods has been 
developed for hyperspectral image processing and analysis to take advantage of the full spectral information 
present in hyperspectral data. A comprehensive overview of such image processing techniques can be found 
in Jensen (2005); some of more advanced techniques such as the ANN and Support Vector Machines (SVM) 
particularly in the context of vegetation studies are presented in Thenkabail (2012). These image processing 
techniques have been implemented in many general purpose image processing software packages such as 
ENVI®, ERDAS IMAGINE®, and IDRISI®. Some of these techniques and procedures used for information 
extraction are presented below. 
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7.5.1 Dimensionality Reduction 
The number of spectral bands in a remote sensing system is referred to as its data dimensionality. Hy-

perspectral data with many hundreds of bands have high spectral dimensionality and often contain noise 
and spectral redundancy. The most commonly used technique to reduce spectral redundancy of conven-
tional MS data is Principal Component Analysis (PCA). Unfortunately, PCA alone is often not sufficient 
for reducing the high dimensionality of hyperspectral data. A useful algorithm developed specifically for 
this purpose is the Minimum Noise Fraction (MNF) transformation which uses two cascaded principal 
component analyses (Chen et al., 2003a). MNF determines the inherent dimensionality of hyperspectral 
image data, and collapses the useful information into a much smaller set of MNF images to reduce the 
computational requirements for subsequent processing (Boardman and Kruse, 1994). 

7.5.2 Spectral Mapping and Matching Approaches 
A group of algorithms was developed to compare hyperspectral data to known reference spectra and to 

assign each pixel in an image to one particular class. This group includes binary encoding (Mazer et al., 
1988), Spectral Angle Mapper (SAM) (Kruse et al., 1993), and Spectral Feature Fitting (SFF) (Clark et al., 
1990). Another group of algorithms involving sub-pixel classification is used to determine the proportional 
abundances of target materials, or endmembers, in each pixel of an image. SMA of hyperspectral data 
includes linear spectral unmixing (Adams et al., 1995), and matched filtering (Harsanyi and Chang, 1994). 

7.5.3 Spectral Indices Approach 
Like traditional indices developed for use with conventional MS data, spectral indices can also be used 

with hyperspectral data. For example, NDVI can be calculated by using narrow-spectral band in the red and 
NIR regions of the spectrum. Many other narrow-band indices have been suggested, such as the PRI 
(Gamon et al., 1992) and the Transformed Chlorophyll Absorption in Reflectance Index/Optimized Soil-
Adjusted Vegetation Index (TCARI/OSAVI) (Haboudane et al., 2002). 

7.5.4 Derivative Spectroscopy Approach 
Derivative spectroscopy uses changes in spectral reflectance or radiance with respect to wavelength (a 

measure of rate-of-change or slope) to sharpen spectral features, emphasize desired information, or elimi-
nate less useful information (Jensen, 2005). The technique can be used to compare spectral curves mathe-
matically from hyperspectral data to spectral curves generated in a laboratory, in the field, or from other 
hyperspectral data. Some examples of derivative techniques applied to hyperspectral data include Demetri-
ades-Shah et al. (1990), Tsai and Philpot (1998) and Adams et al. (1999). 

7.6 Conclusion 

After almost four decades of extensive research and instrument development, hyperspectral remote sens-
ing is approaching its promise. Until now, hyperspectral sensors have been flown primarily in aircraft for 
experimental and commercial purposes. However, more spaceborne hyperspectral sensors are now close to 
being operational, which should improve both their spatial and temporal coverages. Various image 
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processing techniques developed and matured specifically through the use of high-quality airborne hyper-
spectral data are expected to make newly available data even more useful. 

8 IMAGE DATA FUSION 

8.1 Introduction 

Remote sensing data fusion is a technique commonly used for integrating information acquired with 
different spatial and spectral resolutions from sensors mounted on satellites, aircraft, and ground platforms. 
It aims to produce a dataset that contains more detailed information than each of the sources taken individ-
ually (Zhang, 2010). The term data fusion is often synonymous with merging, combination, synergy, and 
integration in the literature. In the remote sensing community, the following definition has been adopted: 
“Data fusion is a formal framework in which are expressed means and tools for the alliance of data origi-
nating from different sources. The process aims to obtain information of greater quality, where the exact 
definition of ‘greater quality’ will depend upon the application” (Wald, 1999). 

Due to a lack of available datasets, analysis of remotely-sensed data has been performed until recently, 
using a single satellite image. The emerging suite of products currently available provides exceptionally 
good coverage in space, time, and the electromagnetic spectrum. These wide-ranging sets of data allow 
analyses of time series created by combining different sensor types and scales, thus providing better inte-
gration with ancillary data and models. Data fusion combining data from several sources is becoming in-
creasingly important and necessary in many remote sensing applications (Solberg, 2006). 

8.2 Background 

Within the realm of optical remote sensing, some satellite sensors provide the spectral bands needed to 
distinguish features spectrally but not spatially, while other satellite sensors provide the spatial resolution 
for distinguishing features spatially but not spectrally (Wang, Z. et al., 2005). However, many remote sens-
ing applications can benefit by combining data from multiple sensors to attain more comprehensive infor-
mation. 

The most common applications of data fusion are to sharpen images, improve geometric accuracy, pro-
vide stereo-photogrammetry, enhance features not visible in a single data set, improve classification (as in 
the case study provided in this section), detect changes over time, and fill gaps caused by missing or defec-
tive data (Pohl and van Genderen, 1998). 

Fusing panchromatic (PAN) (i.e., high spatial but low spectral resolution) to MS (i.e., low spatial but 
high spectral resolution) is commonly called pan-sharpening. These types of images have reverse charac-
teristics because of the physics behind how photons are acquired to produce imagery. Since MS sensors 
typically have narrower bandwidths (i.e., are sensitive to fewer wavelengths), they receive less energy and 
therefore require more time to produce the same intensity response as PAN images. This intensity response 
also allows for a smaller pixel size to be used in the PAN sensors, thus producing higher spatial resolution 
images.  
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Many studies require both high spatial and high spectral resolutions, yet combining two different sets of 
imagery can be difficult. Even if images from different sensors are registered geometrically and acquired 
at nearly the same time and perspective, the physics behind data collection of the different spectral bands 
must be taken into account (Thomas et al., 2008). Figure 7-38 shows the spectral response for different 
wavelengths using different sensors on the QuickBird satellite. These responses are similar for sensors on 
other spacecraft but the exact function describing their sensitivity to different wavelengths will differ (i.e., 
full width at half maximum (FWHM), bandwidth, and center wavelength).  

Object occultation is common when combining sensors with different spectral bands. Certain features 
may be obvious in one image but could be completely absent in another image using a different sensor. 
These effects can be observed directly in Figure 7-38 because an object reflecting solar energy at ~715nm 
will be missing from the red and NIR bands, and will only be visible in the PAN image. Another side effect 
is contrast inversion. This occurs when one sensor records a decrease in reflectivity while another sensor 
detects an increase over the same range (Thomas et al., 2008). Using Figure 7-38, the PAN sensor will 
record a weaker signal for an object reflecting at 500nm compared to an object reflecting at 600nm, while 
the opposite is true for the Blue sensor. 

 
Figure 7-38. Quickbird spectral response curve (Image Credit: Digital Globe). 

8.3 Methods 

To best determine what datasets should be fused and what types of approaches should be implemented, 
users need to answer the following questions: (1) what questions can be answered by the data?; (2) what 
available data sets are most applicable to these needs?; (3) what techniques and data combinations might 
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provide the most effective answers?; and (4) how do the data need to be preprocessed before they can be 
fused? (Pohl and van Genderen, 1998). 

Merging multi-source data can create a more consistent interpretation of the scene compared to an inter-
pretation based on data from a single sensor. Research on data fusion has a long history in remote sensing 
because fusion products are the basis for many applications. However, integrating remotely-sensed data, 
especially multi-source data, remains challenging due to various requirements for accurate data co-regis-
tration, the complexity of the landscape, and the temporal and spectral variations within the input data set 
(Zhang, 2010).  

When integrating data from different sensors, it is critical that they be co-registered (i.e., transformed 
into one coordinate system). If the data are georeferenced, the co-registration process involves simply 
resampling the images to a common map projection. In many cases however, an image matching step is 
necessary to obtain sub-pixel accuracy in matching. A full image registration process is composed of four 
steps: feature extraction, feature matching, transformation selection, and image resampling. The image reg-
istration process detailed above is a prerequisite for data fusion.  

In general, remote sensing fusion techniques can be classified into three different levels: the pixel/data 
level, the feature level, and the decision level (Pohl and van Genderen, 1998). Pixel level fusion is the 
combination of raw data from multiple sources into single resolution data. This fusion technique generally 
falls into two categories: image differencing and image ratioing (Li and Yeh, 1998). Pixel-based fusion 
consists of merging information from different images on a pixel-by-pixel basis to improve the performance 
of image processing tasks such as segmentation. Data fusion occurs at the lowest processing level since the 
data being merged are actual physical parameters, rather than resulting from analysis of the original data 
set. Advantages of pixel level fusion include its simplicity (i.e., no special classifier software needed), cor-
relation between sources, and use for change detection. These offer the greatest flexibility of use whereas 
feature-level and decision-level based fusion methods are usually related to specific application examples. 

Feature-level fusion extracts various features from different data sources and then combines features into 
one or more feature maps that may be used instead of the original data for further processing. The methods 
applied to extract features usually depend on the characteristics of the individual source data, and processing 
workflows may include multiple methods, if the datasets used are heterogeneous. Typically, such fusion 
requires a precise (i.e., pixel-level) registration of the available images. Therefore, the feature maps ob-
tained are used as input to pre-processing algorithms for image segmentation or change detection (Zhang, 
2010). Like pixel-level fusion, advantages of feature-level fusion include its simplicity (i.e., no special 
classifier software needed) and its suitability for change detection. However, its sensor-specific features 
give it an advantage over pixel-based fusion.  

The purpose of the feature extraction step is to extract regions, edges, and contours that can be used to 
represent tie-points in a set of images to be matched. This is a critical step, as the registration accuracy can 
be no better than the accuracy achieved for the tie points (Solberg, 2006).  

The approaches to feature extraction are known as area-based methods, feature-based methods, and hy-
brid approaches. Area-based methods are best suited for images from the same or highly similar sensors 
because the grey levels of the images are used directly for matching, often by statistical comparison of pixel 
values in small windows. Feature-based methods are usually application dependent since the features to be 
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use as tie points need to be tailored to the application. Hybrid approaches use both area-based and feature-
based techniques by combining both a correlation-based matching with an edge-based approach, and they 
are useful for matching data from heterogeneous sensors (Solberg, 2006).  

Decision-level fusion combines the results from multiple algorithms to yield a final fused decision. When 
the results from different algorithms are expressed as confidences rather than decisions, it is called soft 
fusion; otherwise, it is called hard fusion. Methods of decision fusion include voting methods, statistical 
methods, and fuzzy logic. These three levels do not encompass all possible fusion methods, since input and 
output of data fusion may be different at different levels of processing. In practical operations, the applied 
fusion procedure is often a combination of the three levels. Advantages of decision-level fusion include its 
usefulness for data with different probability densities and modeling abilities. However, unlike pixel-level 
and feature-level fusion, decision-level fusion often requires special software (Solberg, 2006). 

In summary, pixel-based fusion consists of merging information from different images on a pixel-by-
pixel basis to improve the performance of image processing tasks such as segmentation. Feature-based 
fusion consists of merging features extracted from different signals or images. In feature-level fusion, fea-
tures are extracted from multiple sensor observations, then combined into a concatenated feature vector and 
classified using a standard classifier. Symbol-level or decision-level fusion consists of merging information 
at a higher level of abstraction. Based on the data from each single sensor, a preliminary classification is 
performed. Fusion then consists of combining the outputs from the preliminary classifications (Solberg, 
2006). 

8.4 Details on Pixel Level Fusion Techniques 

Wang, Z. et al. (2005), and references within, describe the different specific pixel-based methods used 
in image fusion. Intensity Hue Saturation (IHS) and the Brovey Transform (BT) are common fusion proce-
dures that use three image bands for processing. IHS relies on the color properties (i.e., intensity, hue, 
saturation) of the bands being used, typically red, green, blue (RGB), while BT normalizes the three bands 
in question before they are multiplied with the PAN image. This method transforms the luminance infor-
mation from the MS image into a high-resolution PAN image while retaining the corresponding spectral 
features of each pixel.  

High Pass Filtering (HPF) preserves the spatial information of high-resolution data by transforming them 
into the frequency domain and filtering the result using a high-pass filter. This information is obtained by 
putting data through a boxcar, which involves averaging each pixel with its neighboring pixels. The size of 
the boxcar will determine what types of features are removed: a large boxcar will affect large features while 
a small boxcar will affect small features. A high-pass filter removes regions smaller than the boxcar in the 
PAN image (Aiazzi et al., 2002). By combining these filtered high-resolution PAN data with the low-reso-
lution MS imagery a high resolution MS image is produced.  

In comparison to the methods above, PCA can be used for data fusion and can incorporate any number 
of bands. PCA computes principal components by transforming the original correlated dataset into a smaller 
set of uncorrelated variables (i.e., principal components) while still representing most of the information 
from the original dataset (Ricotta et al., 1999). Each principal component is a linear combination of the 
original variables. The set of principal components is ordered by the amount of variance explained in the 
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original data set. The first component contains the maximum proportion of variance and low components 
are often discarded because the principal component image contains information that is common to all the 
bands. The first principal component from the low-resolution MS imagery is then replaced by the high-
resolution PAN data creating a high-resolution MS image (Wang, Z. et al., 2005).  

PCA has the advantage of identifying patterns in the data, and the transform does not lead to information 
loss. However, this method is implementation-dependent and results may vary depending on the software 
used. The time between image acquisitions may also affect the results of PCA-based image fusion. Even if 
specific features exist in each scene to be fused and these features remain unchanged, if other features 
experience a change, those pixels may affect the overall output (Gupta et al., 2013). 

A common use of data fusion is to combine transformation methods. One such technique, ARSIS, de-
veloped by Ranchin et al. (2003), has been used to map urban areas, air quality, and agriculture. The method 
uses a multiscale model (MSM) to generate an approximation image and detail image from the higher 
spatial resolution image, where the detail image contains features close to the original image resolution. 
This produces a map of spatial variabilities that can be inverted and applied to the low-resolution image. 
The model for both image sets is performed for several iterations, to produce the most informative model. 
The output from the MSM can be input into an Inter-Band Structure Model (IBSM) that relates the spatial 
features to spectral features. 

8.5 Case Study for Data Fusion of Optical Images 

Here, an example of data fusion is presented using OBIA to fuse high spatial resolution (e.g., 
WorldView-2 imagery) with eight 2m MS bands and one 0.5m PAN band) and hyperspectral (e.g., 242-
band Hyperion image with 30m resolution) satellite data for geological strata classification. The study uses 
fusion methods to combine the advantages of both datasets effectively to accurately classify geological 
strata. 

The study area covers 2.73km in the western Tarim basin, located on the southern flank of the Wulagen 
syncline in Wuqia, Xinjiang, western China (Figure 7-39). It is bounded by upper left longitude 39°9'12" 
and latitude 74°57′32", lower right longitude 39°38′5" and latitude 74°58′28". At an elevation of approxi-
mately 2,400m above sea level, the study area lies to the west of the Wulagen lead-zinc (Pb-Zn) deposit, 
which is a sandstone-hosted unit with a prospective Pb-Zn reserve greater than 10 Megatons of Pb-Zn at 
3.62% concentration. The area represents a typical sedimentary landscape. 

A standard level 2A WorldView-2 image acquired on 21 August 2011 was used. It includes one PAN 
layer, eight MS, layers and calibration metadata that were used for radiometric correction. The PAN image 
has the spectral range from 450nm to 800nm, with 0.5m spatial resolution. The MS image with 2m spatial 
resolution is composed of eight bands: Coastal blue (400-450nm), Blue (450-510nm), Green (510-580nm), 
Yellow (585-625nm), Red (630-690nm), Red edge (705-745nm), NIR1 (760-895nm), and NIR2 (860-
1040nm). Geo-rectification was already applied to this product and no further normalization was necessary 
for topographic relief. 
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Figure 7-39. Study area as a subset area of Xinjiang. 

The Hyperion image was acquired on 29 September 2003 and was downloaded from the USGS archives. 
Hyperion is an along-track sensor mounted on the EO-1 spacecraft collecting optical data in 242 bands 
ranging from VNIR to SWIR, with each band having a spectral resolution ~10nm and spatial resolution of 
30m. Because vegetation coverage is sparse in the study area, and almost free of human activity, the stra-
tigraphy was considered to be spatially stable between September 2003, acquisition date of the Hyperion 
image and August 2011, the acquisition date of the WorldView-2 image. 

8.5.1 Methods 
Object-Based Image Analysis (OBIA) is characterized by the ability to use multi-source data as input. 

Usually, images with relatively high spatial resolution are used as initial inputs in the OBIA workflow, in 
conjunction with data sources such as DEMs, LiDAR, and others. To examine whether the additional spec-
tral information could improve the accuracy for image analysis, OBIA used the original high-resolution 
data (i.e., WorldView-2) alone to compare with the method that relies on the synergy of WorldView-2 and 
Hyperion data. Figure 7-40 shows the data processing protocol involved in the proposed OBIA method for 
this study. Data preprocessing and accuracy assessment for the two methods were carried out using ENVI 
(i.e., v. 5.0, Harris Geospatial Solutions) image processing software, whereas the OBIA section was con-
ducted by Trimble’s eCognition Developer 8.0 software, formerly known as Definiens. 
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Figure 7-40. Workflow of data fusion based on the integration of Hyperion and WorldView-2 images. WV-
2=WorldView-2; PPI=Pixel Purity Index; SAM=Spectral Angle Mapper. 

8.5.2 Preprocessing 
For the WorldView-2 image, preprocessing focused mainly on radiometric correction, calibration and 

atmospheric correction. Raw DNs were converted to radiance by applying the ENVI WorldView Calibra-
tion utility. The FLAASH® atmospheric correction module was used to correct for atmospheric effects and 
to derive surface reflectance, thus providing comparable spectral values for fusion with Hyperion data. 

Hyperion image preprocessing consisted of four steps. Initially, the image was geometrically registered 
to align with the WorldView-2 scene with total RMSE = 0.46, the pixel size of Hyperion. Next, non-cali-
brated bands 1-7, 58-76, and 225-242 were removed, since only 50 of 70 VNIR bands and 148 of 172 SWIR 
bands of Hyperion were calibrated. The remaining 198 bands had a spectrum range from 426nm to 2395nm 
(Beck, 2003). Additional bands, 120-132; 165-182; 185-187 and 221-224 were removed because of their 
sensitivity to water absorption and susceptibility to atmospheric scattering. Bands 77 and 78 were also 
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removed due to their low signal to noise value (Petropoulos et al., 2012). This resulted in 50 VNIR bands 
and 108 SWIR bands that were processed separately because of their differing structure (Datt et al., 2003) 
and for OBIA application purposes, as explained later in Sections 8.5.3 and 8.5.4. Following destriping to 
account for differences in gain and offset of different detectors of the Hyperion sensor, radiometric correc-
tions were performed on the images. Similar to the radiometric correction conducted on WorldView-2, the 
DNs were first converted to “at-sensor” radiance and then to surface reflectance using FLAASH®. 

8.5.3 Spectral Angle Mapper Classification of Hyperion Data 
Spectral Angle Mapper (SAM) was first applied to Hyperion data to generate an initial classified image, 

which was used as a reference for further sample selection in OBIA (Kruse, 2003). MNF of all 158 bands 
was carried out, followed by general mapping using PPI. Then, spectral endmembers were selected in n-
dimensional space (Boardman, 1993) and later identified by a geology expert. The final preprocessing goal 
was to obtain the SAM results, which were optimized with input from the geology expert and combined 
with the segmented image to guide sample selection in the classification step. 

8.5.4 Segmentation of WorldView-2 
OBIA consists of two sequential parts: segment generation and segment labeling. Image segmentation 

splits an image into separate and homogeneous objects; namely, segments and classification techniques 
were used to label the objects with specific class attributes. The classes in this area have inherent intraclass 
spectral variability that is captured in high-resolution imagery as texture features. OBIA deals with such 
images by classifying them into homogeneous objects, which in this example represent patches of specific 
stratum values with differing spectral and textural signatures.  

Eight bands of WorldView-2 MS were used during segmentation. Though the software allows users to 
assign different weights ranging from 0 to 1 for each band, 1 was assigned to all bands to include the full 
spectral information in the segmentation process. In eCognition, images can be segmented considering three 
parameters: shape, compactness and scale.  

Shape and compactness can be assigned values between 0 and 1 to control the homogeneity of objects. 
While the shape parameter adjusts weights put on spectral homogeneity and shape, the compactness factor 
balances compactness and smoothness when determining the object shape (Platt and Rapoza, 2008). For 
sedimentary strata, shape is less significant for object identification than spectral homogeneity. Thus, 0.1 
was assigned to the shape parameter to focus on spectral information and assigned 0.5 to compactness. This 
resulted in smoothness being assigned automatically as 0.5.  

Scale is the most important parameter in image segmentation as it determines homogeneity tolerance for 
the segments (Platt and Rapoza, 2008; Thomas et al., 2003). The value assigned to the scale parameter 
depends greatly on the user’s requirement of object size based on their specific study goals. The higher the 
scale value, the larger is the size of the output object. Several experiments were run with several scale 
parameters and visual assessments in order to identify the optimal scale that allowed the algorithm to dis-
tinguish objects on the ground. Scales from 100 to 500 with intervals of 50 were tested with the value of 
250 giving the best results. As verified by visual inspection, values greater than 250 generated segments 
that consisted of more than one stratum and values smaller than 250 tended to generate considerable noise. 
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These variations cause ambiguities resulting in over-segmentation or under-segmentation of the image, re-
spectively.  

8.5.5 Classification of the Segmented Image 
The standard Nearest Neighbor (NN) classifier (Definiens, 2009) was applied to assign stratigraphic class 

values to segmented objects. This classifier is preferred when only a few features are used but results in 
objects not being well separated. Specifically, the procedure included sample selection, feature space defi-
nition, classification, output review and optimization. Data synergy was realized through the first two steps. 

First, a set of output segments was selected as training samples representing different classes, similar to 
pixel-based supervised classification. The labels derived from the previously obtained SAM result were 
used as references. This action falls into the category of soft decision-level data synergy according to Zhang 
(2010). Segments can be considered as sample regions only when a cover class from SAM covers over 90% 
of the area contained in these segments. This procedure was named “SAM-based sample selection”. The 
details of this process are illustrated in Figure 7-41. For an object eligible to be a sample, object-based 
segmentation decides the spatial region of this sample and SAM decides its class attributes. By combining 
the results from SAM and segmentation, ambiguity in sample selection can be minimized. 

 
Figure 7-41. SAM-based sample selection. 

Once the samples have been selected, a feature space must be defined. The standard NN approach in 
eCognition allows the feature space to be constructed using original, composite, transformed, or customized 
bands. Though the WorldView-2 image has relatively abundant spectral information (i.e., 8 bands) com-
pared with QuickBird and IKONOS (i.e., 4 bands), the relative absence of spectral information in SWIR 
still produces uncertainty in classification. 

The SWIR spectral range covers spectral features of hydroxyl-bearing minerals, sulfates, and carbonates 
common to many geologic units (Kruse, et al., 2003). Therefore, the SWIR bands in Hyperion were intro-
duced to provide additional spectral information for feature space definition. MNF was used to reduce the 
data dimensionality of the remaining 108 SWIR bands and added the resulting 20 MNF bands to the analysis 
(Green et al., 1988). Thus, 29 bands were considered in the feature space construction (i.e., 8 MS bands, 1 
PAN band and 20 SWIR MNF bands). The best combination of spectral and spatial features was calculated 
and optimized by feature space optimization tools in the software to determine the most effective parameters 
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describing each class. Sixty-eight features were considered initially as potential sources for feature space 
construction (Table 7-6). Of these, five features were selected for the final classification (Table 7-7).  

Segments generated by the previous step were also classified using only the nine WorldView-2 bands 
(i.e., no Hyperion SWIR bands). This single-data classification was used as a standard procedure to which 
results of OBIA with data synergy were compared. For the standard procedure, WorldView-2 only. five 
features (Table 7-7) were used to classify the segments that were selected from the 26 attributes (Table 7-
6). 
Table 7-6. Object-Based Features Considered. 
Abbreviation of Feature   Name of Feature      Description 
Mean         Mean Value of Band    Average reflection value of each segment in a selected 
                      Band 
StanDev        Standard Deviation     Reflective standard deviation for each segment in a 
                      selected Band 
GLCM         Grey Level Co-occurrence  Calculated for each segment from the values in PAN 
           Matrix Value*      band, measurement for texture 
IHS          IHS Transformation    IHS transformation using a false color composite 
           Components**      comprising band 4-3-2 of MS 
*   Including homogeneity, contrast, dissimilarity, entropy, standard deviation, and correlation. 
** Including intensity, hue, and saturation. 

 

Table 7-7. Features Selected by the Feature Space Optimization Tool for Classification in the Two Procedures. 
OBIA with only WorldView-2         OBIA with Data Fusion 
Mean MS band 5             Mean MS band 6 
Mean MS band 6             Mean SWIR MNF band 11 
Stadv MS band 5             Mean SWIR MNF band 17 
IHS hue                 Stadv SWIR MNF band 18 
GLCM contrast PAN            IHS hue 

8.5.6 Results 
In the study area, clastic sedimentary formations are dominant. It may be possible to detect stratigraphic 

differences visually, but boundaries between classes are difficult to delineate (Figure 7-42a). Visually, the 
two classification results (Figures 7-42b and 7-42c) show that stratigraphic classes replicated the sedimen-
tary structure of the rocks and the boundaries could be identified easily because data fusion maintained the 
fine pixel size found in WorldView-2. 

When OBIA was run on WorldView-2 alone, rocks from one stratigraphic unit were sometimes classified 
into two or more classes (Figure 7-42b). For example, some segments of C1 in the upper part of the image 
were classified incorrectly due to spectral variations (i.e., brighter and darker) caused by shadows. For these 
shadowed areas, VNIR reflectance variations among bands were reduced compared with non-shadowed 
area. Hence, areas with and without shadow effects can be misclassified easily as two classes when only 
looking at MS bands, which are fewer in number and have wider bandwidths. On the other hand, results 
produced by OBIA with data fusion took advantage of the spectral response in a wider band range, from 
VNIR to SWIR, to record spectral features of this class, thus minimizing spectral ambiguities with other 
classes. 
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Figure 7-42.  (a) Original bands of WorldView-2 (composited bands 4-3-2; (b) classified image using OBIA with 
WorldView-2 only; and (c) classified image using OBIA with data fusion of WorldView-2 and Hyperion data. 

This improvement is attributed to additional spectral information from data synergy that can be further 
explained by comparing the spectral plots of the two classes (i.e., C1 and C3). As shown in Figure 7-43, 
the shapes of VNIR band plots for C1 and C3 (i.e., spectral information contained in WorldView-2) were 
similar. In terms of the range of values, the non-shadowed part of C1 was closer to C3 than the shadowed 
part of C1. This is one source of ambiguity causing misclassification between C1 and C3 when looking 
only at information derived from the WorldView-2 MS image. If SWIR spectra from Hyperion are added, 
(a) and (b) have similar shapes but are distinctly different from (c). Using the higher resolution data reduced 
the ambiguity between the two classes efficiently, balancing the within-patch spectral variation, in this case 
data range differences due to shadows. 
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Figure 7-43. Spectral plot of (a) the non-shadowed part of C1; (b) the shadowed part of C1; and (c) C3. 

A comparison between the accuracy of results from the error matrices further demonstrates that OBIA 
with data fusion generally performs better in class identification. OBIA with data fusion had an overall 
accuracy of 86.3%, which increased the classification accuracy by 11.3% when compared to the method 
using only WorldView-2 having 75% overall accuracy. Kappa coefficient increased from 0.7120 to 0.8434.  

C1 and C2 were unchanged in the two matrices, but the other classes showed improvement. For OBIA 
without data synergy, C2, C4 and C7 had relatively low user’s accuracy. This was due mainly to their 
spectral overlap with other classes. For example, C2 is mixed spectrally with C6 and C7 in VNIR bands. 
Therefore, 19 test pixels of C6 and 21 test pixels of C7 were classified mistakenly as C2. However, an 
increase in their user’s accuracy shows that their over-representation had been effectively reduced by the 
OBIA with data synergy. C3 had relatively high accuracy in both the methods (i.e., 96.3% and 88.9% of 
user’s accuracy, 100% and 92.3% of producer’s accuracy in the two methods respectively). This is because 
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it is especially high reflectance makes it distinguishable from surrounding classes. This feature was further 
emphasized when additional spectral information from Hyperion was taken into consideration and its pro-
ducer’s accuracy reached 100% in the new method. 

Table 7-8a shows the error matrix for the OBIA classification using WorldView-2 data only. Table 7-8b 
shows the error matrix for the OBIA classification with data synergy. 
Table 7-8a. Error Matrix for the OBIA Classification with WorldView-2 Only. 
     C1   C2   C3   C4   C5   C6   C7   C8   User’s 
                                     Accuracy 
                                     (%) 
C1    75    0    0    0    6    5    2    0    85.23 
C2    1    64    2    0    0    19    11    4    63.37 
C3    6    0    48    0    0    0    0    0    88.89 
C4    12    2    2    50    4    0    6    0    65.79 
C5    2    0    0    3    46    0    0    0    90.20 
C6    0    2    0    2    0    24    0    6    70.59 
C7    4    12    0    1    1    7    36    1    58.06 
C8    0    3    0    0    0    4    0    47    87.04 
Producer’s  75    77.11   92.31   89.29   80.7   40.68   65.45   81.3 
Accuracy (%) 
   
                               Overall accuracy=75.00% 
                               Kappa Coefficient=0.7120 
 

Table 7-8b. Error Matrix for the OBIA Classification with Data Synergy. 
     C1   C2   C3   C4   C5   C6   C7   C8   User’s 
                                     Accuracy 
                                     (%) 
C1    75    0    0    0    0    1    0    2    93.75 
C2    2    64    0    0    2    0    4    0    91.43 
C3    0    0    52    0    0    0    2    0    96.30 
C4    0    0    0    50    0    0    2    0    96.15 
C5    5    0    0    3    54    0    0    0    87.10 
C6    17    1    0    0    1    53    2    0    72.62 
C7    1    6    0    3    0    5    45    0    75.00 
C8    0    12    0    0    0    0    0    56    82.35 
                               Overall accuracy=86.35% 
                               Kappa Coefficient=0.8434 

8.5.7 Discussion and Conclusions 
High-resolution imagery improved access to spatial details for mapping dramatically. Integrating spectral 

information from additional data sources, for example Hyperion hyperspectral imagery, has shown to be an 
effective form of image analysis. For remote sensing of geological strata, spectral and textural information 
in images is determined by component and granularity of sediments. Therefore, the synergy of WorldView-
2 and Hyperion was able to contribute to classification accuracy. In contrast to traditional pixel-based image 
analysis, OBIA allows objects on the ground to be distinguished as meaningful pixel-grouped segments 
rather than a set of separate pixels. OBIA in eCognition offers a semi-automated way to analyze targets 
based on image segmentation, allowing users to integrate information from several data sets at the feature-
level or decision-level. Results from such analyses can be inserted directly into a GIS system.  
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It should be noted that human intervention is still necessary when using OBIA. For example, the selection 
of optimal segmentation parameters depends on the heterogeneity of the features over the study area, and 
those parameters should be defined on a case-by-case basis. Furthermore, the study area for this research 
represents a natural landscape almost devoid of human disturbance and therefore gradual spectral transitions 
between geological features are intact. Conversely, an anthropogenic landscape may have many artificial 
elements with spectrally abrupt transitions such as impervious surfaces and agricultural fields. As a result, 
the internal heterogeneity for each class is likely to vary and the viability of the proposed method would 
need to be assessed. Hence, it would be beneficial to extend this study to include areas with differing land-
scape characteristics. Also, the time gap between the two images used in this study cannot be ignored. 
Classification is expected to be improved by using data collected at the same time. 

Auxiliary spectral bands cannot always guarantee effectiveness for every stratigraphic class. More robust 
data fusion relies on a comprehensive understanding of spectral features from each of the target classes. For 
example, C5 and C8 showed some decrease in user’s accuracy with the new method. A careful examination 
of the error matrix revealed that there was confusion among C1, C4 and C5. These classes are similar in 
reflectance considering the bands used (both VNIR with lower spectral resolution and SWIR with higher 
spectral resolution). The additional spectral information in SWIR failed to make the classes more distin-
guishable from each other. One possibility is their spectral features, which could be detected more easily 
using VNIR bands with higher spectral resolution. For class C8, the classification overlap with C2 increased 
to a certain extent after introducing the SWIR bands, but its confusion with C6 has been eliminated. It 
shows that the efficiency of data synergy is on a class-by-class basis. If the spectral characteristics of two 
classes are similar in the additional bands, the introduction of these bands will create obstacles to accurate 
classification rather than facilitate it. On the other hand, using bands that show distinctive spectral features 
of the two classes due to data synergy, as described in Figure 7-41, increases class separability. 

The proposed method employed a single set of parameters for segmentation. However, considering the 
range of sizes of objects on the ground and varied information that may be available at different scales, a 
single parameter set may not always be optimal to identify all the objects on an image (Kim et al., 2009; 
Laliberte and Rango, 2009). A multi-scale OBIA, where different parameters can be set for different cover 
classes, may yield better results. 

Generally, the classification of most of the classes in this study took advantage of the spectral response 
of the SWIR band in Hyperion. These were not included in the analysis when only using WorldView-2 
imagery. The results demonstrated the potential to apply OBIA for remote sensing of geology. With data 
synergy, spectral advantages from Hyperion and spatial advantages from WorldView-2 are combined, im-
proving the stratigraphic classification accuracy. Effective data synergy can be achieved by selecting aux-
iliary data based on specific spectral reflectance features of target objects. Further studies based on this 
method will focus on using multi-scale OBIA for different landscape areas such as mountains, urban land-
scapes, forests, agricultural areas, among others. 
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9 IMAGE CLASSIFICATION 

9.1 Introduction 

Data classification and interpretation are major tasks in remote sensing and encompass multi-step work-
flows, which typically include:   

• prediction and identification of thematic classes (i.e., categorical data);  
• identification and preparation of input variables (i.e., predictors) to be used during the classifi-

cation or interpretation process;  
• selection of classification method and use of classifier for class identification and labelling of 

thematic units; and, 
• assessment and evaluation of the classification results.  

All steps involved in the classification and interpretation of remotely-sensed data are critical to the final 
quality of results and analysts greatly benefit from understanding classification algorithms for proper clas-
sification method selection (e.g., pixel based vs. region based; supervised vs. unsupervised); use and result 
evaluation. Below, are summaries of some image classification approaches often used in remote sensing, 
including: SVM; decision tree classifier (DTC); fuzzy clustering; SAM, and OBIA. 

9.2 Support Vector Machines 

Since their introduction in the 1970s (Vapnik, 1979), SVMs have become a popular choice for image 
classification tasks. One major appeal of SVMs is their ability to generalize from a small training data set; 
it has been shown that SVMs can produce results with higher classification accuracy than other commonly 
used methods (Mantero et al., 2005). SVMs are a supervised classification technique as labeled samples 
are essential. They fall under the non-parametric category as they do not make (or require) an underlying 
assumption on the data distribution. During the training phase, an SVM uses key training points to identify 
hyperplanes that separate classes in the classification feature space (Zhu and Blumberg, 2002). The opera-
tion is iterative, which is time-consuming, however faster than other popular machine learning methods, 
such as back propagation neural networks. In Figure 7-44, adapted from Burges, 1998, an example is shown 
of a SVM training for a two-class problem. The algorithm will select the key training points, called support 
vectors, to formulate the optimal hyperplane for separation of classes by maximizing the margin width. 
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Figure 7-44. Illustration of Support Vector Machine training. 

Because in their original form SVMs separate the feature space using hyperplanes, in essence linear 
functions, sometimes they fail to capture complex class distributions. To overcome this limitation, several 
kernel-based transformations have been introduced, that allow transformation to a different non-linear space 
where hyperplanes could potentially separate classes. Further discussion on SVM kernels is available 
(Scholkopf and Smola, 2001). In addition, originally SVMs were developed for two-class problems, in 
essense binary classifications. While for remote sensing classification SVMs could be applied by grouping 
all but one class and then attempt to separate that group from that class (i.e., one-against-all method) other 
methods have been proposed to handle multi-class separation more effectively (Knerr et al., 1990). 

A wide range of applications of SVM has been reported in the literature and Mountrakis et al. (2011) 
provide a recent review on the use of SVM in remote sensing. Typical tasks employing the technique in-
volve the classification of MS and hyperspectral data in high and medium spatial resolutions (<40m pixel 
size). Uses include mapping and biophysical parameter estimation, for example chlorophyll concentration 
(Kwiatkowska and Fargion, 2003; Bazi and Melgani, 2007; Sun et al., 2009). Several works dealing with 
urban mapping have benefited from using SVM. For example, Watanachaturaporn et al., (2008) identified 
that SVMs outperformed other classifiers in an urban classification task. SVMs also are commonly used in 
crop mapping. For instance, Camps-Valls et al. (2004) found that in a crop classification task using hyper-
spectral imagery SVMs outperformed typical neural networks. The authors reported that SVMs were not 
as affected by reduced training sample size. A method comparison involving general land cover classifica-
tion showed that SVMs and neural networks outperformed the maximum likelihood method, while the 
SVMs were much faster to train (Dixon and Candade, 2008). SVMs also have been applied to other classi-
fication tasks, including the reconstruction of cloud-contaminated multMSispectral images (Melgani, 
2006). 

SVMs also have inherent limitations. The most notable one is the kernel transformation, which requires 
extensive testing. Furthermore, in the effort to increase separability of classes, the resulting dimensionality 
increase may lead to unexpected results, especially when the dimensionality is already high (e.g., hyper-
spectral images). Another methodological concern relates to how SVMs handle noisy data. Because SVMs 
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by design look for support vectors to establish the separation hyperplanes, they are more susceptible to 
noise, a typical occurrence in remotely sensed data. 

As mentioned, there are numerous studies comparing the algorithmic performance of SVM with other 
popular classification methods. In this regard, Khatami et al. (2016) aimed to establish general guidelines 
for researchers and practitioners while using SVM and performed a meta-analysis looking back 15 years of 
published works. The study aggregated comparative investigations from the five most popular remote sens-
ing journals and findings suggest that SVMs tend to outperform slightly neural networks and decision trees, 
while offering considerable gains when compared with simpler algorithms such as the maximum likelihood. 

To conclude, SVMs have found fruitful ground in remote sensing applications. Numerous efforts have 
been pursued to address algorithmic limitations and implement SVMs in a wide range of remote sensing 
tasks. If trends from other domains are an indication for high volume remote sensing tasks, SVMs may be 
sidelined by deep learners in the near future. However, for localized studies with limited reference datasets, 
SVMs should be given serious consideration. 

9.3 Decision Tree Classifier 

9.3.1 Introduction 
Parametric statistical procedures, such as the maximum likelihood classifier, are based on the assumption 

that the data follow some pre-defined model, such as a Gaussian normal distribution. Other statistical pro-
cedures each have explicit or implied assumptions as to the structure of the data. The performance of any 
statistical classification will depend on how well the data match the assumptions underlying the statistical 
method. It is unlikely that any remote sensing-based dataset will precisely follow the assumptions of any 
classifier, but the complex structure of these data can be particularly problematic for parametric methods 
that have particularly strict distributional assumptions. The maximum likelihood classifier is a single-stage 
classifier, because an observation is given the label of one of a predetermined number of classes in a single 
step. This approach to classification has two significant drawbacks (Swain and Hauska 1977): 

• Only one of the possible combinations of features (i.e., spectral bands and ancillary data) is used 
in the classification. 

• Each sample is tested against all classes. 

An inherent weakness of the maximum likelihood procedure is that the subset of features used in classi-
fication is not necessarily the optimal choice for all classes. Usually, a set of features is selected either 
simply by what features are available or, if feature selection does take place, by the criterion of maximum 
average interclass separability (i.e., in a multi-class multi-feature classification the set of features with larg-
est pair-wise separability is used). The problem of using only one feature subset as the basis of a classifica-
tion is particularly severe in cases where the dataset has a large number of classes. In principle, one could 
combine the features that are useful in discriminating between all possible combinations of pairs of classes 
and use the combination of these features in a single stage classifier; however, a feature that is valuable for 
distinguishing certain classes might increase confusion between other classes.  
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As progress in new sensor technology for Earth observation remote sensing continues, increasingly high 
spectral resolution multi/hyper-spectral imaging sensors are being developed. These sensors provide more 
detailed and complex data with increased dimensionality. As the number of spectral features, number of 
training samples, and classification accuracy are interrelated in a complex fashion, one may need to know 
how many features should be used to maximise the overall classification accuracy. Where training sample 
size is limited and the dimensionality of the feature space is high, then the estimate of first and second-
order statistics (e.g., as required by maximum likelihood classifier) cannot accurately summarise all infor-
mation that is contained in the data and results are thus less reliable. 

For such problems, it would be preferable to have a classification system that could decompose the clas-
sification problem into several stages leading to a simplified decision-making process by taking decisions 
at successive stages. The technique of decomposing the classification problem into several stages is termed 
multistage classification. It has several attractive features, the most important of which, perhaps, is inter-
pretability, because the model structure can be transparent to the analyst. In many instances, taking such 
partial decisions is conceptually simpler, as each decision involves only using information relevant to the 
current stage, which has led to the increased popularity of multistage decision making for remote sensing 
classifications. 

9.3.2 Decision Tree Classifiers 
Several multistage classification techniques, based on the way they are constructed, have been proposed 

in literature. Decision tree classifiers, which sequentially reject classes along a path to a finally accepted 
class label, are an effective implementation of a multistage classifier and became increasingly popular due 
to their conceptual simplicity and computational efficiency in remote sensing. A DTC has a simple form, 
which can be compactly stored and classifies test data efficiently. A DTC also carries out automatic feature 
selection and complexity reduction. The tree structure provides easily understandable and interpretable in-
formation regarding the generalisation ability of the data. 

The significant advantages of DTCs are their non-parametric nature (Quinlan, 1993), simplicity, flexi-
bility, and computational efficiency (Safavian and Landgrebe, 1991; Hansen et al., 1996; Friedl and 
Brodley, 1997; Pal and Mather, 2003), which makes them an effective tool for remote sensing classifica-
tions (Hansen et al., 1996). Decision tree classifiers are found in the remote sensing and statistical literature 
under various names (e.g., decision trees, classification tree analysis (CTA), classification and regression 
trees (CART), or binary recursive partitioning). 

Two approaches are generally used to design a DTC (Swain and Hauska, 1977). Both approaches are 
similar in principle, but differ significantly in the way the tree is developed. 

• Heuristic search method 
• Manual design method 

Construction of a classification tree using the heuristic approach is a supervised classification approach; 
thus, it is initiated using a training data set consisting of feature vectors and their corresponding class labels. 
The decision tree is then constructed by recursively partitioning the training data set into purer, more ho-
mogenous, subsets on the basis of a set of tests applied to one or more attribute (feature) values at each 
branch or node in the tree. This procedure involves three steps: splitting nodes, determining which nodes 
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are terminal nodes, and assigning class label to terminal nodes. The assignment of class labels to terminal 
nodes is straightforward: labels are assigned based on a majority vote or a weighted vote when it is assumed 
that certain classes are more likely than others. This enables associated probabilities to be applied to the 
resulting classes at each terminal node. 

A tree constructed this way is composed of a root node, containing all the data, a set of internal nodes 
(i.e., splits), and a set of terminal nodes (i.e., leaves). Each node in a decision tree has only one parent node 
and two or more descendent nodes (see Figure 7-45). A data set is classified by moving down the tree and 
sequentially subdividing it according to the decision framework defined by the tree until a terminal node is 
reached. 

In comparison to heuristic methods, manual methods use statistics such as the mean vector and covari-
ance matrix calculated for all classes using single feature. A graph called coincident spectral plot is then 
plotted for each feature using the mean and variances of all the classes. This method is not suitable for the 
data using two or more features together, which is generally the case with remote sensing classifications. 

 
Figure 7-45. A classification tree for a five-dimensional feature space and three classes. The 𝑥𝑥𝑖𝑖 are the feature values, 
the 𝜂𝜂𝑖𝑖 are the thresholds, and Y is the class label. 

9.3.3 Decision Tree Design Approaches 
Numerous tree construction approaches have been developed in the last forty or so years, but most of the 

research in DTC design has concentrated in the area of finding splitting rules, which finally gives the idea 
of the termination rules. Being the most important element of a DTC, several algorithms are proposed to 
split the training data at each internal node of a decision tree into regions that contain data from just one 
class. These algorithms either minimize the impurity of the training data or maximize the goodness of split. 
The main approaches to design a decision tree are: 

 

• Top-down approach  
• Bottom-up approach 
• Hybrid approach 
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Top down approach of designing a DTC is the most commonly used for remote sensing classification 
and consists of the following three tasks: 

• Selection of a node splitting rule, 
• Decision as to which nodes are terminal, 
• Assignment of each terminal node to a class label. 

The class assignment problem is the easiest in above-mentioned design tasks. Terminal nodes that have 
the highest probabilities by using a basic plurality rule are assigned to the classes. The basic idea in choosing 
any splitting criterion at an internal node is to make the data in the descendent nodes purer.  

The approach adopted by the top-down method of designing a decision tree is to choose the attribute that 
best divides the training data into classes and then partition the data based on the value of selected attribute. 
This process is applied recursively to each partitioned subset, with the procedure terminating when all data 
in the current subset have the same class or, in some implementations, a minimum number of observations 
is reached. The result is represented as a tree in which each node specifies an attribute and each branch 
emanating from a node specifies a possible value of that attribute.  

Thus, the main task of this process is to select the attribute (i.e., feature) to be used as criterion, because 
at each node in the development of a decision tree there will be a set of observations and a number of 
attributes to classify them. One cannot select an individual attribute without first determining the "quality" 
of all of the attributes and seeing how well each one separates the data into various classes. The quality of 
an attribute should reflect the useful information provided by that attribute. There are two major approaches 
to estimate the quality of an attribute. 

In the first approach, the quality of an attribute may be estimated by ignoring the other attributes, there-
fore assuming independence of attributes. In the second approach, the quality of an attribute may be esti-
mated in the context of other attributes. The first approach is also called the myopic approach (Kononenko 
and Hong, 1997), which has the advantage of computational speed. The latter approach is computationally 
more demanding but has the potential to discover higher-order dependencies among the attributes. 

9.3.3.1 Attribute Selection Measures 
Many approaches are proposed for selection of attributes (i.e., features) used in the design of DTC 

(Breiman et al., 1984, Mingers, 1989a; Quinlan, 1993; Murthy et al., 1994; Kononenko and Hong, 1997). 
Some approaches measure the “goodness of split” (Breiman et al., 1984), while other approaches try to 
minimize the impurity of the training data. 

The quality of an attribute in classification is defined in term of the purity of classes of training data, and 
most approaches assign a quality measure directly to the attribute. A set of observations is pure if all the 
observations belong to the same class, whereas the set is maximally impure if the proportion of observations 
in all classes is uniform. The impurity function measures the impurity of a set of observations and achieves 
the minimum for a pure set, and maximum for a maximally impure set. Impurity functions are mainly used 
in selecting the best attribute to further split the current node. The most frequently-used impurity measures 
in decision tree induction are:  

• Information Gain and Information Gain Ratio criterion (Quinlan, 1993) 
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• Gini Index (Breiman et al., 1984) 
• Twoing rule (Breiman et al., 1984) 
• Chi-square statistics (Mingers, 1989a) 
• Entropy (Apte and Weiss, 1997) 

(1) Information Gain and Information Gain Ratio Criterion 

Quinlan (1993) proposed the use of the information gain and information gain ratio, based on a classic 
formula from information theory that measures the theoretical information content of a code as 
− ∑ 𝑝𝑝𝑖𝑖 log(𝑝𝑝𝑖𝑖) where 𝑝𝑝𝑖𝑖 is the probability of the ith message and the term − ∑ 𝑝𝑝𝑖𝑖 log(𝑝𝑝𝑖𝑖) is a measure of 
homogeneity of a node and also referred as Entropy (Apte and Weiss, 1997). The value of this measure 
depends on the likelihood of the various possible messages. If they are all equally likely (i.e., the 𝑝𝑝𝑖𝑖 are 
equal), there is the greatest amount of uncertainty and the information gained will be greatest. The less 
equal the probabilities, the less information would be gained. The value of the function also depends on the 
number of possible messages (Quinlan, 1993). 

For a given training set T, selecting one case at random and saying that it belongs to some class 𝐶𝐶𝑖𝑖, has 
the following probability of being correct:  

𝑓𝑓((𝐶𝐶𝑖𝑖, 𝑇𝑇) |𝑇𝑇|⁄ ) (7-27) 

where: 𝑓𝑓(𝐶𝐶𝑖𝑖, 𝑇𝑇) stands for the number of cases in T that belongs to class 𝐶𝐶𝑖𝑖 and |𝑇𝑇| denotes the number 
of cases in T. The information gained by splitting T using a test Z that can partition T into k outcomes can 
be measured by the quantity: 

gain (𝑍𝑍) = info(𝑇𝑇) − info𝑧𝑧(𝑇𝑇) (7-28) 

This criterion is called the gain criterion (Quinlan, 1993). The gain criterion, select a test to maximise 
the information gain. This is also known as the "mutual information between the test Z and the class" (Quin-
lan, 1993). 

The drawback of the gain criterion is that it has a strong bias towards the tests with many outcomes. The 
bias inherent in the gain criterion can be rectified by normalization in which the apparent gain with many 
outcomes is adjusted. If the information content of a message pertaining to a case that indicates not the class 
to which the case belongs but the outcome of the test then, by analogy with the definition of info (T) (Quin-
lan, 1993), the information generated by dividing Z into n subsets is given by: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑍𝑍) = − ∑ �𝑇𝑇𝑗𝑗�
|𝑇𝑇| × 𝑙𝑙𝑙𝑙𝑙𝑙2 ��𝑇𝑇𝑗𝑗�

|𝑇𝑇| �𝑘𝑘
𝑗𝑗=1 . (7-29) 

This gives an idea of the potential information generated by dividing Z into k subsets, whereas the gain 
measures the information useful for classification that arises from the same division. Then, the ratio gain 
ratio (Z) = gain (Z)/split info (Z) provides the proportion of information generated by a split that is useful 
for classification and used in C4.5, an extensively used decision tree software for remote sensing classifi-
cations. These criteria recursively split the T so as to maximize the gain ratio at each node of the tree. This 
procedure continues until each terminal node contains only observations from a single class, or further 
splitting yields no increase in information. 
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(2) The Gini Index 

The Gini index is widely used in decision tree software and used in remote sensing studies.  Breiman et 
al. (1984) proposed this attribute selection measure called the Gini index of diversity. The Gini function 
measures the impurity of an attribute with respect to the classes. The general Gini function for a given 
training set T can be defined by:  

∑ ∑ (𝑓𝑓 (𝐶𝐶𝑖𝑖, 𝑇𝑇) |𝑇𝑇|⁄ )𝑗𝑗≠𝑖𝑖 �𝑓𝑓�𝐶𝐶𝑗𝑗, 𝑇𝑇� |𝑇𝑇|⁄ � (7-30) 

The Gini index is simple and can be computed quickly. This index uses the rule that assigns an object 
selected at random from the node to the class i with probability f ( iC , T)/ |T|, instead of using the plurality 
rule to classify objects in a node. 

(3) The Twoing Rule 

The twoing rule has been less commonly used in remote sensing studies, and at least one study found it 
to be inferior for that purpose than the Gini index (Zambon et al., 2006).  It separates the classes into two 
super-classes, 𝐶𝐶1 = {𝑗𝑗1, … … , 𝑗𝑗𝑛𝑛}, and 𝐶𝐶2 = 𝐶𝐶 − 𝐶𝐶1 (Breiman et al., 1984). For a given split of a node, the 
decrease in impurity that results from this split of the node can be computed as: 

(|𝑇𝑇𝐿𝐿| |𝑇𝑇|⁄ ) ∗ (|𝑇𝑇𝑅𝑅| |𝑇𝑇|⁄ ) ∗ (∑ |𝐿𝐿𝑖𝑖 |𝑇𝑇𝐿𝐿| − 𝑅𝑅𝑖𝑖 |𝑇𝑇𝑅𝑅|⁄⁄ |𝑖𝑖 )2 (7-31) 

where: |𝑇𝑇𝐿𝐿| and |𝑇𝑇𝑅𝑅| are the number of examples on the left and right of a split at the node and 𝐿𝐿𝑖𝑖 and  𝑅𝑅𝑖𝑖 
are the number of examples in class i on the left and right side of the split. This decrease in impurity is 
known as the twoing value. The twoing value is actually a goodness of fit measure rather than an impurity 
measure. 

(4) The Chi-square Contingency Table Statistic  

This method of attribute selection is based on traditional statistics for measuring the association between 
two variables in a contingency table (Mingers, 1989a). This approach works by comparing the observed 
frequencies with the frequencies that one would expect if there were no association between the attributes. 
The resulting statistic is distributed approximately as chi-square, with larger values indicating greater asso-
ciation. The basic equation for this function is 

𝜒𝜒2 = ∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖−𝐸𝐸𝑖𝑖𝑗𝑗�
2

𝐸𝐸𝑖𝑖𝑖𝑖
  (7-32) 

where: 𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 𝑁𝑁⁄ , i.e., the expected value for each cell in the contingency table. A study by Pal and 
Mather (2003) used MS data to examine the performance of four attribute selection measures in terms of 
classification accuracy. They used a univariate DTC with error-based pruning. A total of 2700 data for 
training and 2037 for testing were used. Figure 7-46 provide a plot of classification accuracy achieved by 
different attribute selection algorithms and confirms the findings of Breiman et al. (1984) and Mingers 
(1989a) that classification accuracy is not much affected by the choice of attribute selection measure, 
whereas another study by Zambon et al. (2006) compared four attribute splitting rules (i.e., gini, entropy, 
class probability, and twoing) across diverse remote sensing-based datasets (e.g., multispectral moderate 
and high-spatial resolution and hyperspectral) and found differences up to 6% overall accuracy, especially 
with hyperspectral data. 
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Figure 7-46. Variation in classification accuracy with different attribute selection measure. 

The final stage in top-down DTC design is the determination of when splitting should be stopped. Initial 
approaches to selecting terminal nodes were of the form where a threshold β> 0 is set, and node t is declared 
as a terminal node if max

𝑆𝑆∈𝑇𝑇
∆𝑖𝑖(𝑆𝑆(𝑡𝑡), 𝑡𝑡) < 𝛽𝛽 . Where ∆i (S, t) is decrease in impurity because of the split S at 

every internal node t (Breiman et al., 1984). The problem with this rule is that partitioning might be halted 
too soon at some nodes and too late at some others. Breiman et al. (1984) suggested that the stopping rule 
has a greater impact on the performance of DTC than the splitting rules and suggested that, instead of using 
a stopping rule, one should continue splitting until all the terminal nodes are pure, or nearly pure, thus 
generating a large tree. This large tree is then selectively pruned, producing a decreasing sequence of sub-
trees. Finally, select the subtree that has the lowest estimated misclassification rate. This general approach 
has become the commonly used method. 

The bottom-up approach of creating a decision tree uses a distance measure, such as the Mahalanobis 
distance (Landeweered et al., 1983), to construct a binary tree using training dataset. The pairwise distances 
between a priori defined classes are computed, and the two classes with the smallest distance are merged 
to form a new group in each step. The mean vector and covariance matrix for each group are computed 
from training data in that group, and the process is repeated until a single group is left at the root. The hybrid 
methods of designing a DTC use both the bottom-up and top-down approaches sequentially and have been 
found to have several advantages over both top-down and bottom-up approaches (Kim and Landgrebe, 
1991). They are found to converge to classes of informational value, because the cluster initialization pro-
vides early guidance in this direction, while the straightforward top-down approach does not guarantee such 
convergence. The hybrid approach can also use overlapping classes, which is not possible with bottom-up 
approach. Another approach called as growing-pruning method (Gelfand et al., 1991) of constructing a 
DTC was proposed so as to deal with the problem of limited data sets. This approach works by dividing the 
whole dataset into two subsets of nearly equal size. A tree is grown using the first data subset until pure 
terminal nodes are reached. A pruned sub-tree is then selected by minimizing an estimate of the error rate 
based on the second data subset over all pruned sub-trees. This procedure is then iterated, using the second 
data subset to grow a tree starting from the terminal nodes of the previously selected pruned sub-tree and 
continued until the sequence of selected pruned sub-trees converges. 

9.3.4 Classification Algorithms Based on Data Splitting Method 
Decision tree classification algorithms can also be divided based on the criteria of using a uniform or a 

heterogeneous set of algorithms to split the data at internal nodes. Traditional approaches of designing a 
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decision tree are based on homogenous classification models for which a single algorithm is used to esti-
mate each split. Generally speaking, there are two types of decision trees based on homogenous hypothesis 
space: univariate decision trees (i.e., by far the most commonly used in remote sensing studies) and multi-
variate decision trees. 

A hybrid hypothesis space combines different homogenous hypothesis spaces to construct a decision 
tree. The learning algorithms used to estimate a hybrid tree allow different splitting methods to be applied 
within different subtrees of the larger decision tree (Friedl and Brodley, 1997). 

9.3.4.1 Univariate Decision Trees 
A univariate decision tree is a type of decision tree in which the decision boundaries at each node of the 

tree are defined by a single feature of the input data (Swain and Hauska, 1977). The data at each internal 
node of a univariate decision tree are split into two or more subsets on the basis of a test on a single feature 
(i.e., attribute) of the input data, and each test is required to have a discrete and finite number of outcomes. 
Thus, a univariate decision tree classification proceeds by recursively partitioning the input data until a 
terminal node is reached, and the class label associated with the node is then assigned to the observation. 
The specific values of the decision boundaries in a univariate decision tree are estimated empirically from 
the training data. In the case of continuous data, a boolean test of the form 𝑋𝑋𝑖𝑖 > 𝑏𝑏 is estimated at each 
internal node of a decision tree from the training data, where 𝑋𝑋𝑖𝑖 is a feature in the data space and b is a 
threshold in the observed range of 𝑋𝑋𝑖𝑖. The value of b can be estimated by using some objective measure 
that maximises dissimilarity or minimises similarity of the descendent nodes. 

9.3.4.2 Multivariate Decision Trees 
In case a class structure depends on combination of features, performance of a univariate decision tree 

will decline (Breiman et al., 1984; Utgoff and Brodley, 1990; Brodley and Utgoff, 1992). In problems 
where a linear structure is suspected, the set of allowable splits is extended to include linear combinations 
of features in the input data. Multivariate decision trees are similar to univariate decision trees except that 
the splitting test at each node is based on more than one feature of the input data. In one approach, set of 
linear discriminant functions is estimated at each interior node of a multivariate decision tree, and the co-
efficients for the linear discriminant function at each interior node are estimated from the training data. The 
test at each node has the form: 

∑ 𝑎𝑎𝑖𝑖𝑋𝑋𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖  (7-33) 

where 𝑋𝑋𝑖𝑖 represent the features in the data space, a is the vector of coefficients of the linear discriminant 
functions, and c is a threshold value. An alternative approach is the logistic model trees, where the split at 
each node is determined by a logistic regression model (Landwehr et al., 2005).  Multivariate decision trees 
are often found to be more compact and can also be more accurate (Brodley and Utgoff, 1992; Lawrence 
and Moran, 2015). The higher complexity of multivariate decision tree algorithms introduces a number of 
factors that affect their performance. First, different algorithms can be used to split the data at internal 
nodes, whereas each method can perform differently depending on the data and classification problem. 
Second, as the split at each internal node of a multivariate decision tree is based on one or more features, 
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so different feature selection algorithms can be used to perform feature selection at each internal node 
within a multivariate decision tree. 

9.3.4.3 Hybrid Decision Tree Classifier 
A hybrid decision tree is a decision tree in which different classification algorithms may be used in 

different subtrees of a larger tree. The implementation of hybrid decision tree based classification approach 
is based on the fact that different algorithms exhibit selective superiority during classification (Friedl and 
Brodley, 1997) and the optimal classification algorithm depends on the data set to be classified. If different 
classification algorithms are allowed within the framework of a single hybrid tree, the data set can be par-
titioned in a fashion such that the different classifiers can be applied to different subsets of the data. 

9.3.5 Prunning Decision Trees 
Decision tree classifiers divide the training data into subsets, until each subset contains data belonging 

to a single class. This procedure of data division usually results in a very large and complex tree. As training 
samples might not be perfectly representative of the population from which they are sampled, fitting a 
decision tree until all terminal nodes contain data for a single class potentially overfits any noise in the 
training data. This can lead to poor performance by the classifier on data not used to create the model. 
Alternatively, even if overfitting does not take place, the creation of a large, complex tree might result in a 
non-parsimonious model, where a large portion of the tree adds very little, if any, explanatory value. These 
problems of overfitting and lack of parsimony can be reduced by pruning the original tree, which will lead 
improved performance by the classifier (Pal and Mather, 2003). 

A decision tree is not usually simplified by deleting the whole tree in favor of a terminal node. Instead, 
parts of the tree that do not contribute to classification accuracy on unseen cases are removed, thus produc-
ing a less complex and more comprehensible tree. Two different approaches are used to produce a simpli-
fied decision tree (Breiman et al., 1984): 

• To remove retrospectively some part of the tree structure built by recursive partitioning 
• By deciding not to divide a set of training data any further 

First approach of simplifying the decision tree involves allowing the tree to grow to its full depth, when 
all leaves contain data for a single class. This is often modified to allow some heterogeneity, by limiting 
the number of observations at terminal nodes to a small number, but certainly more than one. This fully-
grown tree is then pruned. This method requires more computation in building parts of the tree that are 
subsequently discarded, but this cost is offset by the benefits due to more thorough exploration of possible 
partitions. Pruning a decision tree will result in terminal nodes that do not necessarily contain training data 
from a single class, leading to higher misclassification error of training data. Instead of a class associated 
with a terminal node, there will be a class distribution specifying, for each class, the probability that training 
data at the terminal node belongs to that class. 

The second approach is generally called stopping or pre-pruning with the advantage of not wasting time 
in assembling a tree structure that is not used in the final simplified classifier. In-spite of its simplicity, 
major problem with this approach is to specify a correct stopping rule (Breiman et al., 1984). If the threshold 
value used to stop the growth of tree is too high it can terminate division before the benefits of subsequent 
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splits become evident, while too low a value results in little simplification of the tree. The example below 
shows a decision tree generated by using a univariate decision tree (see, Figure 7-47) using a two-class 
dataset before and after pruning. 

 
Figure 7-47. Example of decision tree generated by using a univariate decision tree (C4.5) including a two-class dataset 
before and after pruning.  

Decision trees are usually simplified by removing one or more subtrees and replacing them with leaves. 
The process of pruning can be started from the bottom of the tree by examining each subtree. This procedure 
is called the bottom-up approach. Alternatively, in the top-down approach, the process starts from the root 
and moves towards the leaves of the tree by examining the branches. The tree is pruned if replacement of a 
subtree with a terminal node would lead to a lower predicted error rate. The error rate for whole tree de-
creases as the error rate of any of its subtrees is reduced, and this process will lead to a tree whose predicted 
error rate is minimal with respect to the allowable form of pruning. As mentioned earlier, pruning always 
increases error on training data, so it is necessary to have a suitable technique for predicting error rates. 

Two families of techniques to predict error rates of a pruned tree are available. In the first family, the 
error rate of the tree and its subtrees is predicted by using a new data set that is separate from the training 
data. Since these cases were not examined at the time the tree was constructed, the estimate obtained from 
them can be independent, depending on how they were collected relative to the training data. This approach 
works well if sufficient data are available. The second approach uses training data itself to predict these 
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error rates and pruning the tree, generally through a cross validation approach. The important techniques 
for pruning the decision tree are as follows: 

• Cost-complexity pruning (Breiman et al., 1984) 
• Reduced-error pruning (Quinlan, 1987) 
• Pessimistic pruning (Quinlan, 1993) 
• Error based pruning: (Quinlan, 1993) 
• Critical value pruning (Mingers, 1989b) 

9.3.5.1 Cost-complexity Pruning 
In cost-complexity pruning (CCP), the predicted error rate of a tree is modelled as the weighted sum of 

its complexity and error on training data, with the separate data set being used primarily to determine an 
appropriate weighting. This technique is a two-stage process in which first stage involves in creating a 
sequence of sub-trees from original decision tree generated by using training data set. Each sub-tree is 
obtained by replacing one or more sub-trees of previous sub-tree with leaves until the final tree is just a 
terminal node. 

In the second stage of this process, the best tree from the sequence of sub-trees with respect to the pre-
dictive accuracy criterion is selected. Two different methods can be used to estimate the true error rate of 
each tree in the family. The first method is based on cross-validation, whereas the other method uses an 
independent pruning data set. In case the test set containing 𝑁𝑁′ cases are used for classification with each 
sub-tree and 𝐸𝐸′ be the minimum number of errors observed with any sub-tree, with the standard error of 𝐸𝐸′ 
being given by:  

𝑆𝑆𝑆𝑆(𝐸𝐸′) =  �𝐸𝐸′ × (𝑁𝑁′ − 𝐸𝐸′) 𝑁𝑁′⁄  (7-34) 

The smallest sub-tree whose number of errors on test dataset does not exceed 𝐸𝐸′ +  𝑆𝑆𝑆𝑆(𝐸𝐸′) is selected as 
final tree.  

9.3.5.2 Reduced-error Pruning  
This method uses a separate test dataset to assess the error rates of the tree and its components. In this 

method, the original tree classifies all the test data. The changes in misclassification over the test data that 
would occur if a sub-tree is replaced by the best possible terminal node are examined. If the new tree would 
give an equal or smaller number of errors, and if sub-tree contains no subsequent sub-tree with the same 
property, then the sub-tree is replaced by the terminal node. The process continues until no further replace-
ments would increase the number of errors over the test set. 

Similar to the CCP, this method generates a sequence of trees. The final tree is the most accurate and 
smallest sub-tree of the original tree with respect to the test data set. This method of pruning the decision 
tree would be quite effective when training and test data are abundant but can lead to poorer-performing 
trees when data are scarce.  

9.3.5.3 Pessimistic Pruning 
This approach of pruning the decision tree increases the estimated error rates of subtrees to reflect the 

size and composition of the training subsets and replaces every subtree whose predicted error rate is not 
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significantly lower than that of a terminal node (Quinlan, 1987). It aims to avoid the necessity of a separate 
test data set or cross validation as required by reduced error pruning and cost complexity pruning. A conti-
nuity correction for the binomial distribution is used to obtain a more realistic estimate of the misclassifi-
cation rate than using error ratio determined by training dataset. 

The continuity correction obtained this way can still produce an optimistic error rate on training dataset. 
To avoid this problem, Quinlan (1993) suggested pruning the subtree unless its corrected number of mis-
classifications is lower than that for the node by at least by one standard error of reference tree. As this 
algorithm evaluates each node starting at the root of the tree (i.e., top-down approach), it does not need to 
consider nodes that are in subtrees that have already been pruned. 

9.3.5.4 Error-based Pruning  
This is an improved pessimistic pruning method and based on a far more pessimistic estimate of the 

expected error rate and implemented in the C4.5 and C5.0 algorithms (Quinlan, 1993). Unlike the pessi-
mistic pruning method, this method visits the nodes of the full-grown tree according to a bottom-up, post-
order traversal strategy instead of a top-down strategy. 

9.3.5.5 Critical Value Pruning  
This method relies on estimating the importance of a node from classifications done at the tree creation 

stage. In creating the original tree, a goodness of split measure determines the attribute at a node. The value 
of the measure reflects how well the chosen attribute splits the data between the classes at the node. The 
pruning method specifies a critical value and prunes those nodes that do not reach the critical value, unless 
a node further along the branch does reach that value. The larger the critical value selected, the greater the 
degree of pruning and the smaller the resulting tree. In practice, a series of pruned trees is generated using 
increasing critical values (Mingers, 1989b). A single tree can be chosen in the same way as for cost-com-
plexity pruning. The particular critical value used depends on the measure used in creating the tree. A study 
by Pal and Mather (2003) suggests that the choice of suitable pruning method is an important factor in the 
design of a DTC (Figure 7-48). They compared C4.5 decision tree with a maximum likelihood classifier in 
terms of classification accuracy and suggested that C4.5 classifier produces a higher level of classification 
accuracy than maximum likelihood classifier. Figure 7-49 provides classified images of the study area ob-
tained by using a C4.5 decision tree and maximum likelihood classifiers. 

Another approach for pruning DTC considers a stopping criterion while tree is being grown. In spite of 
its simplicity, major problem with this approach is to specify a correct stopping rule (Breiman et al., 1984). 
If the threshold value used to stop the growth of tree is too high, it can terminate division before the benefits 
of subsequent splits become evident, while too low a value results in little simplification of the tree. 
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Figure 7-48. Variation of classification accuracy with the choice of pruning method. 

 

 
Figure 7-49. Classified image of the study area using (a) C4.5 decision tree classifier and (b) maximum likelihood 
classifier. 

9.3.6 Problems Using Decision Tree Classifiers 
Decision tree classifiers are an effective and general machine learning tool and have been used inten-

sively in the field of remote sensing image classification. Like other classifiers based on different assump-
tions, these classifiers inevitably have some limitations that can have an impact on their performance. The 
factors affecting the DTCs can be summarized as: 

• Type of classifier, whether it is univariate or multivariate. 
• Attribute selection measure used in designing a classifier. 
• Pruning methods used to prune the tree. 
• Number of training observations required for the optimum classification results. 
• Balance of training observations among classes. 
• The level of errors in the training data. 
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Few studies report the effects of these factors on land cover classification accuracy. Friedl and Brodley 
(1997) studied the behavior of different DTCs, such as univariate, multivariate, and hybrid classifiers, for 
land cover classification. They found that hybrid decision classifiers outperform other types of decision 
trees. Pal and Mather (2003) suggest that it is the pruning method that affects the classification accuracy 
more than attribute selection methods. On the other hand, Zambon et al. (2006) found that attribute selection 
methods could have significant effects on final accuracies, and Lawrence and Moran (2015) found that 
logistic model trees performed statistically significantly better than univariate trees across 30 remote sens-
ing-based datasets.  

Both inaccuracies and outliers in the training data can adversely affect decision trees, because such data 
can potentially account for a large portion of the variability in the data (Friedman, 2001). Decision tree 
algorithms can, therefore, concentrate on correctly classifying this erroneous or extreme data to the detri-
ment of correctly classifying other data. This type of data is typical in remote sensing training data where, 
for example, a training polygon for rangeland containing 50 pixels might be expected to have several pixels 
with a predominance of bare ground. Finally, the presence of an unbalanced data set with some classes 
more heavily represented than others can affect the performance of decision trees, because the sparsely 
represented classes do not account for substantial variance and can therefore fail to be separated from other 
classes. Lawrence and Moran (2015) found that decision trees were particularly poor at classifying rare 
classes when compared to several other classifiers using 30 remote sensing-based datasets. 

9.3.7 Decision-tree-based Ensemble Classifiers 
Several methods, including boosting and bagging, have recently been developed to address the short-

comings of classification tree algorithms (Bauer and Kohavi, 1999; Friedl et al., 1999; DeFries and Chan, 
2000; Pal, 2007). These methods, sometimes called voting or ensemble methods, operate by generating 
multiple trees and classifying observations based on a plurality vote of the multiple trees (Opitz and Maclin, 
1999). The primary difference among these methods is how the multiple trees are developed. Two major 
types of methods have been developed, those that develop new classification trees based on the results of 
previous classification trees (i.e., boosting methods) and those that rely on subsets of the training data to 
develop new classification trees (i.e., bagging methods) (Bauer and Kohavi, 1999). Many variants of these 
basic methods exist (Opitz and Maclin, 1999).  

Boosting methods have generally produced the greatest increases in accuracy, although under certain 
circumstances lower accuracies can result (Bauer and Kohavi, 1999; Opitz and Maclin, 1999). Boosting 
methods begin by producing a standard classification tree (Freund and Schapire, 1996; Freund et al., 1999). 
Training data are then assigned weights in such a way to give more weight to incorrectly classified data 
given greater weight. The process is repeated for a specified number of iterations, and the set of resulting 
classification trees vote on the correct classification. Boosting has been shown to improve classification 
tree performance in many cases, while performing at least as well as classification tree algorithms in most 
remaining cases (e.g., Freund and Schapire, 1996; Freund et al., 1999; Opitz and Maclin, 1999). One boost-
ing program, C5.0, has found wide use in remote sensing, both for GAP analysis and the U.S. National 
Land Cover Database.  Boosting does not, however, assist with inaccurate training data, outliers, or unbal-
anced data sets. ‘‘Outliers,’’ training data that are incorrectly labeled or that are especially hard to 
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distinguish from other classes, for example, can have an adverse effect on boosting, because the algorithm 
will place emphasis on these observations, since they will be the worst classified and given the greatest 
weight in the boosted classification trees (Bauer and Kohavi, 1999; Freund and Schapire, 1996; Freund et 
al., 1999; Opitz and Maclin, 1999).  

Bagging methods are bootstrapping approaches where multiple classification trees are developed by re-
peatedly selecting random subsets of the original training data (Breiman, 1996). A user-specified number 
of iterations is performed and, as in boosting, observations are classified based on the most common pre-
diction from among the multiple classification trees. In a comparison of traditional classification trees, bag-
ging, and boosting, bagging consistently produced higher classification accuracies than single classification 
trees, but was often less accurate than boosting (Opitz andMaclin, 1999). 

RandomForest is a bagging operation, where multiple classification trees are developed, each one based 
on a random subset of the training data observations (Breiman, 2001; Pal, 2005; Lawrence et al., 2006). In 
addition to this normal bagging function, in RandomForest, each classification tree split is based on a ran-
dom subset of the input variables, in our case spectral information. The multiple classification trees then 
vote on the correct classification. RandomForest has been used successfully in numerous studies (Pal, 2005; 
Lawrence et al., 2006). RandomForest has several advantages over other tree-based approaches (Breiman, 
2001; Liaw and Wiener, 2002). Pruning of trees is not necessary and the approach is robust to overfitting, 
a problem that plagues classification trees. It is easier to use than many other ensemble classification meth-
ods, with the only parameters to be set being the number of trees grown and the number of variables used 
at each tree split; however, it has been shown to be not very sensitive to the setting of either of these pa-
rameters. It also is claimed that RandomForest can provide a reliable estimate of error using the data that is 
randomly withheld from each iteration of tree development (i.e., the ‘‘out-of-bag’’ portion), making it un-
necessary to have an independent accuracy assessment data set (Breiman, 2001).  

Stochastic gradient boosting (SGB) is a hybrid of the boosting and bagging approaches (Friedman, 2001, 
2002; Lawrence et al., 2004; Baker et al., 2006). First, instead of using the entire data set to perform the 
boosting, a random sample of the data is selected at each step of the boosting process. Second, boosting is 
based on a steepest gradient algorithm, with the gradient defined by deviance (i.e., twice the binomial neg-
ative log-likelihood) as a surrogate for misclassification rates. Finally, instead of developing full classifica-
tion trees at each stage of the boosting procedure, relatively small trees are developed, with 6 terminal nodes 
being a common size. Each tree developed during the process, often 100–200 trees, is summed, and each 
observation is classified according to the most common classification among the trees. The combined effect 
of these differences from other boosting methods reduces SGBs sensitivity to inaccurate training data, out-
liers, and unbalanced data sets. SGB has been shown in most cases to produce substantially higher accura-
cies with independent data (i.e., data that were not used to develop the trees) than either CTA or other 
boosting methods. For instance, in a comparison between single, univariate decision trees and SGB for 
mapping wetland and riparian area with Landsat imagery, SGB was able to better detect the wetland and 
riparian areas, achieving 86% overall accuracy compared to 73% for the simple decision tree (Baker et al., 
2006). Finally, SGB also is highly resistant to overfitting. 

In a comparison of univariate, single decision trees to random forests and C5.0 across 30 datasets, random 
forests and C5.0 consistently and significantly outperformed the single decision trees (Lawrence and 
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Moran, 2015). Random forests slightly outperformed C5.0, although the difference was statistically signif-
icant. More recent reported results across 45 remote sensing datasets, with comparisons among 14 classifi-
cation algorithms, also support higher accuracies from these ensemble methods (Lawrence, 2017). 

9.4 Fuzzy Clustering 

9.4.1 Introduction 
Satellite acquired imagery has been used for land use and land cover classification and estimation of 

fractional cover, including vegetation fraction and impervious surface fraction. Numerous techniques have 
been developed for extracting fractional images. Among those techniques, linear spectral mixture analysis 
(LSMA) is the algorithm which has been widely applied; recently with a fair amount of success (Lee and 
Lathrop, 2005; Lu and Weng, 2004, 2006; Wu, 2004; Wu and Murray, 2003). Although LSMA has been 
used widely, it contains fundamental limitations (Foody et al., 1997). LSMA is based on an assumption that 
mixtures of reflectance of land cover features are linear. However, when scattered photons interact with 
multiple components, the mixture becomes non-linear (Gilabert et al., 2000; Roberts et al., 1993), such as 
multiple scattering by overstory, understory vegetation and soil. In many cases, the nonlinearity of mixture 
is significant and cannot be neglected (Ray and Murray, 1996; Roberts et al., 1993), and LSMA is sensitive 
to non-linear interactions (Linderman et al., 2004). As a result, to apply LSMA, non-linear mixtures have 
to be ignored or assumed to be insignificant (Gilabert et al., 2000; Roberts et al., 1993). The second draw-
back of LSMA is related to endmember selections. The number of endmembers is determined by the di-
mensionality of the images and correlations between bands (Small, 2001). The limited number of endmem-
bers reduces the capability of un-mixing due to the image spectra being under-sampled (Small, 2001). 
Endmember selection is a challenge also because of within-class spectral variability (Foody et al., 1997). 
Each land cover class could be located in different places within the feature space (Atkinson and Tatnall, 
1997), which could make the selected endmembers to not represent the spectra of each land cover class 
thoroughly. 

To tackle these issues, non-linear un-mixing techniques need to be developed. Fuzzy classification may 
be used as a non-linear un-mixing technique, which has been widely applied in previous research, including: 
(1) land use/land cover classifications (Fisher and Pathirana, 1990; Foody, 1996, 1998; Foody and Cox, 
1994; Lee and Lathrop, 2002; Mohan et al., 2000; Tang et al., 2007; Zhang and Foody, 1998, 2001); (2) 
Vegetation classification (Filippi and Jensen, 2006; Tapia et al., 2005; Townsend, 2000); (3) Change anal-
ysis (Okeke and Karnieli, 2006a,b); (4) Flooded area mapping (Amici et al., 2004); (5) Cloud cover classi-
fication (Ghosh et al., 2006); and (6) Geology (Ranjbar and Honarmand, 2004). As an un-mixing technique, 
fuzzy classification has no assumption about the nature of the mixing, considering linear mixing as a special 
case of the non-linear mixing. Therefore, it might be hypothesized that fuzzy classification can achieve 
better estimation of fractional images than LSMA. 

9.4.2 Fuzzy Classification 
Fuzzy sets are classes without sharp boundaries and the transition from non-membership to membership 

is gradual. A fuzzy set is measured by a fuzzy membership grade (possibilities) which ranges from 0.0 to 
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1.0, indicating from a 0% membership to 100% membership. Fuzzy sets can provide better representation 
for geographical information. Both information classes and spectral classes can be represented as fuzzy 
sets. Spectral space can be divided into fuzzy sets without sharp boundaries, which can be mathematically 
expressed in Equation 7-35 as: 
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where: F1, F2… Fm represent the spectral classes, X is the whole pixels, m is the number of the classes, x 
is the pixel measurement vector, and is the membership function of the fuzzy set Fi ( ) (Wang, 
1990). 

To calculate the fuzzy representation for each spectral class, the probability measures of fuzzy events 
was applied. The mathematical expression can be defined in Equation 7-36 as: 

( ) dPxfAp A )(∫Ω
=  (7-36) 

where: fA is the membership function of the spectral class A ( ), is the spectral space, and 
p(A) is the probability measure of the spectral class A (Wang, 1990). 

Then, fuzzy signatures can be extracted from original images using a chosen algorithm (Wang, 1990). 
Fuzzy mean and fuzzy covariance can be calculated for each information class to yield fuzzy signatures. 
The mathematical expression of fuzzy mean is defined in Equation 7-37 as: 
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where: n is the total number of training pixel measurement vectors, ix  is a training pixel measurement 
vector ( ni ≤≤1 ), and cf  is the membership function of class c. 

The mathematical expression of fuzzy covariance is defined in Equation 7-38 as: 
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where: *
cµ is the fuzzy mean, n is the total number of training pixel measurement vectors, ix  is a training 

pixel measurement vector ( ni ≤≤1 ), and cf  is the membership function of class c. 
The membership function for class c can be expressed in Equations 7-39 and 7-40 as: 

iFf mi ≤≤1

( ) 10 ≤≤ xf A Ω
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where: N is the dimension of the pixel vectors, and m is the number of the classes ( mi ≤≤1 ). 
Fuzzy signatures can then be inputted into a fuzzy classifier to calculate the fuzzy membership of each 

information class for each pixel. The membership value is determined by the standardized Euclidean dis-
tance of each pixel to the mean spectra of a signature on each band using a sigmoidal membership function. 
Although there are many types of membership functions, such as sigmoidal, J-shaped, and linear, the sig-
moidal membership-function is the most commonly used in fuzzy set theory. The sigmoidal membership 
function is calculated in Equations 7-41 through 7-44 as: 

αµ 2cos=  (7-41) 

where: µ is the sigmoidal membership function, in the case of a monotonically decreasing function: 

α = (x-point c)/(point d-point c)*pi/2 (7-42) 

when: x < point c, µ =1; 
where: in the case of a monotonically increasing function: 

α = (x-point a)/(point b-point a)*pi/2 (7-43) 

when: x > point b, µ =1. (Points a, b, c, and d refer to the control points) 
The fuzzy classifier provides fuzzy set membership images corresponding to each class as well as an 

image of classification uncertainty. Classification uncertainty indicates the degree to which no class clearly 
stands out above others in the assessment of fuzzy set membership of a pixel. It is calculated in Equation 
7-44 as: 

Classification Uncertainty

n

n
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11
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1
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−
−=  (7-44) 

where: max is the maximum set membership value for the pixel; sum is the sum of the fuzzy set mem-
bership value for the pixel; and n is the number of classes (i.e., signatures) (Eastman, 2006). 

In the study conducted by Hu and Weng (2011), the fuzzy classification was conducted to extract imper-
vious surfaces. Training data were manually selected from the original imagery. Training in the fuzzy clas-
sifier was similar to training site selection in traditional supervised classification. The difference was that 
the training site needed to be homogeneous for conventional supervised classification, which was not re-
quired for the fuzzy classifier. For each image, thirty training samples for each land cover class, including 
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high albedo, low albedo, soil, and vegetation, were manually selected on the original imagery. Each sample 
had different size and contained a set of training pixels, ≥ than 30 pixels. Four fuzzy membership images 
plus one classification uncertainty image were yielded. Four fuzzy membership images included a high 
albedo image, a low albedo image, a vegetation image, and a soil image. An impervious surface fraction 
image was then generated by adding two fuzzy membership images (i.e., high albedo and low albedo). 
Spectrally confused materials (e.g., water, shade, and dry soils) were removed to improve the quality of the 
impervious surface map using the method proposed by Wu and Murray (2003). Figure 7-50 illustrates the 
fuzzy membership images. 

 
Figure 7-50. Fuzzy membership images of Indianapolis derived from ASTER images (Hu and Weng, 2011). The pixel 
value indicates the fuzzy membership of a class within that pixel. 

Although the fuzzy classification can yield better results of impervious surface estimation than LSMA, 
the quality of fuzzy signatures relies heavily on identifying the fuzzy membership grade for all classes in 
each training site. Some important parameters need to be appropriately defined, such as z-score, which may 
impact significantly the accuracy of the final results. The fuzzy set membership was determined by the 
distance of a pixel to the signature means, and the z-score value was the distance where the fuzzy set mem-
bership value became zero. The fuzzy set membership at the signature means is one. If the distance in-
creased, the fuzzy set membership would decrease until it became zero, where the z-score distance was 
reached. The z-score value was determined by the quality of the signature and the width of each class. If 
the signature was pure and the class width small, a small z-score should be selected; otherwise, a large z-
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score would be necessary. Compared to the fuzzy classifier, LSMA is a simpler model which is both time 
and computation efficient. Therefore, LSMA has recently become widely accepted as a sub-pixel classifier. 

9.4.2.1 Kernel Fuzzy C-means Clustering 
Using time series satellite imagery for land cover classification and change detection has attracted in-

creased attention in recent years (Zhu and Woodcock, 2014). The temporal domain of satellite imagery has 
showed its advantages in resolving spectral confusion between classes with similar spectral characteristics 
(Schneider, 2012; Bhandari et al., 2012). Landsat time series data have been applied successfully to map 
dynamics of urban areas due to their long record of continuous measurement at effective spatial resolution 
and temporal frequency (Gao et al., 2012; Sexton et al., 2013; Li et al., 2015; Zhang and Weng, 2016a). 
However, these methods focused on spectral differences or temporal consistency after classification. Little 
attention was paid to temporal data mining methods to differentiate urban areas from other land cover using 
dense time series of Landsat images. 

Time series clustering can be effective in time series data mining (Liao, 2005; Fu, 2011). Kernel fuzzy 
C-means (KFCM), proposed by Zhang and Chen (2003), has shown potential to provide a more robust 
signal-to-noise ratio and less sensitivity to cluster shapes in comparison to other clustering algorithms (Du 
et al., 2005). Given time series data 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, ⋯ , 𝑥𝑥𝑛𝑛}, 𝑥𝑥𝑘𝑘 ∈ 𝑅𝑅𝑑𝑑  (𝑘𝑘 = 1,2, ⋯ , 𝑛𝑛), 𝑑𝑑 was temporal dimen-
sion, 𝑛𝑛 was the number of samples, KFCM partitions 𝑋𝑋 into 𝑐𝑐 fuzzy subsets by minimizing the following 
objective function shown in Equation 7-45. 

𝐽𝐽𝑚𝑚(𝑈𝑈, 𝑉𝑉) = 2 ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚(1 − 𝐾𝐾(𝑥𝑥𝑘𝑘, 𝑣𝑣𝑖𝑖))𝑛𝑛

𝑘𝑘=1
𝑐𝑐
𝑖𝑖=1  (7-45) 

where: 𝑐𝑐 is the number of clusters; 𝑣𝑣𝑖𝑖 was 𝑖𝑖th cluster centroid; 𝑢𝑢𝑖𝑖𝑖𝑖 is the membership of 𝑥𝑥𝑘𝑘 in class 𝑖𝑖, and 
∑ 𝑢𝑢𝑖𝑖𝑖𝑖 = 1𝑖𝑖 ; 𝑚𝑚 ∈ [1, +∞] is the weighting exponent determining the fuzziness of the clusters. 𝐾𝐾(𝑥𝑥𝑘𝑘 , 𝑣𝑣𝑖𝑖) is 
the kernel function, aiming to map 𝑥𝑥𝑘𝑘 from the input space 𝑋𝑋 to a new space with higher dimensions. In 
this study, radial basis function (RBF) kernel was adopted as shown by Equation 7-46. 

𝐾𝐾(𝑥𝑥𝑘𝑘, 𝑣𝑣𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒(−‖𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑖𝑖‖2/𝜎𝜎2) (7-46) 

where: the parameter 𝜎𝜎 was computed by: 

𝜎𝜎 = 1
𝑐𝑐

��∑ ‖𝑥𝑥𝑖𝑖−𝑚𝑚‖2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
�. (7-47) 

To search for new clusters, the objective function was minimized: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐽𝐽𝑚𝑚(𝑈𝑈, 𝑉𝑉) = 2 ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚�1 − 𝐾𝐾(𝑥𝑥𝑘𝑘, 𝑣𝑣𝑖𝑖)�            𝑛𝑛

𝑘𝑘=1
𝑐𝑐
𝑖𝑖=1  (7-48) 

𝑠𝑠. 𝑡𝑡.    ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑐𝑐
𝑖𝑖=1 = 1, 𝑘𝑘 = 1,2, ⋯ , 𝑛𝑛 (7-49) 

Lagrange function converted the constrained objective as an unconstrained optimization model. By op-
timizing the objective function, the membership 𝑢𝑢𝑖𝑖𝑖𝑖 and centroid 𝑣𝑣𝑖𝑖 could be updated (Equations 7-50 and 
7-51): 
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 (7-50)   

𝑣𝑣𝑖𝑖 = ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚𝐾𝐾(𝑥𝑥𝑘𝑘,𝑣𝑣𝑖𝑖)𝑥𝑥𝑘𝑘 𝑛𝑛

𝑘𝑘=1
∑ 𝑢𝑢𝑖𝑖𝑖𝑖

𝑚𝑚𝐾𝐾(𝑥𝑥𝑘𝑘,𝑣𝑣𝑖𝑖)𝑛𝑛
𝑘𝑘=1

 (7-51)   

Labeled time series samples were derived from stable time series, and remaining time series were con-
sidered as unlabeled samples. Given a time series, 𝑋𝑋, consisting of 𝑋𝑋𝑙𝑙 and 𝑋𝑋𝑢𝑢, 𝑋𝑋𝑙𝑙 included labeled samples, 
and 𝑋𝑋𝑢𝑢 included unlabeled samples.  

The whole process of semi-supervised KFCM algorithm was shown as: (1) Initialized the values of 𝜎𝜎 
and 𝑢𝑢𝑖𝑖𝑖𝑖 using 𝑋𝑋𝑙𝑙 and 𝑋𝑋𝑢𝑢. For 𝑋𝑋𝑙𝑙, the value of component 𝑢𝑢𝑖𝑖𝑖𝑖 was set to 1 if the data 𝑥𝑥𝑘𝑘 were labeled with 
class 𝑖𝑖, and 0 otherwise. For 𝑋𝑋𝑢𝑢, positive random values within [0,1] were set to unlabeled data. The initial 
set of centroid 𝑣𝑣𝑖𝑖 was calculated using Equation 7-52 as: 
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 (7-52) 

 
where: 𝑛𝑛′ was the number of labeled data, and (2) Updated the membership 𝑢𝑢𝑖𝑖𝑖𝑖 in 𝑋𝑋𝑢𝑢 and centroid 𝑣𝑣𝑖𝑖 until 
the objective function was minimized. 

Finally, inconsistent labeled pixels were mapped comparing the LST 𝐿𝐿 and BCI 𝐵𝐵 clustering results. For 
those pixels, if the maximum membership 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢𝑖𝑖𝑖𝑖)𝐿𝐿 of the pixel 𝑘𝑘 in 𝐿𝐿 was higher than 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢𝑖𝑖𝑖𝑖)𝐵𝐵 in 𝐵𝐵, 
the pixel was labeled as the class with 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢𝑖𝑖𝑖𝑖)𝐿𝐿 in L, and vice versa. However, if the values were equal, 
the pixel was labeled as the class with 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢𝑖𝑖𝑖𝑖)𝐿𝐿. 

The study conducted by Zhang and Weng (2016b), aimed at extracting urban areas using a semi-super-
vised fuzzy time series clustering method through Biophysical Composition Index (BCI) (Deng and Wu, 
2012) and Land Surface Temperature (LST) time series and applied the method to the Pearl River Delta, 
China, from 1990 to 2014. BCI and LST time series images were derived because of their strong correlation 
with urban areas (Zhang and Weng, 2016a). BCI aimed to identify different urban biophysical composi-
tions, which has been demonstrated to be effective in identifying the characteristics of impervious surfaces 
and vegetation and in distinguishing bare soil from impervious surfaces (Deng and Wu, 2012). LST, as a 
significant parameter in urban environmental analysis, tended to be correlated positively with urban expan-
sion (Weng and Lu, 2008; Yuan and Bauer, 2007). Figure 7-51 shows derived urban areas using time series 
fuzzy clustering. 
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Figure 7-51. Annual urban areas from 1990 to 2014 in Pearl River Delta (modified after Zhang and Weng, 2016b). 
The red color represented urban area, the blue color showed water bodies, and the green color showed non-urban area. 

The annual clustering yielded accuracies from 78.23% to 91.32%, which showed the effectiveness of the 
time series clustering method. However, the clustering accuracy varied yearly and fewer number of satellite 
images in a year could obscure the information of land cover changes and reduce the separability of tem-
poral features of urban areas from non-urban areas. Especially, the trend of vegetation phenology was 
weakened. Furthermore, time series clustering suggested the value of imagery with cloud contamination or 
Scan Line Corrector (SLC)-off data in identifying urban areas. Although cloud contamination and SLC-off 
data caused significant noise and resulted in incomplete time series, the method of gap filling and smoothing 
(Zhang and Weng, 2016a) was helpful to solve the problem of missing data through enhancing temporal 
resolution of the time series. 

9.5 Spectral Angle Mapper Classifier 

Spectral Angle Mapper (SAM) is one of several supervised classifiers developed specifically for com-
paring hyperspectral images and reference spectra (Kruse et al., 1993). SAM takes an atmospherically-
corrected n-band pixel from hyperspectral data and compares the pixel to reference spectra in the same n-
dimensions. This technique treats an observed reflectance spectrum as a vector in a multidimensional space, 
where the number of dimensions equals the number of spectral bands. In other words, each pixel in an n-
band hyperspectral image can be considered as an n-dimensional vector. 

Each vector defines a set of angles with coordinates representing the band, which can be used to compare 
two spectra, such as a pixel-derived spectrum to a reference spectrum in a spectral library, or to an 
“endmember” (i.e., purest spectrum pre-identified in the image). When conducting comparisons, multidi-
mensional vectors are defined for each spectrum and the angle between the two vectors is calculated. The 
SAM classifier considers the angular distance between pixels as a measure of distance (van der Meer, 2006). 
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If this angle is smaller than a given tolerance level, the spectra are considered to match. On this particular 
point, SAM classifier is similar to the NN classifier commonly used with conventional multispectral data. 
For example, Figure 7-52 shows the simplified two-band representation of a test pixel spectrum (derived 
from an unknown pixel in the image) and two reference spectra (derived from a laboratory measurement or 
from an endmember). When two dimensions are considered, the angle α2 is smaller than α1, which indicates 
the test pixel is likely to match the reference spectrum r2. However, adding a third dimension to this picture 
reveals the angle α1 is actually smaller than α2. Consequently, the test pixel spectrum is considered to 
match the reference spectrum r1. The increased number of bands of hyperspectral data can make angular 
distance comparisons process intensive. In addition, the dimensionality of the space in which the vectors 
are located becomes too large for human visualization. 

 
Figure 7-52. The logic of SAM classification (adapted from Kruse et al., 1993).  

The advantage of SAM is that it is relatively insensitive to the magnitude of the pixel vectors since only 
the angular distances between vectors are used in establishing class membership. If the overall illumination 
increases or decreases due to the presence of a mix of sunlight and shadows or topographic shading, the 
length of the vector can increase or decrease; but its angular orientation will remain constant. This is shown 
schematically in Figure 7-53 (Lillesand et al., 2015) where a two-band “spectrum” for a particular material 
will lie somewhere along a line passing through the origin of a two-dimensional space. Under low illumi-
nation conditions, the length of the vector will be short, and the point will be located closer to the origin of 
the multidimensional space (i.e., point A in Figure 7-53). When illumination increases, the length of the 
vector will increase, and the point will move farther from the origin (e.g., point B), but the angle stays the 
same. 

https://my.asprs.org/images/animations/Chap7-Fig52.gif
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Figure 7-53. For a particular material, the vector corresponding to its spectrum will lie along a line passing through 
the origin, with the magnitude of the vector being smaller (A) or larger (B) under lower or higher illumination, respec-
tively (adapted from Lillesand et al., 2015). 

9.6 Object-Based Image Analysis and Feature Extraction 

9.6.1 Introduction 
Extracting landscape information from remote sensing data has been greatly facilitated by advances in 

Object-Bbased Image Analysis (OBIA), which treats landscapes as mosaics of meaningful semantic objects 
composed of image pixels. Within the OBIA workflow, objects are first generated from the input data using 
image segmentation techniques, followed by object classification based on their spectral, textural, geomet-
rical, and/or contextual (i.e., describing spatial relationships with other scene elements) characteristics. Im-
age objects, or segments, represent groups of pixels that share some degree of similarity in digital values 
and maintain geometric and geographic relationships to their corresponding ground elements of the real-
world landscape.  

By utilizing a larger pool of information at the object unit level than at pixels or grid cells, the OBIA 
framework allows extracting landscape features that are ecologically and semantically closer to research 
targets determined by human cognition (Blaschke and Strobl, 2001; Benz et al., 2004; Blaschke et al., 2008 
and 2014; Holt et al., 2009; Lang et al., 2009; Blaschke, 2010). Smoothing of the local spatial variation in 
pixel values of image objects may improve spectral contrast among classes or entities of interest and alle-
viate the infamous problem of “salt-and-pepper” speckle resulting from classifications of high-resolution 
pixels exhibiting spectral variation inside semantically defined objects (Blaschke, 2010; Dronova et al., 
2012). Finally, OBIA framework also allows to account for the hierarchical organization of landscape en-
tities, patches and cover types and to perform analyses at different spatial scales of these nested layers.  

In recent decades, OBIA use has spanned across a broad array of landscape studies, including analyses 
of surface composition and change in urban as well as “wildland” terrestrial, wetland and aquatic ecosys-
tems and wildlife studies (Blaschke, 2010; Dronova et al., 2015; Witharana and Lynch, 2016; Huang et al., 
2017) and in the fields historically less focused on remote sensing, such as public health (Holt et al., 2009; 
Kelly et al., 2011). These applications have been further stimulated by advances in very high-resolution 
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imaging and UASs (Laliberte et al., 2011; Mafanya et al., 2017). A critical determinant of OBIA success 
in these diverse efforts is delineation of objects via image segmentation, the primary focus of this section. 

9.6.2 Image Segmentation as a Critical Step in Object-Based Image Analysis Workflow 
Image segmentation is the process by which individual pixels are grouped into image objects (i.e., seg-

ments) intended to represent ground features, landscape zones or other spatial units relevant to research 
objectives. Various segmentation techniques have long been used in computer vision (CV) studies and 
eventually adopted in environmental remote sensing (Benz et al., 2004; Blaschke and Strobl, 2001; Clinton 
et al., 2010). Early segmentation techniques focused primarily on color and texture as the basis for deline-
ating groups of pixels as segments (Dubuisson-Jolly and Gupta, 2000; Hofmann et al., 1998). Present-day 
applications increasingly aim to accommodate complex multi-scale structure and hierarchical organization 
of landscapes where not only color, but also shape and contextual relationships among ground elements 
determine object relevance to semantic targets (Baatz and Schäpe, 2000; Benz et al., 2004).  

The primary goal of segmentation is often to recover relevant landscape entities at a given spatial reso-
lution, such as buildings, trees and road elements recognizable from aerial or high-resolution satellite im-
ages in urban landscapes. However, in areas with complex cover type composition and variable geometry 
of patches it may be challenging to identify representative objects for different landscape categories, and 
segmentation is used to generate “primitive” objects, or smaller sub-elements of patches. These primitives 
help to reduce local noise and provide mapping units for subsequent classification. Spectral, geometric and 
contextual properties of delineated target objects or primitives strongly depend on the choice of segmenta-
tion approach and parameters as discussed in Section 9.6.3.  

Importantly, the criteria for segmentation “success” and “relevance” of features highly vary among stud-
ies. Hence, the definition of the “best” or “most appropriate” segmentation depends on how well the rele-
vant real-world boundaries are recovered and how object units ultimately affect the outcome of classifica-
tions (Figure 7-54). Even in studies using smaller primitive objects, size and spatial layout affect the contrast 
between landscape cover types and hence the outcomes of classifications using objects as mapping units 
(Wang L. et al., 2004). For instance, in several analyses of heterogeneous mixed-cover landscapes, object-
based classification accuracy tended to initially increase with greater object size relative to pixel-based 
outcomes, but eventually reaching a peak and starting to decline due to inclusion of multiple classes and 
higher chance of spectral confusion among larger more heterogeneous objects (Dronova et al., 2012; Kim 
et al., 2011). Similarly, object-level modeling of ecosystem parameters, such as biomass and LAI of vege-
tation, may be sensitive to the size and intrinsic heterogeneity of object units (Addink et al., 2007), high-
lighting the importance of segmentation in representing landscape composition for a given research ques-
tion. 
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Figure 7-54. Application of different segmentation approaches to delineate oak trees from an aerial image with 0.15 
m pixel resolution: (a) multi-resolution segmentation with scale 120, shape 0.3 and compactness 0.5; (b) quadtree 
based segmentation with scale 130; (c) contrast split segmentation using red image band and minimum bright area of 
0.5; and (d) Sobel edge detecting filter applied to the NIR band. 

9.6.3 Image Segmentation Methods 

9.6.3.1 The Objectives of Image Segmentation 
Specific objectives of image segmentation vary among studies and present an important consideration 

for choosing an appropriate segmentation method. Very often the goal is to delineate known ground land-
scape elements as semantic objects in the image, provided that the input spatial resolution is sufficient to 
differentiate the targets from their surroundings. In this case, the user needs to consider which characteris-
tics make the target class unique when compared to the rest of the landscape, and choose a segmentation 
technique where these characteristics can be adjusted easily. In contrast, when the objective is to map 
patches of different landscape cover types with variable spectral and geometric attributes, image segmen-
tation is more used typically to delineate primitives of cover classes in a way that would maximize their 
difference in relation to the rest of the landscape and thus provide meaningful units for subsequent classi-
fication. These uses of segmentation tend to emphasize spectral and textural properties, while the complex 
geometry of landscape entities is recovered later following the classification of primitive objects. Primitives 
also provide a powerful way to smooth local noise, which may be especially notorious with high-resolution 
data. This benefit was noted by a broad array of studies using optical aerial and satellite images at various 
spatial resolutions and radar data that may exhibit substantial speckle even at relatively large pixel sizes. 

Segmentation may also be applied as an intermediate step within more elaborate sequences of OBIA 
procedures. For example, it may be used to delineate broad landscape zones prior to delineation of class-



ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

750 
 

specific patches within those, or to split a large heterogeneous feature into smaller units to refine class 
boundaries. In such applications, relatively simpler and computationally less demanding techniques are 
used that aggregate pixels into simple blocky units to be modified later; or that rely on predetermined spec-
tral thresholds as a basis to create object zones. 

Finally, some applications require image regions to conform to pre-existing spatial units such as admin-
istrative boundaries, topography and soil types. Such units are often not visible to remote sensors and thus 
may be difficult to discern based on their spectral, textural or geometrical properties alone. In these cases, 
external spatial datasets can be incorporated directly into segmentation workflow to enforce the boundaries 
into the layouts of generated objects. 

9.6.3.2 Input Information Required by Segmentation 
The outcomes of most segmentation methods are dictated by digital values of image pixels, their local 

variation, and other geographic attributes of individual locations. The most common types of input infor-
mation used by segmentation algorithms to generate objects include: 

• Values of individual image pixels (e.g., spectral values, or color) or raster grid cells (e.g., elevation), 
sometimes from multiple sources such as optical images and LiDAR datasets; 

• Patterns of local variation in pixel values (e.g., image texture); 
• Criteria defining relative importance of shape versus spectral properties (e.g., color); 
• Any existing relevant boundaries of landscape features derived externally in raster or vector form 

(e.g., geographic vector datasets, administrative units, previous classification results, etc.). 
It is important to note that the segmentation procedures do not split pixels. Image pixels remain the 

minimum mapping units of the original data used as input for segmentation, and object boundaries resulting 
from the latter still follow the “blocky” pixel outline. Some of the software packages, such as eCognition, 
allow exporting segmentation results with smoothed object boundaries. Although such smoothing reduces 
the blocky appearance of object units, it does not automatically ensure accurate reproduction of the real-
world boundary within the pixel. For these reasons, it may be more challenging to recover “true” positions 
of landscape boundaries with coarser-resolution input imagery, and the primary utility of segmentation with 
such data lies in capturing the majority of relevant spatial unit extents by image objects. 

9.6.3.3 Common Segmentation Methods 
This section reviews several segmentation techniques commonly used in environmental applications of 

remote sensing data at different landscape scales. With the exception of cases when objects have to be 
derived from pre-existing datasets, information contained in pixel values and their local patterns provide 
the primary basis for delineating object units. Common segmentation methods fall into two broad groups: 
“global” approaches focusing on pixel value similarities in the image data space, rather than spatial domain, 
and “locally operating” methods focusing on spatial relationships among pixels within local neighborhoods, 
or image regions. By their nature, global algorithms emphasize the spectral proximity of pixel values and 
thus tend to perform not so well with high-resolution data, where high variation of pixel colors may exist 
within semantically “whole” features. In contrast, methods focusing on local neighborhoods operate on 
small regions which may encompass spectrally contrasting, but spatially neighboring, pixels, and thus are 
especially useful for detailed high-resolution input data. 
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(1) Global Methods 

(a) Thresholding Approaches 

Thresholding methods allocate pixels into image objects based on pre-specified ranges of values to which 
these pixels belong. The cut-off thresholds may be provided by the user (e.g., based on the prior knowledge 
or arbitrary threshold choices), or determined using automated histogram-slicing methods such as the Otsu 
algorithm (Otsu, 1979), histogram shape-based methods, entropy-based techniques and others. For exam-
ple, in eCognition software two algorithms (multi-threshold segmentation and contrast split segmentation) 
generate objects by “slicing” the image based on cutoff values specified for a designated image band. The 
multi-threshold algorithm requires one or more threshold values provided in advance, while the contrast 
split method evaluates the scene automatically based on user-specified pixel attributes (e.g., spectral band), 
search data range and step, contrast mode, constraints on minimum object size, and minimum proportions 
of study area below and above the cutoff threshold. 

The main advantage of thresholding methods lies in the relative simplicity of their implementation, par-
ticularly if the input characteristics exhibits natural zonation due to topography (van Den Eeckhaut et al., 
2012), or have a multi-modal distribution with clear transition points between modal zones. Figure 7-54c 
illustrates the application of eCognition’s contrast split segmentation to delineate green oak trees in a land-
scape where they contrast with the matrix of dry senescent grasses. However, these techniques may be less 
successful when optimal threshold values vary spatially; or when the feature of interest has a unimodal 
distribution with no clear transition points. Another shortcoming is the over-splitting of heterogeneous se-
mantic entities, such as detection of small gaps with contrasting color in some of the tree crowns in Figure 
7-54c. 

(b)  Clustering 

Unsupervised clustering methods, such as K-Means algorithm or ISODATA, can also be used to delin-
eate objects as groupings of pixels based on their proximity in the data space formed by image spectral 
bands or other pixel attributes. Automated clustering methods typically compare the spectral value of each 
pixel with a specified number of cluster centers and modify cluster means iteratively so that each cluster 
has the majority of its closest pixels in the “optimal” solution. The advantage of clustering algorithms lies 
in their relative ease of implementation, which does not require specialized OBIA software. The important 
shortcoming, however, lies in the “global” nature of approaches focusing on regions in the data space rather 
than landscape’s spatial domain, and thus, the inability to account for spatial context of pixels. The latter 
issue becomes an especially serious constraint with high-resolution input imagery where clusters formed 
by spectral similarity may not account for pixel value dispersion among the objects and may lead to over-
splitting of target units. 

 
 

(2) Methods Based on Local Metrics 

(a) Edge-based Methods 



ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

752 
 

Edge-based segmentation methods delineate objects by detecting meaningful boundaries within local 
neighborhoods that contain spectrally contrasting pixels. Various techniques exist such as Sobel filtering 
and contour generation, that are relatively easy to apply using moving window operations on raster data 
and converting the outputs to vector format. However, due to several important limitations, edge-based 
methods in environmental remote sensing have been much less common compared to region-based ap-
proaches. 

The primary shortcoming of edge-based filtering is sensitivity to local noise, leading to undesirable over-
splitting of the objects. These techniques perform especially poorly on textured objects with intrinsic pat-
terns of contrasting color values; this problem is illustrated in Figure 7-54d where tree crowns have multiple 
edges detected by Sobel filter due to sharp local differences between sunlit and shadowed foliage. Fuzzy 
edges of landscape entities, common in transitional landscapes, mixed-cover areas, also represent a chal-
lenge leading to multiple proximal edges close to each other. Finally, as with any filtering techniques, the 
thickness and orientation of detected edges may be sensitive to local neighborhood or moving window 
specifications. 

(b) Simple Top-down (Split) and Botton-up (Merge) Region Methods 

Local region-based segmentation methods are based on the iterative algorithms which test similarity of 
image pixels or already delineated regions against other pixels or regions. Such algorithms can operate in a 
bottom-up direction, starting with a set of “seed” pixels and growing objects from those, or in a top-down 
direction, starting with the entire extent and splitting it into regions. Hybrid region-based approaches com-
bine top-down and bottom-up principles and optimize object delineation through a series of “split-and-
merge” iterations.  

An example of a top-down splitting algorithm is the quadtree based segmentation in eCognition software 
that creates different-sized square objects by splitting pixels into a ‘quad tree’ using a specified parameter 
of scale that constrains intrinsic heterogeneity of segments (Figure 7-54b). Larger, spectrally homogeneous 
portions of the landscape are represented by squares of larger area, while locally heterogeneous locations, 
such as patch edges, become small squares.  

A number of bottom-up algorithms also exist, with one common family being watershed segmentations 
operating in analogy with topographically complex terrain where accumulation of water starts from the 
points of minimal elevation. Region growing begins from the local minima in pixel values in a manner of 
“flooding the basins”, until basins attributed to different starting locations are “filled”. The “watershed 
lines” formed by the boundaries between adjacent regions become object outlines. Another popular region-
growing method is multi-scale, or multi-resolution segmentation discussed in the next section. 

(c) Multi-resolution Segmentation 

Multi-resolution segmentation is a special case of a bottom-up region-merging approach where pixels 
are grouped into objects based on a number of input properties (Table 7-9) with the aim to recover some 
degree of variation in shape and size of real-world landscape elements (Figure 7-54a). The outcomes of 
multi-resolution segmentation are especially sensitive to the parameters of scale, controlling maximum al-
lowed heterogeneity of objects and hence their size, shape, which denotes relative importance of geometric 
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shape and compactness criteria versus spectral information, and compactness, which specifies the degree 
of deviation from a very compact shape with low perimeter-to-area ratio, such as circle or square. Charac-
teristics of the input images, such as sensitivity to spectral differences among classes or entities of interest, 
are also important, and their relative contributions may be further regulated by selecting different weights 
for relevant bands. For instance, studies focusing on the contrast between water and land may choose to 
weight near- and shortwave-infrared bands, if available, higher due to low water reflectance in these spectral 
regions, leading to smoother appearance and darker color of water bodies. 
Table 7-9. Parameters and Inputs Affecting Multi-resolution Segmentation Results in eCognition. 
Parameter    Description      Potential Effect on Segmentation Results 
Scale      A metric of maximum   Larger scale value allows for more heterogeneous and hence larger- 
       allowed within-object   sized objects in the output 
       spectral heterogeneity 
 
Shape     Weight coefficient    Higher value reduces the relative impact of spectral (color) on the 
       denoting relative     output, allowing for higher spectral variations inside objects but 
       importance of geometric  smoother boundaries and lower variation in shape 
       properties versus color 
 
Compactness   Weight coefficient for   Higher compactness values lead to more compact objects with lower 
       the criterion denoting   perimeter-to-area ratio and may be especially useful for delineating 
       object deviation from a  blocky or round-shaped features such as trees 
       compact shape (circle 
       or square) 
 
Input image   Choice of band weight  Specific effects vary depending on the sensitivity of available image 
bands and their  coefficient for available  bands to contrasts among target entities or their classes 
weights     input image layers 
 
Use of thematic  Decision to include any  Vector thematic boundaries may be enforced on the boundaries of 
information   ancillary (“thematic”)   resulting objects, while raster thematic layers such as classification 
       geospatial layers to    maps provide additional criteria for homogeneity of image regions 
       inform object generation 
       by multi-resolution segmentation 

 
The multi-resolution segmentation approach has been extremely popular in a wide variety of OBIA ap-

plications, in both human-dominated and wild landscapes. One of its most common uses involves construct-
ing “primitive” objects corresponding to smaller-sized surface patches or patch components that are subse-
quently classified as different cover types and may be combined into larger patches in this process (Addink 
et al., 2007; Clinton et al., 2010; Kim et al., 2011). Because multiple multi-resolution segmentation param-
eters may lead to a large number of possible segmentation results, it may be difficult to choose the “optimal” 
outcome from these options. Furthermore, specific parameter combinations may produce objects matching 
only particular classes of landscape elements (Clinton et al., 2010; Holt et al., 2009; Moffett and Gorelick, 
2013). For example, in Figure 7-55a the choice of relatively large-scale value together with high compact-
ness and moderate shape weights highlights building roofs and backyard lawns as individual objects, yet 
fails to accurately reproduce the trees. In contrast, higher weights for shape and compactness with relatively 
lower scale value in Figure 7-55b allow capturing trucks in the parking lot and a number of trees and tree 
shadow objects while over-splitting streets, buildings and open areas. Finally, low settings for shape and 
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compactness together with a high scale value in Figure 7-55c lead to successive reproduction of linear street 
features, yet also an excessive generalization of fine-scale urban elements. 

Examples shown in Figures 7-54a and 7-55 illustrate the challenge of selecting an optimal set of multi-
resolution segmentation parameters to accommodate all entities or classes of interest, which applies to many 
segmentation methods. However, these decisions may be to some extent facilitated by several guiding prin-
ciples and semi-automated selection approaches discussed in section 9.6.4 below. 

 
Figure 7-55. Multi-resolution segmentation results for different parameter combinations applied to a 30m resolution 
aerial photo of an urban area: (a) scale 130, shape 0.3, compactness 0.7; (b) scale 60, shape 0.5, compactness 0.9; and 
(c) scale 400, shape 0.1, compactness 0.1. 

9.6.4 Choosing an Optimal Segmentation Method 

9.6.4.1 Major Considerations in Selecting a Segmentation Approach 
A major task within the segmentation process is selecting the appropriate method, its parameters and 

input data to maximize the chance of achieving research objectives. The first critical determinant of the 
outcome concerns the spatial resolution of the input data and its potential to represent target landscape 
elements. Overly coarse resolution is likely to absorb the boundaries among semantically relevant ground 
features, up to the point of making segmentation meaningless (Figure 7-56b). At the same time, overly high 
resolution is likely to accentuate within-object dispersion of spectral values due to variation in color, shad-
owing, illumination and presence of irrelevant elements of the ground or canopy surface. The latter issue is 
of lower concern with OBIA because some of the local noise may be smoothed by objects; nevertheless, it 
may affect the choice of the segmentation method. 
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Figure 7-56. The effects of spatial resolution on thresholding-based segmentation applied to delineate green vegetation 
for the same area within two remote sensing images acquired in June 2009: (a) the National Agricultural Imagery 
Program aerial photo at 1m resolution, and (b) Landsat-5 TM scene at 30m resolution. 

The choice of segmentation technique and its parameterization also depends on whether this step aims 
to recover whole landscape features versus primitive objects. In general, landscape features with little dis-
persion in their characteristic attributes, such as trees in Figure 7-54 may be easier to reproduce with a 
single segmentation run than entities whose properties vary substantially, such as urban elements in Figures 
7-55 and 7-56a. In contrast, primitive object delineation may allow for higher flexibility in parameter choice 
because entities of interest such as cover type patches are recovered later at the step of classification. How-
ever, success and accuracy of the latter ultimately depends on how well primitives of one class can be 
separated from those of others, which may call for some pre-testing of parameters using unsupervised ap-
proaches. 

Relative importance of geometry versus color is another key determinant of segmentation. Detecting 
target entities that exhibit geometric typologies, such as rectangular buildings and round trees, but that show 
high inter-class variation in color are likely to benefit from weighting shape and geometry higher than 
spectral information. In contrast, delineation of entities with variable shape but pronounced spectral con-
trasts, such as different vegetation and surface types in mixed-cover natural landscapes, should weight 
spectral properties higher. For instance, water bodies may be present in the landscape as narrow, linear 
water courses and channels as well as more compact, round ponds and lakes. In these cases different criteria 
may be applicable to different typologies of the same class; or perhaps primitive objects should be consid-
ered that can be classified later based on spectral and textural properties of water. It is also advisable to 
weight color higher when segmentation’s objective is to generate homogeneous small primitives whose 
shapes are less relevant than spectral contrasts among target cover classes.  

Finally, it is important to consider whether target objects are likely to be spectrally homogeneous or 
exhibit intrinsic variation that should be preserved within the object boundaries. For instance, uneven illu-
mination may cause a variable degree of shadowing on tree crowns or building roofs (see Figures 7-54 and 
7-55). In such cases, segmentation parameters controlling size and heterogeneity may need to be adjusted 
to allow for larger, less homogeneous segments. However, caution is needed since allowing for greater size 
may eventually increase the risk of merging portions of multiple classes within the same object. In contrast, 
more spectrally uniform targets may call for homogeneous and relatively small object primitives to facilitate 
between-class contrasts while still accounting for local color variation. 

9.6.5 Approaches for Ranking and Comparing Segmentation Outputs 

(a) Unsupervised Methods for Segmentation Comparison 

In complex landscapes where ground features may be less recognizable to the human eye, it is often more 
challenging to choose and parameterize an appropriate segmentation method, and decisions are still fre-
quently based on trial-and-error (Dronova, 2015). These tasks can be facilitated by unsupervised methods 
to evaluate segmentation results, which have a long history of use in image processing and CV studies 
(Clinton et al., 2010; Holt et al., 2009; Levine and Nazif, 1985). These strategies tend to focus primarily 
on spectral and textural outcomes of segmentation, such as homogeneity within objects or classes, and 
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compare these among different object layouts to determine which parameter sets provide the closest match 
to desired representation of the actual landscape.  

Recently, some of the unsupervised comparison methods have been adapted for the popular Multireso-
lution Segmentation (MRS) approach in eCognition. For instance, the Estimation of Scale Parameter (ESP) 
tool (Dragut et al., 2010, 2011, 2014) uses a metric of local variance (LV) and its rate of change across 
different segmentation scales to evaluate scales where substantial changes in LV may indicate capture of a 
set of meaningful objects. The latest version of this method (Dragut et al., 2014) incorporates multiple 
image bands simultaneously. Another example is the Plateau Objective Function (Martha et al., 2011), 
which uses spatial auto-correlation and within-object variance to optimize segmentation properties, also for 
the multi-resolution segmentation algorithm.  

An important advantage of such methods is recognizing the multi-scale nature of landscape structure 
where more than one set of segmentation parameters may be needed to identify features of interest. The 
current limitation of these methods, however, is in the chief focus on segmentation scale and the fact that 
methods lack automated capacity to test for multiple parameters simultaneously. In addition to scale, pa-
rameters such as shape, compactness or weights of the input bands can provide significant contributions to 
analyses. In complex landscapes with variable patch sizes, these techniques may be further limited by the 
absence of “characteristic” scales and hence smooth, continuous change in LV metric. 

(b) Supervised Approaches to Evaluate the Match with Reference Objects 

When segmentation is aimed at delineating recognizable ground entities, identification of the most suit-
able segmentation result may benefit from the supervised approaches that link computer-produced result 
with human-determined targets. Such approaches, sometimes referred to as empirical discrepancy methods 
(Holt et al., 2009), focus on the geometric match between known objects and segmentation results, with the 
primary criteria centered on the degree of spatial overlap and/or positional difference between reference 
and mapped object units (Clinton et al., 2010; Holt et al., 2009; Moeller et al., 2007; Radoux and Defourny, 
2007). For instance, to assess the degree of aerial overlap between image segments and reference objects xi 

from a set X, the following metric can be computed as Equation 7-53 (after Holt et al., 2009): 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 = ∑
∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦𝑗𝑗)𝑛𝑛

𝑗𝑗=1

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖)
𝑚𝑚
𝑖𝑖=1  , 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌𝑖𝑖

∗  , (7-53) 

where: Yi
* is the subset of all the delineated segments yi that intersect a given reference object xi so that 

at least one of their centroids is inside the other object, or their mutual aerial overlap exceeds 50% of xi, or 
yi (after Clinton et al. (2010)).  

A common strategy to evaluate segmentation’s capacity to recover semantic target objects focuses on 
the balance between oversegmentation, or excessive splitting of the target units, and undersegmentation, or 
insufficient recovery of the object boundaries as shown in Equations 7-54, 7-55 and 7-56: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖,𝑗𝑗 = 1 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥𝑖𝑖∩𝑦𝑦𝑗𝑗�
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖) , 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌𝑖𝑖

∗  , (7-54) 

and 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖,𝑗𝑗 = 1 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥𝑖𝑖∩𝑦𝑦𝑗𝑗�
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑦𝑦𝑗𝑗�

, 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌𝑖𝑖
∗  . (7-55) 
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Over- and under-segmentation metrics can be further combined into a metric of “closeness”, essentially 
representing their RMSE (Clinton et al., 2010; Levine and Nazif, 1985): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
2 +𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖

2

2
 . (7-56) 

An important caveat with supervised approaches to segmentation optimization is that different human 
perceptions or research objectives may identify “objects” differently (Clinton et al., 2010; Holt et al., 2009; 
Moffett and Gorelick, 2013). Although objective ranking methods using over- and under-segmentation cri-
teria may facilitate decisions, in some cases landscape composition may be so versatile that different sets 
of segmentation parameters become suitable for delineating different types of objects (Figure 7-55). If a 
particular object class is of special interest, then segmentation parameter selection should be prioritized 
based on the properties of that class. However, if multiple landscape classes with different characteristic 
objects are important, then solutions may require multi-step OBIA procedures. Strategies may include, for 
instance, alternating segmentation procedures with temporary or partial classifications of the landscape, 
using hierarchical approaches that involve splitting larger regions, merging primitive objects, or both, or 
alternating different segmentation techniques as discussed in the next section. 

9.6.5.2 Combining Multiple Segmentation Methods to Achieve the Objectives 
Applications of most common segmentation methods rely on the assumption that some characteristic 

scales or parameter combinations are especially well suited for representing landscape entities of interest. 
This assumption may not be well satisfied when properties of target entities exhibit high variability, and 
even multi-resolution segmentation may fail to recover a full range of object sizes and shapes in a single 
run, even after a careful parameter selection. This challenge may be addressed by sequential application of 
different segmentation algorithms to facilitate detection of the target units when individual methods fail to 
recover them in a single run.  

A particularly successful strategy has been to combine with a top-down splitting or thresholding ap-
proach, which allows one to subdivide the study area into broad regions as landscape strata, or to correct 
already delineated object boundaries by splitting mixed objects (Delaplace et al., 2010; Dezso et al., 2012; 
Platt and Rapoza, 2008; van Den Eeckhaut et al., 2012). This approach may be especially beneficial when 
thresholding or splitting uses a complementary layer of information, such as land surface elevation or Li-
DAR-based digital surface model to create initial regions, followed by a region-based segmentation utiliz-
ing spectral data from the image (O’Neil-Dunne et al., 2013; Van Den Eeckhaut et al., 2012). The disad-
vantage of adding multiple segmentation operations to OBIA workflow is, however, in the need for 
additional trial-and-error parameterization for each method, and increased complexity of the analysis pro-
cedure. 

9.6.5.3 Assessing Segmentation Accuracy 
The issue of accuracy with respect to delineated object boundaries is related closely to the problem of 

choosing the optimal segmentation parameters. Overall, the assessment of accuracy in OBIA is less com-
mon for segmentation outputs than for classification results, and is needed primarily when the objective is 
to delineate whole objects or ground entities. Accuracy may then be quantified as the match between image 
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segments and reference objects using over- and under-segmentation criteria and “closeness” metrics de-
scribed, or the approaches accounting for positional accuracies and variable distributions of object sizes 
(Radoux et al., 2011; Radoux and Defourny, 2007). Because reference objects are often derived from field 
tracing of landscape patches or digitized from images, maps and other data sources, some degree of mis-
match with image objects mapped from pixel units is expected, even in highly satisfactory segmentation 
outcomes (Holt et al., 2009; Radoux and Defourny, 2007; Yu et al., 2006).  

Note that the correspondence between segmentation results and real-world entities may be more difficult 
to validate in landscapes with less certain, more variable-shaped features and fuzzy boundaries even if high-
resolution imagery or ground-traced boundaries are available for such verification (Moffett and Gorelick, 
2013; Yu et al., 2006). Furthermore, segmentation in such areas is often used to produce primitive objects 
that are rarely validated (Dronova, 2015). Of higher interest becomes the ability of primitives to represent 
spectral contrasts among classes, which can be verified by comparing spectral distances among object class 
samples at different segmentation scales, such as Jeffrey-Matusita or Bhattacharya distances between class 
sample means (Wang, L., et al., 2004). Following the classification of primitive objects, accuracy is as-
sessed typically as a thematic match between mapped and “actual” classes for a given spatial reference unit 
using contingency matrices and fuzzy methods (Congalton and Green, 2009); or, as a spatial match between 
the boundaries of mapped class patches and known reference units (Radoux et al., 2011; Radoux and Bo-
gaert, 2014). The choices of image classification algorithm and sampling strategy to determine testing ob-
jects become critical determinants of the outcome in addition to segmentation approach and input data 
properties (Dronova et al., 2012; Radoux and Bogaert, 2014; Wang, L. et al., 2004). 

9.6.6 Object-Based Image Analysis and Image Segmentation Software 
Applying image segmentation for landscape feature extraction has been facilitated greatly by the growing 

capacity and accessibility of OBIA software platforms. Among commercial packages, a popular choice 
over the last nearly two decades has been the eCognition Developer suite by Trimble Inc. (formerly, De-
finiens Inc.). These packages offer a user-friendly interface with the ability to develop custom sequences 
of procedures (or “rule sets”) for segmentation, classification, and other types of feature extraction; and, to 
perform analyses at multiple, hierarchically linked, spatial levels. A number of segmentation methods are 
available in this package, from a simple “chessboard” algorithm breaking the image into uniform square 
blocks of specified size, to more complex iterative methods such as multi-resolution segmentation as de-
scribed in section 9.6.3.3(2)(C).  

Examples of other commercial software include ENVI (Zoom) feature extraction module for ENVI (Har-
ris Geospatial Solutions), the IMAGINE Objective add-on for ERDAS® Imagine (Hexagon Geospatial 
Inc.), BIS Cloud (formerly BerkeleyImgSeg) and new Segmentation and Classification toolset in ArcGIS 
10.3 (Esri, Inc.). Open-source OBIA packages have also been developed, such as Monteverdi and Monte-
verdi2 by Orfeo Toolbox; SPRING by the National Institute for Space Research of Brazil (INPE); and 
InterImage by the Computer Vision Laboratory of the Department of Electrical Engineering at Catholic 
University of Rio de Janeiro, Brazil. It is important to note that not every segmentation method requires a 
pre-designed software package. Simpler methods that derive objects based on thresholds in the data, or 
clustering algorithms, may be generated by applying these algorithms to images in non-OBIA remote 
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sensing or GIS software, and converting raster outputs to vector datasets. Even more complex types of 
segmentation requiring iterative splitting and merging of local regions (Section 9.6.3.3(2)) may be coded 
using Python language or data processing platforms such as R or Matlab (Mathworks, Inc.), though ad-
vanced programming skills may be required. 

9.6.7 Summary 
Image segmentation is a critical part of the OBIA workflow that establishes the connection between 

human perception of landscape structure and information content of the digital remote sensing data. Navi-
gating among various segmentation techniques for a given objective requires careful consideration of 
tradeoffs that affect spectral, geometric and contextual properties of resulting objects; and hence, their 
match with the target entities of interest and utility for subsequent analysis steps. Particularly important 
criteria include emphasizing spectral versus geometric properties of target features, preserving intrinsic 
heterogeneity versus maximizing spectral contrasts with other features, and the decision on delineating 
whole entities of interest versus their primitive elements that could be classified later to recover entire 
features. 

Among diverse segmentation approaches, global methods, such as thresholding and clustering, partition 
the landscape based on the proximity of pixels in the spectral domain determined by the values of input 
data. In contrast, locally operating methods, such as region-based and edge-based techniques focus on pixel 
values and spatial patterning within narrower neighborhoods and allow spatial adjacency to be incorporated 
in object generation. For a given image, the choice of a “suitable” segmentation method and parameter set 
is dictated by the properties of target features and by constraints resulting from spatial resolution and spec-
tral content of the input data. Various supervised and unsupervised metrics may be used to compare and 
rank segmentation outcomes based on their match with target entities, the degree of over- and under-split-
ting, or changes in local variation and spatial autocorrelation of the input pixel values. Some of these metrics 
may be used also for assessing segmentation accuracy.  

Finally, in developing a successful segmentation strategy, it is important to consider using segmentation 
results in succeeding steps of the analysis. Regardless of whether segmentation aims to recover whole land-
scape entities or “temporary” primitive objects, the outcomes will affect strongly the subsequent object-
based classification or spatial modeling at object unit level. Hence it is important to coordinate the desired 
segmentation outcomes, such as the degree of the initial match with semantic features, with the broader 
research goals and the capacity of resulting spectral, textural, geometrical, and contextual attributes to rep-
resent the role of the extracted features in the fabric of landscape structure and underlying processes. 

10 CHANGE DETECTION AND TIME SERIES ANALYSIS 

10.1 Relevance of the Temporal Dimension in Remote Sensing Data Analysis 

Earth is a very dynamic planet. Both biophysical and human-induced processes imply continuous 
changes (Lippitt et al., 2015). Atmospheric gases and aerosols are constantly moving from one region to 
another by global or local winds and are influenced by solar radiation, evapotranspiration, biomass burning, 



ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

760 
 

industrial or agricultural activities. Oceans change rapidly too, as ocean currents transfer heat, sediments, 
and organic compounds to neighboring and distant places. Land seems to be more stable, but still shows 
remarkable dynamism in some areas, particularly where intense human activities are intermixing with nat-
ural areas: agricultural and urban frontiers, mining operations, or other large infrastructures. Conservation 
areas are particularly sensitive to temporal changes (Willis, 2015). 

Better science requires a better understanding of the extent and impact of all those environmental changes 
that interact to create complex effects. Agricultural expansion frequently implies deforestation that affects 
carbon sinks from forested areas. In addition, agricultural expansion is associated commonly with forest 
burning, which in turn implies aerosols and gas emissions (e.g., CO2, CH4, NOx) that affect atmospheric 
processes.  

Monitoring change is a real challenge because some of the relevant transformations are dynamic and/or 
affect large territories. Observations based on fixed ground sensors cover the temporal variation very well, 
but they are frequently incapable of capturing spatial variations of those processes. Weather data and hy-
drological networks are typically very sparse, especially in developing countries. Therefore, representation 
of the spatial complexity of processes relies on interpolating methods that are frequently not very reliable 
(Bolstad, 2008).  

Remotely-acquired observations and data are a very good alternative for obtaining a two-dimensional 
view of trends, as they make it possible to acquire spatially comprehensive data from the surface at different 
spatial and temporal resolutions. In fact, monitoring dynamic processes is one of the most important con-
tributions of satellite observation behind environmental studies (Chuvieco, 2016). Since sensors are 
mounted in satellites with recurrent orbits, the acquired data are collected at repetitive intervals, at the same 
altitude, from the same sensor, from the same spectral bands, and frequently at the same local hour, to 
facilitate change detection. Manned missions of the Space Shuttle and the International Space Station do 
not offer systematic observation, but their photographs can be used for visual-qualitative comparisons. Air-
borne sensors do not provide systematic observations either; but, they can be used to detect changes between 
fixed dates, and they are of particular interest in analyzing long-term changes (Song et al., 2015). 

The actual observation frequency of satellite remote sensing systems depends mainly on satellite orbital 
characteristics and sensor field-of-view, being more frequent for images acquired from higher satellites 
with wider FOV sensors. Geostationary satellites, located at orbital heights of 36,000km observe a wider 
area, actually the full Earth disk, while low-altitude satellites require more orbits to cover the whole planet. 
Sensors with wide FOV, such as MODIS, VIIRS, MERIS or AVHRR acquire daily images, even if they 
are orbiting at similar heights as Landsat-TM/OLI or SPOT-HRV/HRG, which require 2-3 weeks to observe 
the same area. 

In practical terms, the nominal temporal resolution of a sensor is not the same as the actual observation 
cycle for several reasons. First, cloud-cover reduces the number of useful observations using optical sen-
sors. Second, not all sensors have systematic acquisitions. Some sensors collect data continuously, but oth-
ers are activated when passing over areas of interest, either to save energy or to execute data downloads. 
Commonly, coarse spatial resolution sensors provide much higher temporal resolution (e.g., hours to a few 
days) than the fine-spatial resolution sensors (e.g., several days or weeks). To alleviate their low temporal 
orbital observation, most high-spatial resolution sensors include pointing capabilities, being able to observe 
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areas of interest off-nadir of the orbital path. Finally, even though all sensors include some on-board storage 
capacity, they rely on networks of ground receiving antennas. Depending on the density of the receiving 
network, some areas may not have a good historical record. This is the case of Landsat-TM/ETM data 
acquired over Africa and Asia. Lack of local acquisition is also behind the limited data stored in historical 
archives of the HRPT-AVHRR sensors, at least until 1992 when global storage was established. Today, 
these images are valuable for analyzing long-term land cover changes at a degraded resolution (0.05°) in 
the case of the LTDR database: http://ltdr.nascom.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi. 

During the first years of Earth observation, spatial resolution was the most appreciated, but nowadays 
temporal resolution is also considered critical for monitoring natural events, particularly when updated 
monitoring is decisive. For example, observing hurricanes with very fine spatial resolution imagery every 
week would be virtually worthless. Since clouds are very dynamic, monitoring them requires very high 
observation frequency even at the cost of losing spatial detail. The same applies to other natural hazards 
like fire, floods, and icebergs.  

Two dimensions of temporal change can be analyzed from Earth observation images: seasonal trends 
and stable transformations (Chuvieco, 2016). In the first case, the main interest is detecting stable transfor-
mations of ground cover, caused either by short-duration catastrophic events such as floods, earthquakes, 
volcanic eruptions, hurricanes, and fire; or by slow-duration phenomena such as urban sprawl, crop change, 
and desertification, among other phenomena. Typically, images acquired in two reference periods, such as 
before and after a sudden or devastating event or events separated by a fixed time span, are compared 
visually, or digitally (Luneta and Elvidge, 1998; Sader and Winne, 1992; Smits and Annoni, 2000).  

The second temporal case aims to detect phenological changes in land cover throughout the year. For 
example, cultivated land will show a soil reflectance if it has been planted recently, but will appear as GV 
when the crop is in full development and virtually hides the soil. A few weeks later the field may show a 
senescent vegetation signal, and later a mixture of soil and straw. The interpreter interested in seasonal 
changes tries to follow the vegetation dynamics in different periods (Willis, 2015), which is very useful to 
better discriminate associations or even species. Many authors have used images from different times of 
the year in their classification process (Latifovic et al., 2004; Lo et al., 1986). A seasonal separability anal-
ysis helps identify which season is more appropriate to discriminate particular land covers (Schriever and 
Congalton, 1995). Analysis of seasonal changes in long-term time series (e.g., 20-30 years) helps to identify 
trends caused by global warming or local climate changes (Alcaraz-Segura et al., 2010), as well as the 
impact of major disturbances such as fire, wind storms, and drought (Chuvieco et al., 2016; Fraser et al., 
2003). This approach is described further in Section 10-4. 

The historical coverage of Landsat sensors, along with their evolving spatial and spectral resolutions 
have proven to be ideal for monitoring significant land surface transformations worldwide. Two initiatives 
are remarkable: the United Nations Environmental Program’s (UNEP’s) Atlas of Our Changing Environ-
ment, which provides selected examples of land cover changes in different domains and continents 
(http://na.unep.net/atlas/), and Google’s Earth Engine, which compiles the entire Landsat archive from 
1984-2012 for the land surface, with interactive capacity to observe changes for the 28-year period 
(https://earthengine.google.org/). Similar to the UNEP initiative is the newly-released image portal from 
NASA named World of Change with selected examples of changes based on several satellite missions: 

http://ltdr.nascom.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi
http://na.unep.net/atlas/
https://earthengine.google.org/
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http://earthobservatory.nasa.gov/Features/WorldOfChange/. Figure 7-57 is an example of temporal 
change in the surface area of the Aral Sea over a 15 year span.     

 
Figure 7-57. Multi-temporal variation of the Aral Sea (Kazakhstan) between 2000 and 2015 (Source https://earthob-
servatory.nasa.gov/WorldOfChange/AralSea.) 

 
The growing capacity of computer processing systems makes it possible to process the historical Landsat 

archive to retrieve changes even at global scale. This is the case of the forest change detection map based 
on Landsat composites from 2000 and 2012 (Hansen et al., 2013). Similar efforts are being developed for 
crop and burned area monitoring based on new Landsat-8 sensors and the recently launched Sentinel-2 
Multispectral Imager (Roy et al., 2014). 

10.2 Factors Affecting the Retrieval of Change in Remotely-Sensed Images 

To retrieve change detection from satellite remote sensing images, one should keep in mind that ground 
cover changes are not the only factor of radiometric change when comparing multitemporal images. Other 
variables affect the radiance detected by the sensor, potentially mixing actual and apparent changes, which 
is the main challenge for time-sensitive analyses. Apparent changes are those associated with perturbance 
factors, geometric or radiometric, which should be removed before actual temporal change extraction is 
made. 

The most obvious perturbance factor between two images acquired at different times in the same area is 
precise co-registration. If the two images do not overlap precisely, any comparisons will be misleading: one 
might identify as change what it is, in fact, displacement. Another important source of temporal differences 
relates to atmospheric influences. It is well-known that atmospheric conditions affect both incoming and 
outgoing radiance, either by absorption or scattering that impact sensor-detected radiance even when land 
cover is stable. More relevant is the effect of non-lambertian behavior that most land covers present. This 
implies that the same cover may have different reflectances depending on the illumination and observation 
angles. For this reason, to retrieve consistent temporal series, it is important to perform BRDF corrections 
(Schaaf et al., 2002), particularly in wide field-of-view sensors. 

In summary, radiometric and geometric corrections are particularly critical for temporal analysis, as oth-
erwise apparent changes will be confused with real ones. Interpreters need to be sure that the same variable 
and the same area are being compared for all images involved in the temporal analysis, or else the 

http://earthobservatory.nasa.gov/Features/WorldOfChange/
https://earthobservatory.nasa.gov/WorldOfChange/AralSea
https://earthobservatory.nasa.gov/WorldOfChange/AralSea
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comparison will be meaningless. The following subsections review methodological options to carry out 
these corrections. 

10.2.1 Multitemporal Matching 
Multitemporal comparisons require that input images be co-registered precisely to ensure that the exact 

area is being compared. Misregistration effects can be quite serious for the case of heterogeneous landscapes 
with great spatial variability, such as in urban areas (Gordon, 1980), and especially with high-spatial reso-
lution sensors (Roy, 2000). Even in the case of coarse-resolution sensor imagery, it has been shown that up 
to 50% of the change observed between two images can be due to displacements when the mean registration 
residual among images exceeds one pixel (Townshend et al., 1992). The same study estimates that geomet-
ric accuracies better than 0.2 pixels are required to keep comparison errors below10% (Townshend et al., 
1992).  

Geometric matching for multitemporal images relies commonly on automatic techniques that are able to 
find common points between any image and a reference image. Since the area is the same for all the tem-
poral series, only those areas affected by clouds or cover changes will differ, but most of the image area 
will have the same features. Several algorithms have been proposed to perform this automatic searching 
(Eugenio and Marqués, 2003; Gao et al., 2009). Once the matching points are found, a statistical algorithm 
can be computed to obtain the corrected images, in a way very similar to that commonly performed for 
single images. 

10.2.2 Radiometric Calibration 
Once the images are properly overlapped, multitemporal comparisons require radiometric correction, 

which implies that all input bands of the different dates are measured in the same physical units. This 
correction implies three phases: calibration, atmospheric correction and topographic correction. 

Calibration implies converting raw Digital Levels (DLs) to radiance values. They require accessing sen-
sor calibration coefficients by Equation 7-57. 

Lk = bk DL,k + gk (7-57) 

where: Lk is the spectral radiance of band k (in Wm-2sr-1µm-1), DLk is the raw digital level of the same 
band, and bk and gk are the bias and gain coefficients of the same band k. These coefficients are provided 
by the sensor manufacturer and usually are included in the image header file.  

When using a long time series of sensor data such as those from NOAA-AVHRR or Landsat TM/ETM+, 
calibration coefficients may change throughout the sensor life. In some cases, even the spectral character-
istics of a sensor may be modified throughout its life time (e.g.,  the AVHRR sensor configuration was 
altered from the NOAA-14 to the NOAA-15 satellites). Therefore, correction algorithms need to be adapted 
to the different spectral bands (Khlopenkov and Trishchenko, 2007; Trishchenko et al., 2002). For the 
Landsat historical archive, calibration values provided by Chander et al. (2009) are commonly used, and 
they are routinely included in the header file. 

Radiance to top of the atmosphere (ToA) reflectance (ρ) conversion is performed using Equation 7-58. 
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where: d is the Earth-Sun distance in astronomical units, Lk is the spectral radiance of band k; E0,k is ToA 
solar irradiance in the same band (see parameters in Chander et al., 2009 for Landsat sensors), and θs, and 
the solar zenith angle extracted from the day, time and latitude of image acquisition. 

For the thermal bands, ToA temperature (TToA) is computed in Equation 7-59 as: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐾𝐾2

𝑙𝑙𝑙𝑙(𝐾𝐾1
𝐿𝐿𝑘𝑘

+1)
 (7-59) 

where: K1 and K2 are calibration constants, varying with each sensor. 

10.2.3 Atmospheric Correction 
As mentioned previously, atmospheric perturbations in the detected signal may be relevant for monitor-

ing change processes, and therefore a multitemporal comparison requires first removing the absorption and 
scattering effects. There is a wide variety of algorithms to carry out atmospheric corrections for both optical 
and thermal data (see, Section 3 for a detailed discussion on this topic). For solar bands, the general formula 
is: 

𝜌𝜌𝑘𝑘 = 𝑑𝑑2 𝜋𝜋(𝐿𝐿𝑘𝑘−𝐿𝐿𝑎𝑎,𝑘𝑘)/𝜏𝜏𝑘𝑘,0

𝐸𝐸0,𝑘𝑘cos𝜃𝜃𝑖𝑖𝜏𝜏𝑘𝑘,𝑖𝑖+𝐸𝐸𝑑𝑑,𝑘𝑘
 (7-60) 

where: La,k. accounts for atmospheric scattering, τk,i, and τk,0 are incoming and outgoing atmospheric 
transmissivity and Ed,k is diffuse irradiance.  

Atmosphere correction is a quite complex process requiring information on atmospheric properties at the 
time of image acquisition. This information is usually not available so corrections are based on estimates. 
The most common methods are data extracted from simultaneous measurements of external sensors (King 
et al., 1999), on radiative transfer models (Ju et al., 2012; Kotchenova et al., 2008) and on estimates based 
on image properties.  

The latter are the more operative, particularly in the thermal infrared where the two bands commonly 
available in the thermal spectral region make it possible to estimate atmospheric absorption reliably (Li et 
al., 2013b). For optical bands, methods based on image characteristics assume that atmospheric scattering 
can be estimated from spectral radiance of dark objects (Chavez, 1988; Chavez, 1996). This method as-
sumes that any image has some areas with high-absorption materials, where the reflectance should be close 
to zero (e.g., water, shadows). Therefore, the minimum DL of each band is used to estimate La. This method 
assumes that atmospheric scattering is constant throughout the image, since it is computed from a single 
value. Some authors have proposed establishing a network of dark surfaces distributed in the image, which 
might be used to account for the spatial variation of the atmospheric optical depth (Ouaidrari and Vermote, 
1999). In addition to this problem, this simple method does not take into account the additive effects of 
diffuse irradiance. 
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10.2.4 Topographic Correction 
Once the atmospheric effects are removed, another relevant issue for multitemporal comparison is the 

impact of terrain shadows, which affect data products differently, depending on the day and hour of image 
acquisition. Winter images will present longer shadows, and therefore reflectance of off-solar slopes will 
present lower reflectances than for summer images. 

Topographic shadow removal is performed in two steps as shown in Figure 7-58 (Chuvieco, 2016). The 
first one involves modelling the position of shadows at the time of satellite acquisition. It simply implies to 
“illuminate” a DEM with the same angles as the Sun (i. e., zenith and azimuth) when the image was ac-
quired. The output of this analysis is the cosine of the illumination angle for each pixel (γi). The DEM 
should have a similar, or better, spatial resolution as the image to be corrected. 

From the “shade” image, removal of shadows in the image may be accomplished using different models 
(Hantson and Chuvieco, 2011). The simplest ones assume a Lambertian behavior of the target surface 
(Teillet et al., 1982) given in Equation 7-61: 

𝜌𝜌ℎ,𝑖𝑖 = 𝜌𝜌𝑖𝑖 �cos𝜃𝜃𝑖𝑖
cos𝛾𝛾𝑖𝑖

� (7-61) 

where: ρh,i is the reflectance of pixel i in horizontal terrain, ρi the reflectance on a slope (corresponding 
to the image before correction), θi the solar zenith angle of the scene, and γi the illumination angle. When 
assuming a non-lambertian surface, the correction model becomes more complex, as we need to estimate 
the roughness of each observed cover in the different bands. An intermediate complex model was proposed 
by Teillet (1982) using a semi-empirical approach given in Equation 7-62. 

𝜌𝜌ℎ,𝑖𝑖 = 𝜌𝜌𝑖𝑖(cos𝜃𝜃𝑖𝑖+𝑐𝑐𝑘𝑘
cos𝛾𝛾𝑖𝑖+𝑐𝑐𝑘𝑘

) (7-62) 

where: ck is a constant computed from the regression of the reflectance image and the illumination image. 
Several variations of this model have been proposed with good results for multitemporal analysis (Hantson 
and Chuvieco, 2011). 

 
Figure 7-58. Impact of topographical correction over a Landsat-TM image of the Tucson area. Arrows indicate the 
strongest shadow effects (after Chuvieco, 2016). 
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10.2.5 BRDF Correction 
The final relevant factor to be corrected in multi-temporal image comparisons relates to the impacts of 

having images acquired from different observation geometries. This is very common in wide FOV sensors, 
which are precisely those with higher temporal resolution. The effect is caused by the non-lambertian be-
havior of most land covers that causes a relevant change in reflectance as the same cover is observed/illu-
minated from different angles. 

To address these corrections one should consider the BRDF of each observed surface. The goal is to 
standardize all observations to the same geometry, so the temporal series becomes more consistent. The 
directional effects of reflected radiance for any given combination of viewing and solar illumination angles 
are expressed in Equation 7-63 (Sandmeier and Itten, 1999) as: 

𝑓𝑓(𝜃𝜃𝑖𝑖 , 𝜙𝜙𝑖𝑖; 𝜃𝜃𝑟𝑟 , 𝜙𝜙𝑟𝑟 , 𝜆𝜆) = 𝑑𝑑𝑑𝑑(𝜃𝜃𝑟𝑟,𝜙𝜙𝑟𝑟,𝜆𝜆)
𝑑𝑑𝑑𝑑(𝜃𝜃𝑖𝑖,𝜙𝜙𝑖𝑖,𝜆𝜆)

 (7-63) 

where: dL is the reflected radiance at a given view zenith (θr) and azimuth angle (ϕr), and dE is the 
incident irradiance at a specified solar zenith (θi) and azimuth (ϕi) direction. 

BRDF corrections have been proposed for the most common wide field-of-view sensors, such as 
AVHRR (Shepherd and Dymond, 2000) and MODIS data, which offers a standard BRDF-corrected reflec-
tance product (termed MOD43: Román et al., 2009; Schaaf et al., 2002). 

10.3 Change Detection Techniques4 

Change detection techniques have been used widely with remotely-sensed images, since they are appli-
cable to a broad range of disciplines (Mouat et al., 1993). They aim to identify what features were modified 
between two or more dates. In this section we will cover those changes that are related to more stable 
modifications of the ground cover, versus the seasonal or phenological changes that will be covered by the 
following one. Examples of stable changes are those related to urbanization processes, agricultural expan-
sion, dessication of wetlands, impacts of volcanic eruptions and earthquakes. Phenological changes are 
those that occur during the yearly cycle, either in crops or natural vegetation. 

Most alterations detected by remotely-sensed data are associated with spectral changes (e.g., reflectance, 
temperature, etc.), but changes in spatial features can also be observed. This is the case of modifications of 
agricultural landscapes, either by increasing size or modifying shapes of crop plots. These changes can be 
approached by using texture measurements, as well as segmentation and object-oriented classification tech-
niques (Bontemps et al., 2008; Bruzzone and Fernández-Prieto, 2000; Hazel, 2001). See Section 9.6 for a 
description of OBIA and segmentation.  

10.3.1 Multitemporal Color Composites 
This technique uses the same basis as a standard color composite, but it combines different dates of the 

same band instead of using different bands of the same date. When mixing three dates in RGB composition, 
those areas with similar values in all dates would display in gray levels, while areas affected by change 
would display in shades of color. This technique has been used successfully in several change detection 

 
4 This section is adapted from the Change Detection Techniques chapter of Chuvieco, E., 2016. Fundamentals of Satellite Remote 
Sensing: An Environmental Approach, CRC Press, Boca Raton (FL). 
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studies (Martin, 1989; Sader and Winne, 1992). Figure 7-59 shows an example of these color compositions 
using NDVI images computed from Landsat TM scenes acquired in 1990 and 2010 over the Acre state of 
Brazil. Grey tones correspond to stable areas, while those pixels that reduced their DLs from the first to the 
second date (i.e., lower NDVI should be associated to deforestation) are displayed in red, and those with 
increased DLs in cyan (green+blue: reforestation). 

 
Figure 7-59. Multi-temporal color composite of NDVI values (after Chuvieco, 2016). 

10.3.2 Image Differencing and Ratios 
In many cases color composite images provide a very clear distinction of changes, but those changes 

need to be identified visually afterwards. When trying to extract them digitally, other techniques need to be 
applied. A simple one is image differencing as given in Equation 7-64: 

DLc = DLt2 − DLt1 (7-64) 

where: DLt2 and DLt1 are the values of the second and first date being compared, respectively. DL can be 
either reflectance or temperature (Pilon et al., 1988) or any kind of spectral indices (Coppin and Bauer, 
1994; Martín and Chuvieco, 1995). Negative values will categorize areas with decreasing values, and pos-
itive values regions will categorize areas with increasing values.  

Temporal differencing reflects absolute changes between two dates, but this absolute value may not re-
flect the significance of the observed increases or decreases properly. For instance, a decrease of 0.1 in 
NDVI may be very critical when the original value is 0.2 or almost irrelevant when the original value is 
0.7. To obviate this, an alternative to the temporal difference is the use of ratios, either absolute or normal-
ized ones, as defined in Equations 7-65 and 7-66: 

DLc = (DLt2/DLt1) (7-65) 

DLi,j,c = (DLt2 − DLt1)/(DLt2 + DLt1) (7-66) 

with parameters defined as in Equation 7-64. Multitemporal ratios have been used in agricultural inven-
tories (Lo, et al., 1986), deforestation studies (Singh, 1986), and to detect areas affected by forest fires 
(Kasischke et al., 1993).  
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It should be noted that these ratios are asymmetrical, which means that the result is dependent on what 
date is in the numerator. An increase of twice the DL from 50 to 100 would give a value of 2 or of 0.5 
depending on whether the numerator is the first or the second date. In summary, the ratio is a nonlinear 
transformation of the temporal relationships. To solve this problem, some authors recommend applying a 
logarithmic conversion of the result (Eastman et al., 1994). 

10.3.3 Principal Components 
Principal Component Analysis (PCA) is used generally to summarize a wide set of variables by preserv-

ing the common information found in the input variables. However, when using PCA in change detection, 
the input variables are a mixture of bands acquired on different dates. The main components are precisely 
those that refer to invariant information (i.e., features that do not change), while secondary components 
show the transformations (i.e., “dynamic” components). Therefore, in this case, the most interesting com-
ponents are not necessarily the main ones, but sometimes those with less variance, particularly if the area 
has not been affected by major changes (Fung and LeDrew, 1988; Ingebritsen and Lyon, 1985). 

The PCA transformation of the twelve bands of the Brazil multitemporal images have been computed 
bands 1 to 7 of 1990 and 2010, excluding the thermal band. The resulting eigenvectors (see, Table 7-10) 
show the treeless area, with strong and negative contrast between the NIR and other bands in the 2010 
image. The second component shows vegetation changes between the two images, although the spectral 
contrast is not very clear, with negative values for the Blue-Red-SWIR bands and positive in the NIR in the 
most recent image and contrary in the oldest one. It shows higher values for areas that have changed from 
soil to vegetation. The third component also corresponds to changes, but in this case mainly those related 
to vegetation lost, while the forth implies moderate reforestation. 

 
 
 

Table 7-10. Eigenvectors of the Multi-Temporal Analysis of the Acre Image (Brazil). 
          2010                   1990 
   B1  B2  B3  B4  B5  B7    B1  B2  B3  B4  B5  B7 
PCA1 0.168  0.136  0.266  -0.029 0.841  0.408    0.023  0.016  0.024  0.018  0.074  0.032 
PCA2 -0.020 -0.004 -0.040 0.367  -0.025 -0.086   0.138  0.126  0.178  0.355  0.758  0.298 
PCA3 -0.003 -0.043 0.031  -0.887 -0.109 0.068    0.103  0.079  0.130  -0.092 0.348  0.174 
PCA4 0.028  0.040  0.020  0.230  0.003  -0.047   0.060  0.020  0.090  -0.924 0.215  0.171 

10.3.4 Regression Analysis 
In context of change detection, linear regression is used to compare the values of the second date with 

those estimated from the first date, assuming that no change has occurred. The regression is built from DL 
values or stable pixels between the two dates. Once the regression model has been fitted, the DLs of the 
second date may be estimated from those of the first date using Equation 7-67. 

𝐷𝐷𝐷𝐷� 𝑡𝑡2 = 𝑎𝑎 + 𝑏𝑏 ∗ 𝐷𝐷𝐿𝐿𝑡𝑡1 (7-67) 

The residuals of the regression model can be used as a change detection index: 

𝐷𝐷𝐿𝐿𝑐𝑐 = 𝐷𝐷𝐷𝐷� 𝑡𝑡2 − 𝐷𝐷𝐷𝐷𝑡𝑡2 (7-68) 
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As they will show either higher or lower values than those expected if the area had been stable. 

10.3.5 Change Vector Analysis 
Change Vector Analysis (CVA) tries to identify the magnitude and the direction of change by using a 

bivariate space of transitions between the two dates. The vector that links the location of pixels in that 
bivariate and multitemporal space will contain information about the intensity and orientation of change. 
The angle of the change vector indicates the meaning of the change, while the magnitude of the vector 
indicates the importance of that particular change. 

The components of CVA can be computed from simple geometric rules. The intensity, I, of the change 
vector will be obtained by Equation 7-69 while the direction will be defined by the angle (α) in Equation 7-
70. 

𝐼𝐼𝑖𝑖,𝑗𝑗,𝑐𝑐 = �(𝐷𝐷𝐿𝐿𝑖𝑖,𝑡𝑡1 − 𝐷𝐷𝐿𝐿𝑖𝑖,𝑡𝑡2)2 + (𝐷𝐷𝐿𝐿𝑗𝑗,𝑡𝑡1 − 𝐷𝐷𝐿𝐿𝑗𝑗,𝑡𝑡2)2 (7-69) 

𝛼𝛼 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷𝐿𝐿𝑗𝑗,𝑡𝑡1−𝐷𝐷𝐿𝐿𝑗𝑗,𝑡𝑡2

𝐷𝐷𝐿𝐿𝑖𝑖,𝑡𝑡1−𝐷𝐷𝐿𝐿𝑖𝑖,𝑡𝑡2
). (7-70) 

for the spectral band i, j between the two periods of interest (t1 and t2). 
CVA has been used widely (Chen, J., et al., 2003; Friedl et al., 2002). Figure 7-60 shows an example of 

this analysis from the Brazil multitemporal TM pairs. The direction of change shows lower angles for those 
areas affected by deforestation processes, particularly those where soils were dominating, the burned area 
did not show such a clear trend. The image for intensity of change shows higher values for areas converted 
from forest to crops, pasture or bare soil, while lower intensity of change values are shown for the burned 
area. Areas remaining as forested and plots deforested before the first image also show low intensity values. 

 
Figure 7-60. Direction and intensity of the change vectors in the Brazil Acre study site. 

10.3.6 Defining Change Thresholds 
All methods so far reviewed produce continuous images of change. In other words, the output images 

show a continuous scale of change, from low to high digital level values. However, interpreters often seek 
to generate a categorized image that distinguishes changed from stable areas. It is therefore necessary to 
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segment the change images generated by the aforementioned techniques to create significant groups of 
change. 

Thresholds are commonly stablished using the mean and the standard deviation, but there is no objective 
way to select the most suitable multiple values of standard deviation to fix those thresholds. Some authors 
recommend changing them gradually and assessing the impact on the resulting change image (Fung and 
LeDrew, 1988; Fung, 1992). Other authors suggest using the sensor signal-to-noise ratio (Smits and 
Annoni, 2000). Some recommend extracting the thresholds from spatial differences of the potential change 
pixel and the neighbor characteristics. The spatial context is commonly estimated from a moving window 
of different size, which serves to account for the background trend. When a pixel has a strong contrast with 
the surrounding areas, it is labeled as potential change. This spatial context has been used extensively for 
cloud detection (Saunders and Kriebel, 1988) and for mapping burned areas (Chuvieco et al., 2008, 
Fernández et al., 1997). 

10.3.7 Multitemporal Analysis of Classified Images 
Identifying changes can also be handled using classification techniques. In this case, it is not required to 

define a change threshold, since classification already implies transformation of the continuous scale of 
DLs into a nominal scale of cover classes. Therefore, change analysis can be based on analyzing transitions 
between categories in two or more dates. 

The first approach to using classification techniques for change detection analysis is based on classifying 
two or more dates simultaneously. Using either supervised or unsupervised methods, the interpreter needs 
to identify both the significant stable covers and the relevant cover changes. Therefore, the resulting clas-
sification includes stable and dynamic covers. Stable urban or transition from rural to urban or from rainfed 
to irrigated agriculture are good examples of such categories.  

Another approach to multitemporal change detection analysis is to classify two dates of the same area 
and then compare those classifications to detect which areas maintain or have changed their cover. For 
doing so, the same categories should be used in both dates. Transition or stable pixels can be obtained by 
cross-tabulation analysis, in which pixels from one date are compared with the other one and all crossings 
are computed (Table 7-11). Stable pixels (those with the same category on both dates) will be located in 
the diagonal of this table, while the dynamic pixels will occupy the other cells. The analysis of this matrix 
provides critical information on the transitions between the two dates. When comparing just the total areas 
covered by certain categories in the two dates, the net difference provides a first insight into the evolution 
of that cover (increase or decrease), but the multitemporal table facilitates determination of the categories 
to which, or from which, these transitions have occurred. Actually, the total difference in area covered does 
not reveal the full set of transitions, since in the same area, gains and losses of the same category occur and 
they may be cancelled by considering only the totals (Pontius et al., 2004). 
Table 7-11. Cross-Tabulation of the Brazil Images. 
         2010 
         Forest    Crops    Water    Burned    Total 
1990   Forest   346888    192349    1745     51048    592030 
    Crops         794       16233        47         260      17334 
    Water         371            66      477           44          958 
    Total    348053    208648    2269     51352    610322 
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The multitemporal table also provides an excellent framework for computing change metrics. For in-

stance, the Kappa index or other agreement metrics facilitate a quantitative evaluation of temporal stability 
between two dates. Transitions of each category may be accounted for by computing initial and final areas 
covered by that category. For instance, in Table 7-11, the transitions of the sample area between 1990 and 
2010 account for 40% of the total area, from which the vast majority was changed from forest to crops (i.e., 
net loss 41%). Thirty-two percent of original forested area is now crops, while 8.6% is burned. The crop 
area of 1990 has been mostly maintained (i.e., 93% remained as crops) with a very low percentage changing 
to forested area (i.e., 4.5%). Total crop area in 2010 was mainly forested in 1990 (i.e., 92%). 

A final remark on change detection concerns to the complexity of displaying changes in dynamic maps 
clearly. Even with a small number of input categories (e.g., say, 8 per date) the number of potential transi-
tions (i.e., 64) exceeds the number of readable classes in a map. Even though some of those transitions will 
not exist, since some changes are very unlikely or impossible, the cartographic representation of changes is 
always a challenge (Figure 7-61). An alternative to representing changes would be to show them in a series 
of maps, one for each category on the first date, and each showing the output category in the second date. 
When the number of cross-categories is large, it may be preferable to create a series of maps (e.g., one for 
each input category, showing the transitions between the two dates). For instance, for the Brazil case study, 
three transitional maps may be created, one for each category of the first date (e.g., forest, crops, and water), 
showing in thematic colors the final cover at the second date. With this representation, a clearer view of the 
relevance of stable and transition covers is perceived. 

 
Figure 7-61. Map with the cross-analysis of the two dates for the Brazil site. 

10.3.8 Validation of Change Detection Studies 
The validation of multitemporal analysis is especially challenging as it complicates the comparison of 

reference and classified data with an additional time dimension. This implies errors associated with proper 
overlapping between the two images, as well as the difficulty of gathering reference information for histor-
ical periods. Summarizing these aspects, one can name the main differences in verification applied to 
change detection studies: 



ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

772 
 

• Increase in the number of categories in the error matrix. The potential number of categories (“sta-
ble,” “from,” and “to”) for two dates is the square of the number of categories in one date. All these 
classes must be considered during error evaluation, and at the end the confusion matrix will have 
n4 cells; n being the starting number of classes for one date (Table 7-12). 

• More complexity in the sampling scheme due to the great increase in number of categories to be 
verified. Since some of the potential changes will be uncommon or impossible (e.g., two urban 
areas to water bodies), one must increase considerably the sample size to verify these intersections. 
In these cases, stratified sampling or one based on auxiliary information can be a better alternative 
(Biging et al., 1998). 

• Difficulty in obtaining the reference information for past dates. In most cases, one will not have 
detailed information of terrestrial covers for distant past dates, which complicates the assessment 
of the oldest image. Aerial photography or cartographic documents of similar dates can solve this 
problem, although they may not always be reliable. 

When one attempts to verify change detection, the confusion matrix traditionally used in validation stud-
ies gets notably complicated. To illustrate this process, consider a simple example of validation: a change 
detection product, taken from Biging et al., 1998. Consider also that there are three classes for two different 
dates. This would imply nine possible categories of change. To verify these transitions, one needs a confu-
sion matrix of 81 cells (i.e., the 9 true by the 9 estimated changes), which includes both the permanent 
classes, those with the same category between dates, as well as the dynamic classes. All these potential 
transitions/permanencies require verification. Therefore, the confusion matrix will include the tabulation of 
pixels that the map of changes presents as “from class X to class Y,” while in reality, they may be that or 
some other kind of transition. As in the case of simple confusion matrices, the diagonal will include the true 
detections of change, those sampled pixels that were detected correctly as stable or as affected by a real 
change, and outside the diagonal the incorrect changes will be present. 

By being more specific, one can better explain the structure of a confusion matrix using the notation 
described by Biging et al. (1998) in Table 7-12. The cells annotated with 1 are estimated stable areas that 
really are constant, while the cells with 2 are classified accurately as changed. The addition of 1 and 2 
indicates the global accuracy of the change detection performed by the interpreter. The rest are errors due 
to several possibilities: 3 indicates stable areas classified incorrectly to other stable categories; 4 indicates 
changes when the cells maintained their category (i.e., commission errors, identified as a change for some-
thing that did not); 5 marks real changes that were not detected as such (i.e., omission errors); and 6 denotes 
identified changes inaccurately (detected changes, but assigned to another class, i.e., omission or commis-
sion errors, depending on the class considered). 
Table 7-12. Confusion Matrix for Change Detection Analysis. 
            Reference 
            Stable       Change 
            A   B   C   A   A   B   B   C   C 
           A   B   C   B   C   A   C   A   B 
Classification     AA  1   3   3   5   5   5   5   5   5 
     Stable  BB  3   1   3   5   5   5   5   5   5 
         CC  3   3   1   5   5   5   5   5   5 
 
         AB  4   4   4   2   6   6   6   6   6 
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         AC  4   4   4   6   2   6   6   6   6 
         BA  4   4   4   6   6   2   6   6   6 
     Change  BC  4   4   4   6   6   6   2   6   6 
         CA  4   4   4   6   6   6   6   2   6 
         CB  4   4   4   6   6   6   6   6   2 
A,B,C are different thematic categories. See text above Table 7-12 for explanation. Adapted from Congalton and 
Green (2009) and Biging et al. (1998). 

10.4 Time Series Analysis: Recent Advances in Software, Sensors and Data Availability 

Remote sensing time series analysis offers a powerful tool for revealing land surface dynamics, analyzing 
their magnitude, and estimating their impact on the environment within a defined monitoring time span 
(Lasaponara and Lanorte, 2012). Obviously, such an analysis requires appropriate spatio-temporal datasets 
as well as the necessary tools for mining the underlying information. Perhaps most importantly, a clear 
focus on which variables can, and should be, monitored continuously through remote sensing instruments 
is of most importance. This section provides an overview of recent advances in time series analysis, on the 
basis of these three axes: processing software, new types of sensors and data, and essential climate variables 
(ECVs). Although not the only useful application of remote sensing-based time series analysis, the mitiga-
tion of climate change constitutes the main driver for establishing most recent initiatives on persistent and 
systematic Earth observation data collection. 

10.4.1 Time Series Analysis Software 
The ever-increasing availability of freely-distributed time series of remotely-sensed data offers new pos-

sibilities for monitoring and analyzing land surface dynamics. However, the analysis and interpretation of 
such data is a challenging task, with many processing issues remaining open (Ma et al., 2015). Remote 
sensing time series are actually 4D signals defined on a spatiotemporal domain, with each image comprising 
a number of spectral bands. As the spatial resolution of satellite sensors decreases continuously, the volume 
of data increases substantially, necessitating development of new tools for handling spatiotemporal “big 
data” efficiently. 

Over the last few years, a number of software tools have been developed for analyzing remote sensing 
time series. Most of them attack the problem of the high volume of information through dimensionality 
reduction techniques. For example, deriving VIs results in a compression of the spectral dimension, whereas 
multitemporal composition or image differences reduce the temporal dimension. Moreover, open-source, 
or otherwise freely-distributed solutions, have increased considerably in the past few years, broadening 
their utilization by a much wider audience. 

Software for Processing and Interpreting Remote Sensing Image Time Series (SPIRITS) is a free soft-
ware environment for analyzing satellite-derived image time series (http://spirits.jrc.ec.europa.eu). SPIR-
ITS was developed by VITO for the Monitoring Agricultural ResourceS (MARS) team of the Joint Re-
search Center (JRC) (Eerens et al., 2014). It provides a simple graphical user interface (GUI) for easing the 
analysis (see, Figure 7-62) and was originally developed as a toolbox for crop monitoring. As such, it can 
perform specialized operations such as crop production anomalies and yield assessments. Nevertheless, it 
has evolved into an independent tool for processing and analyzing time series raster data. To this end, it 
provides a range of useful processes for general time series analysis, such as smoothing procedures to 

http://spirits.jrc.ec.europa.eu/
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remove noise, similarity analysis to identify the most similar year, and databases with regional statistics, 
among others. 

 
Figure 7-62. The SPIRITS graphical user interface (from Eerens et al., 2014). 

TIMESAT (Jönsson and Eklundh, 2002, 2004) is a software package distributed freely for analyzing 
time series satellite sensor data (http://web.nateko.lu.se/timesat/timesat.asp). Since the temporal domain 
holds important information about short- and long-term vegetation changes, it targets primarily the season-
ality of satellite time series data and their relationship to dynamic properties of vegetation, such as phenol-
ogy and temporal development. TIMESAT consists of a set of MATLAB® and Fortran routines, bundled 
within a graphical interface written in MATLAB® (Jönsson and Eklundh, 2015). Precompiled binary ver-
sions of the program are also provided. Its output consists of seasonality parameters (Figure 7-63), as well 
as fitted function files containing smooth renditions of the original data. TIMESAT has been used in a 
number of applications, such as multi-year rice crop phenology monitoring (Boschetti et al., 2009), tracking 
seasonal changes in coniferous forests (Jönsson et al., 2010), examining spatiotemporal patterns of growing 
seasons in Ireland (O’Connor et al., 2012), and mapping freshwater phytoplankton phenology (Palmer et 
al., 2015), among others. Although it has been originally intended for handling noisy time series of 
AVHRR/NDVI, it has evolved to handle different types of remotely-sensed time series, such as MODIS 
(Boschetti et al., 2009), MERIS (Palmer et al., 2015), and HJ-1 A/B data (Pan et al., 2015). 

http://web.nateko.lu.se/timesat/timesat.asp
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Figure 7-63. Some of the seasonality parameters generated in TIMESAT: (a) beginning of season, (b) end of season, 
(c) length of season, (d) base value, (e) time of middle of season, (f) maximum value, (g) amplitude, (h) small inte-
grated value, (h+i) large integrated value (source: http://web.nateko.lu.se/timesat/timesat.asp). 

Advanced remote sensing time series analysis is also possible using the R language (https://www.r-pro-
ject.org). “R” is a programming language and environment for statistical computing and graphics. Its func-
tionality has been augmented substantially over the years, by means of dedicated extensions (called pack-
ages) that target specific applications. Because of its ease of use and the simple syntax its language offers, 
it has been used increasingly for remote sensing data analysis. Several packages exist specifically for remote 
sensing time series analysis. The Breaks For Additive Season and Trend (BFAST) package (http://bfast.r-
forge.r-project.org), for example, provides generic functionality for continuous change monitoring, trend 
analysis, and near-real time disturbance detection of any kind of disturbance or change process (Verbesselt 
et al., 2010, 2012). BFAST estimates the time and number of abrupt changes iteratively within time series, 
and characterizes change by its magnitude and direction. It also offers generic change detection functions 
for time series segmentation and near-real time monitoring for any kind of time series like for example 
rainfall, temperature, or dendrochronology series. The closely related bfastSpatial package 
(http://github.com/dutri001/bfastSpatial) automates the application of many preprocessing steps required 
for the employing the trend analysis. The TimeSyncR package (https://github.com/johanez/multifuse) is 
based loosely on the TimeSync method of Cohen et al. (2010) and provides a tool to aid visualizing and 
interpreting Landsat time series data for calibrating and validating change detection methods. The MODIS 
package (http://modis.r-forge.r-project.org) consists of a set of functions for downloading, mosaicking, 
resampling, reprojecting, analyzing, and visualizing MODIS data, with special attention given to spatio-
temporal filtering, change detection and phenological metric extraction. Finally, the recent MulTiFuse 
package (https://github.com/jreiche/bayts) provides functions for fusing optical and SAR time series 
(Reiche et al., 2015). Application of the aforementioned tools is not supported by some dedicated GUIs, 
but rather requires knowledge of the R programming language and environment. Nevertheless, R offers 
sophisticated tools for visualizing any type of data, together with many other statistical analysis processes. 

 The Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr), for example, com-
prises a set of preprocessing and analysis algorithms written in the Interactive Data Language (IDL) pro-
gramming language (http://landtrendr.forestry.oregonstate.edu), specifically targeted to capturing trends 
in Landsat-derived time series (Kennedy et al., 2010). The LandTrendr algorithm tracks land cover changes 

http://web.nateko.lu.se/timesat/timesat.asp
https://www.r-project.org/
https://www.r-project.org/
http://bfast.r-forge.r-project.org/
http://bfast.r-forge.r-project.org/
http://github.com/dutri001/bfastSpatial
https://github.com/johanez/multifuse
http://modis.r-forge.r-project.org/
https://github.com/jreiche/bayts
http://landtrendr.forestry.oregonstate.edu/
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across years, whereas intra-year variability is considered noise. Each pixel’s temporal trajectory is con-
structed considering only the best values for each year, after removing clouds, shadows, and data gaps. The 
core step is applying a temporal segmentation process, whereby the overall change trends are identified 
after simplifying the time series to remove noise and spikes. Therefore, significant changes can be identified 
on a yearly basis and are subsequently visualized through change maps. Because of the yearly temporal 
resolution of LandTrendr’s approach, it has been used mainly for (1) analyzing forest biomass dynamics 
(Powell et al., 2013; Pflugmacher et al., 2014); (2) to distinguish between different forest disturbances 
(Senf et al., 2015); and (3) to identify spatiotemporal changes in fish species populations (Kennedy et al., 
2015). 

All the aforementioned software packages are either open-source or otherwise distributed freely for sci-
entific purposes. Nevertheless, many commercial packages have also started incorporating some function-
ality for analyzing time series data. One notable example is the TerrSet geospatial software system 
(https://clarklabs.org/terrset), which incorporates the former IDRISI image analysis software and aug-
mented it with enhanced trend analysis and change modeling functionalities. Specifically, it includes a 
module for general Earth trend modeling applications, providing advanced time series preprocessing and 
de-noising algorithms, tools for examining the relationship between time series and trends in seasonality, 
as well as methodologies for analyzing patterns of variability across temporal scales. Moreover, the Land 
Change Modeler (LCM) module allows analyzing land cover changes, empirically model relationships to 
explanatory variables, and simulating future land change scenarios, thus supporting the design of policies 
for climate change mitigation. 

10.4.2 New Sensors, More Data, New Perspectives 
Over the past 40 years, a large number of satellite sensors have been monitoring Earth and its changing 

patterns. The lessons learned are being used to further develop the efficiency, relevancy, and timeliness of 
new Earth-observing missions. Emphasis is being given to global time series collection of consistent meas-
urements. For example, the various satellite missions of the Sentinel program have been designed to have 
a short revisit time; whereas the Sentinel-2 sensor includes specific aerosol content bands to ease atmos-
pheric correction. The latter is important not only for obtaining consistent measurements along different 
time points, but also for accurately calculating many useful biophysical parameters that are based on ground 
reflectance measurements. The rapid deterioration of our planet’s climate and global initiatives established 
in response, detailed in the next subsection, have also pushed development of new Earth-observing missions 
designed to collect measurements on multiple variables for land, sea, and atmosphere. Moreover, the tech-
nological advent of remote sensors facilitates monitoring physical properties that conventional optical sen-
sors were not designed to quantify. As such, a diverse range of new application-based on remotely-sensed 
data, and time series data in particular, have emerged. 

Synthetic aperture radar (SAR) sensors are active systems that transmit beams of radiation in the micro-
wave region of the electromagnetic spectrum. They are not affected by light or heat conditions, can pene-
trate clouds, and their signals can be used to infer ground elevation. Although SAR time series have shorter 
history than those collected by other optical systems, relatively adequate records exist. For example, ERS-

https://clarklabs.org/terrset
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1 and -2 have collected SAR time series since the early 1990s, retired in 2012, whereas new satellite mis-
sions such as Sentinel-1, are already operational. 

A prominent application of SAR time series data relates to altimetry, which can be used to infer ground 
deformation through interferometry (InSAR) (Iglesias et al., 2015). Specific applications range from land-
slide deformation mapping (Motagh et al., 2013; Shi et al., 2015) and estimation of its velocity (Figure 7-
64) (Lauknes et al., 2010) to assessment of structural damage (Arangio et al., 2014; Tofani et al., 2014) 
and land subsidence in residential areas (Cascini et al., 2013; Chen et al., 2013, 2015; Kim et al., 2015b) 
and monitoring volcanic activity (Parks et al., 2012; Meyer et al., 2015). SAR signals are also sensitive to 
water content. For example, smooth water surfaces generally appear as dark areas in SAR images. This 
property has been exploited to observe seasonal changes in water surface areas (Heine et al., 2014), ana-
lyzing flood events (Khan et al., 2014; Shang et al., 2014), and simulating coastal inundation through tidal 
models (Medeiros et al., 2013). SAR time series data have been employed for monitoring ice-shelf decom-
position (Kim et al., 2015a), identifying changes in ice cover thickness of Arctic shallow lakes (Surdu et 
al., 2014), discriminating types of sea ice (Ressel et al., 2015), and estimating water equivalent dry snow 
(Leinss et al., 2015). 

The ability of SAR signals to penetrate clouds makes them useful also for land change monitoring. Data 
gaps because of cloud cover are a significant problem in landcover change mapping through optical sensors, 
especially in tropical regions. Usually this is achieved by fusing the data provided by optical and SAR time 
series (Lehmann et al., 2015; Reiche et al., 2015), although approaches that employ SAR imagery exclu-
sively also exist (Shiraishi et al., 2014; Betbeder et al., 2015; Dong et al., 2015). Other reported applications 
of SAR time series data include soil moisture determination (Panciera et al., 2014), LAI retrieval (Beriaux 
et al., 2013), and estimation of crop phenology parameters (De Bernardis et al., 2015). 

LiDAR is active sensor technology that uses light in the form of a pulsed laser to measure ranges (variable 
distances) to point returns from objects at the surface. Its application the last few years has increased sub-
stantially, because of the increasing availability of LiDAR data obtained by airborne sensors. Space Lidar 
technology is still in its infancy, with the only system being NASA’s experimental Ice, Cloud and land 
Elevation Satellilte (ICESat) Mission, which operated from 2003 to 2009. The primary objectives of ICESat 
were to measure ice sheet mass balance, cloud and aerosol heights, surface topography and vegetation char-
acteristics. Although the Mission’s operational period was short, a number of satellite Lidar time series 
scientific studies have been conducted, focused mainly on monitoring changes of Earth’s permanent ice 
sheets (Herzfeld and Wallin, 2014; Herzfeld et al., 2014; Wang et al., 2014). Nevertheless, other interesting 
uses have also been reported, such as analyzing lake water balance changes (Zhang, G., et al., 2013) and 
estimating forest canopy height (Duncanson et al., 2010, Li et al., 2011). Following the Mission’s success, 
the ICESat-2 follow-up Mission is under development and slated for launch in 2017, with the additional 
envisaged objective to generate an estimate of global vegetation biomass. 
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Figure 7-64. Landslide velocity estimation using time series of ESR-1 and ESR-2 SAR data from 1992 through 1999. 
The SAR sensor is only sensitive to displacement changes with a component in the radar line-of-sight (LOS) direction, 
whereas two alternative approaches for estimating the average yearly displacement are compared, namely: (a) the 
Small BAseline Subset (SBAS) algorithm; (b) the Maximum Likelihood Persistent Scatterer (ML-PS); (c-d) the same 
results in a three dimensional perspective view using a DEM. Yearly displacement of two points, marked as A and B 
relatively, to the reference star is shown in (e) and (f), respectively, where the solid lines represent the linear model 
fitted to SBAS, and the dashed lines the one fitted to ML-PS. Generally, SBAS has the advantage of having regional-
scale coverage, whereas ML-PS can be used for detailed or complementary studies (source: Lauknes et al., 2010). 

The wealth of historical records of remote sensing observations available today facilitates time series 
studies on a global level. A prominent example was the Global Irrigated Area Map (GIAM) project 
(Thenkabail et al., 2009), whose objective was to identify and map irrigated areas on a global scale. Alt-
hough the project was conducted at the end of the previous millennium, it serves even today as an example 
of the potentials offered by remote sensing time series data. GIAM combined the information provided by 
multiple datasets, many of which were obtained through time series observations. The information was 
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compiled into a single multi-source and multi-temporal data cube (Figure 7-65) and was subsequently an-
alyzed through advanced pattern recognition algorithms on the spatiotemporal domain. 

 
Figure 7-65. Global mega-file data cube comprising 159 data layers, consisting of time series from various sources 
and providing characteristics from all data layers at any single point (adapted from Thenkabail et al., 2009). 

10.4.3 Remote Sensing as a Source of Data forMeasuring Essential Climate Variables 
The face of Earth is constantly changing at measurable rates, the consequences of which are not fully 

understood and are still contentious politically, economically, and scientifically. Forest ecosystems are di-
minishing at an alarming speed, urban and agricultural areas are expanding into surrounding natural spaces, 
and sea level rise appears to be changing coastal ecosystems. Nowadays, there is a broad consensus that 
Earth’s climates are changing, some at alarming rates, and that there is an urgent need to reduce further 
degradation and to mitigate negative impacts as much as possible. A number of global initiatives have been 
established for this purpose, such as the United Nations Framework Convention on Climate Change 
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(UNFCCC), the Intergovernmental Panel on Climate Change (IPCC), the World Climate Programme 
(WCP), and the UNEP, along with many other national and transnational initiatives. 

To fully identify the trends of climate change, understand its impacts, and design efficient policies for 
their mitigation, constant monitoring of our planet is essential. In 1992 the Global Climate Observing Sys-
tem (GCOS) was established as an international, interagency, interdisciplinary framework for ensuring that 
the observations and information needed to address climate-related issues are obtained and made available 
to all potential users (Houghton et al., 2012). GCOS is a long-term, user-driven operational system capable 
of providing the comprehensive observations required for monitoring the climate system, for detecting and 
attributing climate change, for assessing the impacts of climate variability and change, and for supporting 
research to improve understanding, modeling, and prediction of the climate system. In aggregate, as a sys-
tem of climate-relevant observing systems, it constitutes the climate observing component of the Global 
Earth Observation System of Systems (GEOSS). 

To provide guidance for collecting climate-related Earth-observing data, GCOS has developed the con-
cept of essential climate variables (ECVs), which have been adopted broadly in science and policy circles 
and is updated frequently (GCOS, 2010). An ECV is a physical, chemical, or biological variable or a group 
of linked variables that contribute immensely to characterizing Earth’s climate (Bojinski et al., 2014). A 
variable is identified as an ECV if it fulfils three criteria: (a) it is critical for characterizing the climate 
system and its changes (relevance); (b) observation is technically feasible through proven scientific meth-
ods (feasibility); and (c) generating and archiving data on the variable is affordable (cost-effectiveness). 
GCOS currently identifies 50 ECVs (GCOS, 2010) that are required for supporting the work of the UN-
FCCC and the IPCC (Table 7-13). 
Table 7-13. The Essential Climate Variables as Currently Identified by GCOS (2010). 
Domain    Essential Climate Variables 
Atmospheric  Surface:      Air temperature, Wind speed and direction, Water vapor, Pressure, 
              Precipitation, Surface radiation budget 
      Upper-air:     Temperature, Wind speed and direction, Water vapor, Cloud properties, 
              Earth radiation budget (including solar irradiance) 
      Composition:    Carbon dioxide, Methane, and other long-lived greenhouse gases, Ozone 
              and Aerosol supported by their precursors (in particular nitrogen dioxide, 
              sulphur dioxide, formaldehyde, and carbon monoxide) 
 
Oceanic    Surface:      Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea ice, 
              Surface current, Ocean color, Carbon dioxide partial pressure, Ocean acidity, 
              Phytoplankton 
      Sub-surface:    Temperature, Salinity, Current, Nutrients, Carbon dioxide partial pressure, 
              Ocean acidity, Oxygen, Tracers 
 
Terrestrial           River discharge, Water use, Groundwater, Lakes, Snow cover, Glaciers and 
              Ice caps, Ice sheets, Permafrost, Albedo, Land cover: including vegetation 
              type, fraction of absorbed photosynthetically active radiation (FAPAR), 
              LAI, Above-ground biomass, Soil carbon, Fire 
              Disturbances and Soil moisture 

 
In response to the GCOS ECV specifications, the European Space Agency (ESA) has launched the Cli-

mate Change Initiative (CCI) to provide satellite-based climate data records (CDRs) that meet the challeng-
ing requirements of the climate community (Hollmann et al., 2013). The aim of the initiative is to realize 
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the full potential of the long-term Earth observation archives that both ESA and third parties have estab-
lished that includes data acquisition, calibration, algorithm development, validation, maintenance, and pro-
vision of the data to the climate research community. For the current program, 13 of the 50 ECVs have been 
selected: 

• Atmosphere: ozone, clouds, aerosols, and greenhouse gases (GHGs); 
• Ocean: sea level, sea surface temperature (SST), ocean color, and sea ice; and 
• Terrestrial: land cover, fire disturbance, soil moisture, glaciers and ice caps, and ice sheets. 

ESA CCI aims to provide as complete, and as consistent, a time series of multi-sensor global satellite 
data products as possible for climate research and modeling. For this purpose, the data from a number of 
globally available satellite instruments are being employed (Figure 7-66), with the length of the record 
varying between ECVs. For each variable, the best available technique for producing the record is selected, 
whereas new algorithms are also developed by the respective teams (Merchant et al., 2015). Ultimately, a 
prototype product is created that will be verified, validated, and assessed openly for its utility to climate 
science by independent teams. 

 
Figure 7-66. Satellite sensors contributing to ECV monitoring in the framework of the ESA CCI program (source: 
Hollmann et al., 2013). 

CCI will provide a wealth of consistent, validated, and timely data for a number of climate-related stud-
ies. A number of new algorithms for developing more accurate products has been proposed for land cover 
mapping (Radoux et al., 2014), clouds (Karlsson and Johansson, 2014), seal level rise (Ablain et al., 2015), 
glacial areas, elevation changes and velocity (Paul et al., 2015), and ozone (Coldewey-Egbers et al., 2015). 
Moreover, systematic validation of well-established techniques has also begun (Dils et al., 2014, Dorigo et 
al., 2015, Kern et al., 2015, Padilla et al., 2015). All products created within the CCI framework are avail-
able at no cost for download, through a single point of access (ftp://anon-ftp.ceda.ac.uk/neodc/esacci) for 
key data products; whereas, the full suite of products is accessed via the dedicated site for each ECV. 
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An equivalent CDR program has also been established in the United States of America (USA) carried 
out by the NOAA (Drobot et al., 2004). Currently, various ECV related time series datasets are assimilated 
and validated, including aerosol optical thickness, cloud properties, surface radiation budget, ozone, pre-
cipitation solar irradiance, sea ice concentration, SST, LAI, FAPAR, and snow cover extent, in the northern 
hemisphere. Moreover, the list of products is updated continuously, exploiting incoming data from new 
scheduled missions. All generated data and products are becoming available as soon as they are generated 
and at no cost through NOAA’s dedicated file transfer protocol (FTP) server (ftp://data.ncdc.noaa.gov/cdr). 
Finally, the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) is also 
supporting the GCOS implementation plan, collecting and processing a number of ECVs, related mostly to 
meteorological observations (Schulz et al., 2009). 

Remote sensing time series analysis is a broad field with many practical applications. Nevertheless, mon-
itoring ECVs for designing climate change adaptation policies constitutes the main driver for most of the 
more recent and future satellite missions, even if this objective has been considered complementory with 
other factors. For example, well before the launch of the first Sentinel-1 satellite, the potentials offered by 
the whole Sentinel program in terms of monitoring ECVs was assessed and a recommendation was made 
to prioritize future missions and derived products based on the Malenovský principles (Malenovský et al., 
2012). Designing and implementing the Indian Earth Observation System was also influenced strongly by 
the need for consistent collection of ECV time series (Navalgund and Singh, 2011). ESA’s Earth Explorer 
Missions within the Living Planet Programme aim to monitor specific ECVs that were difficult to observe 
with previous conventional sensors (e.g., biomass, chlorophyll fluorescence, and greenhouse gases with 
high spatial resolution). 

All the climate change-related initiatives undertaken over the past three decades have resulted in com-
piling long time series of consistent measurements that enable assessment of climate change trends, as well 
as the derivation of relatively safe projections of their possible future trends. The activities of GCOS and 
the Group on Earth Observations (GEO) have facilitated freely available remote sensing time series of 
climate change data. The various CDR programs are starting to provide consistent and validated time series 
of various biophysical parameters over a statistically adequate time span. As a consequence, the works 
based on remote sensing time series data have multiplied over the last few years, especially after 2009. A 
number of scientific works analyze LAI and FAPAR variables (Camacho et al., 2013; D’Odorico et al., 
2014; Verger et al., 2015), because of their importance in carbon stock and ecosystem models and the 
availability of long time series from sensors such as MODIS, SPOT VEGETATION, and MERIS, among 
others. Nevertheless, diverse time series applications are also emerging, based on land cover mapping 
(Blanco et al., 2013), forest fire variability analysis (Vasconcelos et al., 2013), measuring glacial retreat 
velocities (Dehecq et al., 2015), and determining surface water temperature (Riffler et al., 2015). 

10.5 Image Enhancement for Time-series Analysis and Analysis Methods 

10.5.1 Introduction 
Image enhancement refers to improving image interpretability and perception of information for specific 

applications (Maini and Aggarwal, 2010). Various techniques have been developed for image enhancement 
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in the spatial domain, including the widely used local contrast enhancement techniques through two-dimen-
sional convolution of pixels in a moving window (e.g., Low Pass, High Pass and various statistical filters) 
(Pratt, 2014). Image enhancement is also performed by adjusting global contrast using image histograms 
(e.g., Min-Max Stretch, Standard Deviation Stretch, Gaussian Stretch and Histogram Match) (Jensen, 
2015). In the spatial frequency domain, image enhancement may involve computing a Fourier transform of 
the image (e.g., FFT and Inverse Fast Fourier Transform (IFFT)), applying the transform, and producing 
the enhanced image (Russ, 2011). These spatial enhancement methods were documented and described in 
previous editions of the Manual of Remote Sensing. 

Here, we introduce the recent development of time-series image enhancement in the temporal domain. 
Since the 1980s, global observations at km scales have been available from satellite systems such as the 
NOAA’s AVHRR, Terra/Aqua MODIS, and SPOT VEGETATION (VGT). Frequent acquisitions of satel-
lite imagery reveal land surface phenology (de Beurs and Henebry, 2004) and its inter-annual responses to 
climate dynamics (Myneni et al., 1997). Satellite-derived NDVI time series have been used commonly for 
land cover delineation (Wang et al., 2011; 2015) and for analyses of land cover trends under various an-
thropogenic (e.g., land-use change) and natural (e.g., short-term weather dynamics and long-term climate 
change) impacts (Elmore et al., 2003; White et al., 2002). However, raw NDVI trajectories are influenced 
highly by cloud, atmospheric conditions and systematic noise during image acquisition. Time-series en-
hancement aims to suppress these kinds of data noise to reconstruct high-quality data sets for improved 
time-series analysis. 

10.5.2 Time-series Noise Reduction 
Vegetated land surfaces possess inherent growth cycles that can be described by time-series image data. 

Cloud contamination results in abnormal spikes along those time series, and even on cloud-free days, spec-
tral indices such as NDVI vary with aerosol concentration, BRDF effects from Sun-Earth-sensor geometry, 
and land surface disturbances. A number of threshold-based noise reduction algorithms have been devel-
oped to better approximate vegetation growth cycles. 

10.5.2.1 Maximum Value Composite 
Early approaches to reducing temporal noise in daily remotely-sensed data include the MVC technique 

(Holben, 1986), which retains the highest NDVI value in a compositing period by assuming that all con-
tamination (e.g., clouds) results in decreased NDVI. A single value is used to represent the composite pe-
riod, and therefore, the temporal resolution of the output is reduced. Common examples of MVC compo-
sites are: (1) the 8km, 10-day Pathfinder AVHRR Land (PAL) datasets, available since the 1980s; (2) the 
1km, 10-day VGT S10 products available since 1998; and (3) MODIS products at various temporal intervals 
(8-day, 16-day, and monthly) at spatial resolutions (250m, 500m and 1,000m), available since 2000. In wet 
growing seasons, however, cloud spikes in these products often remain when clouds cover the whole com-
posite period (Wang et al., 2011). 

10.5.2.2 Best Index Slope Extraction 
As an alternative to MVC, Viovy et al. (1992) proposed a threshold-based Best Index Slope Extraction 

(BISE) approach to suppress noise without reducing temporal resolution. In this approach, a threshold for 
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acceptable NDVI increase (e.g., 20%) is used to define the upper envelope in a pre-determined scanning 
time period. High-frequency noise (i.e., sudden increases and decreases of NDVI) do not satisfy the thresh-
old and are eliminated. In spite of its better retention of seasonal variation than MVC, the selection of 
scanning periods for BISE is subjective, as it depends on the experience of the analyst and varies with land 
surface dynamics. Like all threshold-based methods, the BISE approach may result in erroneous interpre-
tation, such as shifted start and end of seasons when extracting phenologic descriptors (Jönsson and 
Eklundh, 2002). 

10.5.3 Time-series Smoothing 
Vegetated land surfaces possess complex growth cycles that vary with biome, climate and human activ-

ities. As a result, different smoothing techniques may be needed to extract their phenology behaviors opti-
mally (Zhang et al., 2003). The 250m, 16-day MODIS NDVI (MOD13Q1) product in 2012-2014 demon-
strates some common approaches of time-series smoothing. Three year NDVI time series data for three 
vegetated areas were representing areas in the North China Plain include: (a) deciduous forest; (b) winter 
wheat single cropping; and (c) winter wheat-corn double cropping. Their raw NDVI time series and 
smoothed curves are shown in Figure 7-67. The TIMESAT software was used to extract these curves (Jöns-
son and Eklundh, 2004). 

Forest lands (Figure 7-67a) present single annual cycles from spring to late fall. Winter wheat in the 
North China Plain is planted in October and harvested the following June (Lu et al., 2014). After planting, 
two growth peaks are apparent: one in winter with a smaller NDVI peak and another in spring with the 
primary NDVI peak (Figure 7-67b). The North China Plain is dominated by double cropping, (i.e., winter 
wheat, followed by corn, sometimes cotton). Figure 7-67c reveals two primary peaks (i.e., two growth 
cycles) within a one-year period – winter wheat in spring and corn in fall. A secondary growth peak of 
wheat in winter is also apparent. In original NDVI curves, cloud or snow spikes (e.g., the one in early 2014) 
are observable. Actually, in Figure 7-67c, the secondary growth peak of wheat in winter 2012 is lost due to 
a spike in this period. The sharp local variation and jagged trajectories of original NDVI values indicate the 
need for time-series smoothing. A variety of methods have been employed to smooth time series of spectral 
indices, including those based on local polynomial fitting and the use of logistic and asymmetric Gaussian 
functions, as presented below. 
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Figure 7-67. NDVI time series from MOD13Q1 for the North China Plain: (a) deciduous forest; (b) winter wheat 
single cropping and (c) winter wheat-corn double cropping. 

10.5.3.1 Local Polynomial Fitting 
The most commonly adopted polynomial fitting is the Savitzky-Golay filter (Savitzky and Golay, 1964). 

Basically, it is a weighted least-square moving average defined by a 2nd-order polynomial regression. Given 
a filter window 2n+1, the smoothed NDVI, NDVIs(t), at a temporal position, t, can be calculated by Equation 
7-71 as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠(𝑡𝑡) = ∑ 𝑤𝑤𝑗𝑗
𝑛𝑛
𝑗𝑗=−𝑛𝑛 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗+𝑡𝑡

′  (7-71) 

where: 𝑤𝑤𝑗𝑗 = 1/(2𝑛𝑛 + 1) is the weight of the moving average at point j in the window, with j𝜖𝜖(−𝑛𝑛, 𝑛𝑛). 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁′ is the fitted NDVI with a quadratic polynomial function using all 2n+1 points in the window. At a 
temporal position, t, the regressed NDVI in a period of 2n + 1 is given by Equation 7-72 as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗′ = 𝑐𝑐0 + 𝑐𝑐1𝑡𝑡𝑗𝑗 + 𝑐𝑐2𝑡𝑡𝑗𝑗
2 (7-72) 

where: 𝑐𝑐0, 𝑐𝑐1, and 𝑐𝑐2 are the fitting parameters to be solved in the function.  
The Savitzky-Golay filter, referred to as the S-Golay filter in Figure 7-67, provides a simple yet useful 

smoothing process to reduce cloud contamination in NDVI time series. As shown in the Figure, the S-Golay 
smoothed curves reduce local variations effectively, especially spikes, in the raw NDVI curves, although 
the trajectories are still jagged. Among all filters displayed in the Figure, the Savitzky-Golay smoother 
remains maximally the secondary winter growth of wheat. 

Recent studies modified this filter for improved noise reduction. Chen et al. (2004) proposed an iterative 
Savitzky-Golay filter by fitting the upper envelope of NDVI to account for negatively biased noise. Swets 
et al. (1999) incorporated a weighted least squares linear regression, while Bradley et al. (2007) weights 
NDVI values asymmetrically above and below the baseline with an exponential weighting function to better 
extract the local maxima of NDVI. Jin and Xu (2013) combined several statistical filters into a Running 
Median-Maximum-Endpoint-Hanning (RMMEH) smoother to reconstruct optimally the MODIS NDVI 
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time series. These noise-reduction processes often serve as the first step of time-series cleaning before curve 
fitting (Bradley et al., 2007; Wang et al., 2011). 

10.5.3.2 Logistic Function 
Zhang et al. (2003) developed a piecewise logistic model to fit the MODIS NDVI time-series curves for 

extracting phenological metrics. Basically, a complete growth cycle is divided into a series of pieces of 
temporal changes (e.g., growth or senescence). Defining the curvature as the derivatives of NDVI along the 
time series, each piece is determined by the transition dates calculated as the minimal or maximal rate of 
curvature change (i.e., the 2nd derivative of NDVI). For each piece, the NDVI time series is simulated in 
Equation 7-73 as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠(𝑡𝑡) = 𝑁𝑁𝐷𝐷𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
1+𝑒𝑒𝑎𝑎+𝑏𝑏×𝑡𝑡 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (7-73) 

where: NDVImax is the maximal variation of this piece and NDVIbase is it’s base level, with peak NDVI = 
NDVImax + NDVIbase. The simulation of this piece is determined by the exponential function 𝑒𝑒𝑎𝑎+𝑏𝑏𝑏𝑏 with a 
and b as the fitting parameters.  

The piecewise logistic model needs a priori knowledge about the numbers of pieces in a growth cycle. 
Simplifying land surfaces to a single-season growth cycle containing two pieces (i.e., growth and senes-
cence), Beck et al. (2006) modified the model to a double logistic function in Equation 7-74 as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠(𝑡𝑡) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚( 1
1+𝑒𝑒−𝑏𝑏1×(𝑡𝑡−𝑎𝑎1) + 1

1+𝑒𝑒𝑏𝑏2×(𝑡𝑡−𝑎𝑎2)) + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (7-74) 

where: the terms b1 and b2 represent the slopes in the two functions, while a1 and a2 are the two inflection 
points of each slope. 

The double logistic filter performs well for forests with single growth cycles (Figure 7-67a). It removes 
local variations and maintains the smooth trajectories maximally along the time series. For non-ideal growth 
curves, however, its performance becomes less optimal. As shown in Figures 7-67b and 7-67c, while main-
taining the primary growth peaks for winter wheat and corn, the secondary peak of wheat in winter is lost 
in the double logistic smoothing. 

10.5.3.3 Asymmetric Gaussian Function 
Asymmetric function fitting methods are more flexible when applied to land surfaces with irregular 

growth cycles, for example cool-season grasses with a prolonged duration in the USA Great Plains (Wang 
C. et al., 2013). To account for the asymmetric curvatures between growth and senescence, the growth 
cycle is split into two Gaussian functions (Jönsson and Eklundh, 2004) in Equation 7-75: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠(𝑡𝑡) = �𝑐𝑐1 + 𝑐𝑐2𝑒𝑒−�𝑡𝑡−𝑎𝑎1
𝑎𝑎2

�
𝑎𝑎3

  𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑎𝑎1

𝑐𝑐1 + 𝑐𝑐2𝑒𝑒−�𝑎𝑎1−𝑡𝑡
𝑎𝑎4

�
𝑎𝑎5

  𝑖𝑖𝑖𝑖 𝑡𝑡 < 𝑎𝑎1

 (7-75) 

where: two Gaussian functions are split at temporal position a1: growth in the left (t < a1) and senescence 
in the right (t > a1). The terms a2 and a4 control the slope, a3 and a5 are the kurtosis (i.e., flatness) of each 
function, while c1 and c2 determine the base level and the amplitude of the NDVI trajectories. 
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An interesting modification of the asymmetric Gaussian method is the Double Gaussian model that is 
suitable in double-season agricultural lands, such as the winter wheat-corn double cropping that is dominant 
in the North China Plain. In this case, the annual NDVI curve is represented by a combination of two 
Gaussian functions (Lu et al., 2014) in Equation 7-76. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠(𝑡𝑡) = 𝑐𝑐1𝑒𝑒−�𝑡𝑡−𝑎𝑎1
𝑎𝑎2

�
𝑎𝑎3

+ 𝑐𝑐2𝑒𝑒−�𝑡𝑡−𝑎𝑎4
𝑎𝑎5

�
𝑎𝑎6

 (7-76) 

where: a1, a2…, a6 are the fitting parameters. Different from the asymmetric Gaussian function above, c1 
and c2 are added to represent the amplitudes of the two Gaussian functions, respectively.  

The need for solving multiple parameters to simulate a complete cycle increases the computational com-
plexity of the Gaussian filters. Similar to the double logistic filter, the asymmetric Gaussian filter performs 
well for land surfaces with simple growth cycles such as forest (Figure 7-67a). In Figure 7-67b and 7-67a, 
it picks up the secondary growth cycle of wheat in winter 2013, but not the one in winter 2012. These 
observations agree with Wang et al. (2011) that these filters are often ill-suited for land surfaces with com-
plex growth cycles, and fail in areas without strong seasonality. Also, the asymmetric Gaussian filter shifts 
the temporal position of the peak NDVI slightly, resulting in lower peak values than the double logistic 
filter, which may become problematic in extracting phenological metrics such as SOS. 

10.5.3.4 Fourier Series Function 
Fourier fitting methods perform harmonic analysis of satellite time series (Sellers et al., 1994; Cihlar, 

1996; Roerink et al., 2000). In these approaches, a time series is split into a series of symmetric sinusoidal 
functions. For example, a second-order Fourier series requires five parameters to describe the seasonality 
of NDVI trajectories (Beck et al., 2006) as shown in Equation 7-77: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠(𝑡𝑡)= ∑ (𝑎𝑎𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗 × 𝜙𝜙𝑡𝑡) +2
𝑗𝑗=0 𝑏𝑏𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗 × 𝜙𝜙𝑡𝑡)) (7-77) 

where: 𝜑𝜑 = 2𝜋𝜋(𝑡𝑡 − 1)/𝑛𝑛, with n representing the total number of points in the time series. The terms a0, 
a1, a2, b1, b2 are the fitting parameters in a 2nd-order simulation.  

Harmonic decomposition of NDVI time series has been applied to identify annual crops relying on their 
symmetric and inter-annually consistent development cycles (Jakubauskas et al., 2002). Most land cover 
classes, however, do not possess ideally symmetric curves due to dynamic weather conditions and human 
disturbances. Therefore, Fourier analysis is less applicable to global land surface analyses. 

10.5.3.5 Conclusions 
High-quality satellite time series are crucial to regional and global vegetation monitoring as well as for 

environmental change and sustainability research (Bradley et al., 2007; Turner et al., 2007). Time series 
enhancement suppresses spectral noise and fits image trajectories optimally into theoretical model func-
tions. Smoothed time series improve our assessment of land surface phenology as well as long-term trends 
of terrestrial lands under the accelerated pressure of climate change and human disturbances. However, it 
should be noted that different smoothing approaches may be applied depending on the growth cycles of 
land surfaces. Filters tend to work well in forested lands that present simple, single growth cycles. The 
double logistic filter fails to detect any of the secondary growth cycle of wheat in the winter season, while 
the asymmetric Gaussian filter performs better to depict this cycle when the land is not affected by snow or 
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cloud spikes. On the other hand, the double logistic filter seemed to better represent the peak NDVI values 
and temporal positions than the asymmetric Gaussian filter. In short, caution is needed in selecting the 
optimal smoothing approaches in time series analysis. Multiple techniques have been proposed to analyze 
time series of remotely-sensed data following image enhancement and time series reconstruction. Details 
regarding one of these techniques, the Empirical Mode Decomposition (EMD) method, are presented be-
low. 

10.6 Further Methods in Time Series Analysis 

10.6.1 Empirical Mode Decomposition in Remotely Sensed Image Processing 
The Hilbert-Huang Transform (HHT) was proposed by Huang et al. (1998) as a frequency-based method 

for nonlinear and nonstationary time-series analysis. HHT consists of two parts: EMD and Hilbert Spectral 
Analysis. The techniques have been applied extensively in Earth science research (Huang and Wu, 2008). 
Still, the remote sensing community has seen an increase in adopting and customizing EMD for signal/im-
age processing. Given its popularity in the past two decades, this text summarizes the status of EMD appli-
cations in remote sensing. 

EMD assumes that at any given time, the input dataset may have many coexisting simple oscillatory 
modes of significantly different frequencies, one superimposed on the other. With an a posteriori defined 
basis derived from the input data, EMD self-adaptively decomposes the dataset into a finite number of 
components, also known as Intrinsic Mode Function (IMF). Each IMF satisfies the following conditions: 
(1) in the whole data set, the number of extrema and the number of zero crossings must either be equal to, 
or differ at most, by one; and (2) at any data point, the mean value of the envelope defined using the local 
maxima and the envelope defined using the local minima is zero. IMF is generated through a process called 
sifting. A brief description of the sifting process is shown below; a complete description of the EMD algo-
rithm can be found in (Huang et al., 1998; Huang and Wu, 2008). Given a data set X(t): 

Step 1: Initialize: r0 = X(t), I = 1. 
Step 2: Set hj-1= ri-1, j=1. Obtain all local maxima and minima of ri-1 and create the upper envelope umax 

  and lower envelope umin of hj-1. 
Step 3: Define: mn= (umax+ umin)/2; then hj =hj-1-mn. 
Step 4: Check the properties of hj. If hj is not an IMF, set j=j+1 and repeat Step 2 and Step 3.  
Step 5: Calculate the residual ri= ri-1-IMFi, i=i+1. Repeat the sifting process (from Step 2 to Step 4) to  
 obtain the remaining IMFs. This loop (from Step 2 to Step 4) will not stop until the residual is below  
 a predetermined level, or the residual has a monotonic trend. After EMD, the data set X(t) can be re 
 constructed as: 

𝑋𝑋(𝑡𝑡) = ∑ IMF𝑖𝑖 + 𝑟𝑟𝑚𝑚
𝑚𝑚
𝑖𝑖=1 . (7-78) 

An example of the EMD process is illustrated in Figure 7-68, in which the input dataset is decomposed 
into eight IMFs with a residual term. From IMF 1 to IMF 8, the frequency of each IMF decreases. 
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Figure 7-68. Illustration of EMD. Raw refers to the input dataset; Res. Refers to the residual. 

Since the development of HHT and the above-mentioned original EMD process, advances have been 
made in both theory and application. In particular, two important developments benefited remote sensing 
studies directly: (1) Ensemble EMD (EEMD), a noise-assisted data analysis method; and (2) Two-dimen-
sional Empirical Mode Decomposition (2DEMD) for image analysis. 

Although EMD is a simple and efficient self-adaptive method to analyze both non-stationary and non-
linear datasets, one drawback of EMD is the mode mixing, which is defined as a single IMF either consist-
ing of signals of widely disparate scales, or as a signal of similar scale residing in different IMFs (Huang 
and Wu, 2008). As a solution, Wu and Huang (2009) proposed the EEMD method, which contains the 
following steps in addition to the original EMD workflow described above: 

Step 1: Add a white noise signal to the target dataset. 
Step 2: Decompose the data containing added white noise into IMFs. 
Step 3: Repeat Step 1 and Step 2 with different white noise series each time. 
Step 4: Calculate the ensemble means of corresponding IMFs as the final result. 
In EEMD, the input dataset can be conceptualized as the summation of the true signal and noise. An 

assumption in EEMD is that although the input dataset may be acquired with different levels of noise, the 
ensemble mean value is close to the true signal. Therefore, adding white noise may facilitate extracting the 
true signal from the input dataset. The magnitude of added white noise can be controlled by Equation 7-79. 

𝜀𝜀𝑛𝑛 = 𝜀𝜀
√𝑁𝑁

 (7-79) 
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where: N is the number of ensemble members; ε is the amplitude of the added noise; εn is the final 
standard deviation of error, defined as the difference between the input signal and the corresponding IMFs. 

Compared to the original EMD, EEMD is a time-consuming algorithm. Implementation of parallel pro-
cessing with a Graphics Processing Unit (GPU) has been used to increase the processing speed of EEMD 
(Ren et al., 2014). 

Both EMD and EEMD were developed originally for one-dimensional data analysis. To apply this 
method to two-dimensional data, a row-column EMD is proposed based on one-dimensional EMD (Chen 
et al., 2008), where EMD is performed on both rows and columns. However, one drawback of this row-
column EMD is a striping effect (Teo and Lau, 2012). Recently, several versions of 2DEMD were proposed. 
Each version contains a fitting surface generated by different algorithms because there is not a universal 
way to determine the fitting surface to the identified maxima and minima. For example, Sinclair and Pegram 
(2005) applied a multiquadrics approach, while Demir and Erturk (2010) used a spline method. Moreover, 
Damerval et al. (2005) incorporated Delaunay triangulation and piecewise cubic polynomial interpretation 
to get the fitting surface; while Xu et al. (2006) provided an additional approach by using a mesh fitting 
method based on finite elements. However, all these two-dimensional approaches are expensive computa-
tionally. To improve computational efficiency, a pyramid-based 2DEMD was proposed to extract the IMF 
from the reduced layer (Teo and Lau, 2012). 

10.6.1.1 Applications of Empirical Mode Decomposition in Image Processing 
In remote sensing, HHT is generally used for time-series analysis. EMD, a critical part of HHT, was 

proposed originally as a frequency-based method for nonlinear and nonstationary time-series analysis. Per-
haps the most profound application of EMD is to correct the orbit drift of AVHRR (Tucker et al., 2005), 
where EMD is applied to minimize effects of orbital drift by removing common trends between time series 
of solar zenith angle and NDVI. Importantly, the GIMMS algorithm uses EMD to separate the surface 
NDVI reflectance from signal interference (Guay et al., 2014; Tian et al., 2015). 

Table 7-14 compares three frequency-based image analysis methods: Fourier Transform, Wavelet Trans-
form, and HHT. Given the characteristics of HHT, there is an increasing trend to use EMD as a complement 
or replacement for Fourier and Wavelet transforms in remote sensed image processing. In particular, the 
technique can be used for noise reduction, feature extraction and image fusion. The following sections will 
introduce EMD applications in time-series and image processing. 
Table 7-14. Comparison of Fourier, Wavelet, and HHT Analysis (adopted from Huang and Wu, 2008). 
        Fourier Transform     Wavelet Transform       HHT 
Basis       a priori         a priori           a posteriori adaptive 
Frequency     convolution over global   convolution over global     differentiation over local 
        domain, uncertainty    domain, uncertainty      domain, certainty 
Presentation    energy in frequency    energy in time-frequency     energy in time-frequency 
                   space            space 
Nonlinearity    no           yes            yes 
Nonstationarity   no           yes            yes 
Feature extraction  no           discrete (no)         yes 
                   continuous (yes) 
Theoretical base   complete mathematical   complete mathematical     empirical 
        theory         theory 
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EMD and EEMD are effective and efficient tools to reduce noise (usually from high-frequency IMFs), 
analyze seasonality at varied temporal granularities (usually from low-frequency IMFs) and extract trend 
(usually from the residual of the input dataset) from time-series. EMD is one of the nine major methods to 
create and fit NDVI time-series (Kandasamy and Fernandes, 2015). For instance, Chen, C.F. et al. (2011) 
used EMD to smooth MODIS NDVI time-series; Son et al. (2013) applied EMD to smooth time series of 
MODIS spectral indices, including EVI, land surface water index (LSWI), normalized difference built-up 
index (NDBI), and the difference in the values of EVI and LSWI. Moreover, Hawinkel et al. (2015) applied 
EEMD to detect the time scales and timing of episodes of inter-annual variations of NDVI time-series; Rios 
et al. (2015) used EMD to decompose time series into stochastic and deterministic components, allowing 
for insights into vegetation dynamics. 

With the deluge of big data and Internet of Things, more time-series of remotely-sensed and user-gener-
ated geospatial data will be available to the remote sensing community. Existing studies have focused on 
applying EMD or EEMD to investigate vegetation dynamics and most studies used NDVI data. There is, 
however, huge potential in the application of these algorithms to other data or products for noise reduction 
and temporal feature extraction. 

Similar to time-series smoothing, EMD and EEMD have been applied widely to reduce noise associated 
with different remote sensing products. For example, Han et al. (2002) employed EMD to reduce speckle 
in SAR images; Demir and Erturk (2010) utilized EMD to reduce noise in hyperspectral imagery and Song 
et al. (2014) applied the technique to filter InSAR data. Given their capability for noise reduction, EMD 
and EEMD have been used also to enhance hyperspectral image classification results (Ren et al., 2014). 

Another main application of EMD involves image fusion. It is reported that EMD-based image fusion 
methods often perform better than traditional image fusion approaches. Teo and Lau (2012) applied pyra-
mid-based 2DEMD to fuse high-frequency IMF of PAN images with low-frequency IMFs and residuals 
from MS images, showing that the proposed method out-performs row-column EMD, PCA and Wavelet 
Transform in terms of RMSE, correlation coefficient, and entropy. Similarly, Dong et al. (2014) found that 
when measured by RMSE, correlation coefficient and spectral information, fusion results from 2DEMD are 
better than those using wavelet, though both methods are successful in keeping spectral information while 
enhancing details. Some empirical studies incorporate both EMD and Wavelet Transform, such as in Chen 
et al. (2010), where Atrous Wavelet Transform was used to extract details from SAR imagery. The authors 
then employed a generalized IHS transform framework in which EMD was used for the fusion of low-
resolution MS images and SAR imagery. 

11 IMAGE ANALYSIS AND MODELING 

This section contains multiple examples of remotely-sensed data as input to a variety of data processing 
workflows, including modeling and product generation. Examples include the use of remotely-acquired 
data to: (a) develop algorithms to investigate chlorophylla concentration in coastal waters; (b) monitor forest 
fire; (c) characterize habitats and model species distribution; and (d) support the application of radiative 
transfer theory involving the use of PAR by vegetation. 
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11.1 Coastal Water Algorithms (Chlorophylla) 

11.1.1 Introduction 
Coastal environments represent a complex ecosystem where terrestrial outputs meet with the marine 

environment and interaction among biotic and abiotic habitants occurs, making it one of the most productive 
ecosystems in the world (Harvey et al., 2015). Coastal ecosystems perform various ecological and econom-
ical services including biological, physical, and chemical modifications of the water column, sediment, and 
submerged and emergent vegetation, food provision, water supply, tourism and recreation, and transporta-
tion, among others (Mishra, 2014). However, due to their proximity to terrestrial environments, coastal 
ecosystems are prone to many anthropogenic disturbances (Mouw et al., 2015). Nutrient over-enrichment 
through sediment deposition is a widespread threat to coastal water systems because these threats can trigger 
various harmful effects that hinder the services provided by the water body (Mélin and Vantrepotte, 2015). 
Timely monitoring of water in estuarine and coastal environments is necessary to sustain ecological func-
tions and overall ecosystem health. Manual water quality sampling and monitoring is challenging because 
not only does it fail to provide an insight into the spatio-temporal dynamics but also because it is time 
consuming, labor intensive, and therefore expensive. To obviate these issues with point sampling, research-
ers and water quality managers have been using remotely-acquired data as an efficient means to monitor 
water quality parameters such as Chlorophylla, (Chla), total suspended solids (TSS), organic sediments, 
inorganic sediments, and colored-dissolved organic matter (CDOM). These parameters can be accurate 
proxies for the overall quality and productivity of water systems and are often referred to as optically active 
constituents (OACs). 

Chla is often used as a proxy for phytoplankton biomass, which is an indicator of water quality, trophic 
status, and productivity of aquatic environments. It is also one of the most frequently monitored water 
quality parameters using remote sensing techniques. Development of remote sensing based methods and 
algorithms to quantify Chla dates back to the 1970s. Despite this long developmental effort, remote estima-
tion of Chla still remains a challenge because of factors such as the optical complexity of water, interference 
of bottom reflectance in shallow water systems, errors associated with atmospheric correction over near-
shore shallow waters, and eutrophic coastal waters. In addition to these factors, high uncertainty in Chla 
estimation algorithms over such waters is still observed due to other issues such as difficulties of parame-
terization, spectral slope derivation, and limited satellite band choices (Mishra and Mishra, 2012; Harvey 
et al., 2015).  

From a remote sensing perspective, reflectance from coastal waters can be complex in their spectral 
shape due to the presence of several OACs such as Chla, CDOM, and sediments from riverine inputs (Attila 
et al., 2013). The following section presents a brief description on various Chla algorithms that have been 
developed and applied to coastal waters with a focus on estuaries, lakes, gulfs and bays. Examples are 
provided from a wide array of publications from early 1980s to 2010s in these water ecosystems. Current 
challenges associated with Chla algorithm development and future recommendations are also presented 
briefly. 
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11.1.2 Technical Fundamentals 
Remote sensing instruments measure electromagnetic radiation reflected or emitted by the Earth’s sur-

face. In ocean color remote sensing, water-leaving radiance (Lw) and remote sensing reflectance (Rrs) are 
derived from the TOA radiance (Lt) measurements using an appropriate atmospheric correction scheme. 
Remote sensing based OACs estimation procedures often rely on the relationship between Lw and water 
quality parameters (Kirk, 1996). Despite the absence of well-defined terms and explicit agreements, all 
remote sensing based Chla algorithms can be classified into two broad categories: (1) empirical algorithms, 
and (2) semi/quasi analytical algorithms. A list of representative empirical and semi/quasi analytical Chla 
algorithms is presented in Table 7-15. 
Table 7-15. List of Representative Empirical and Semi-Quasi Analytical Chla Algorithms. 
Study Region              Model Type        Reference 
Empirical Algorithms 
  Asian Inland Waters           Empirical, hybrid      Matsushita et al., 2015 
  Northern Gulf Coast, Chesapeake Bay, USA  Empirical, NDCI      Mishra and Mishra, 2012 
  Chesapeake Bay, USA          Empirical         Tzortziou et al., 2007 
  Global Ocean             Empirical, OC4       O’Reilly et al., 2000 
  Global Ocean             Empirical, OC3       O’Reilly et al., 1998 
  Global Ocean             Empirical         Dierssen, 2010 
  Global Ocean             Empirical, FLH       Letelier and Abbott, 1996 
Semi-quasi Analytical Algorithms 
  Azov Sea               Semi-analytical       Moses et al., 2012 
  Reservoirs of the Dnieper River,       Semi-analytical       Moses et al., 2009 
    Azov Sea 
  The IJssel Lagoon, The Netherlands     Semi-analytical       Gons et al., 2002 
  Global Ocean             Semi-analytical       Maritorena et al., 2002 
  Global Ocean             Quasi-analytical       Lee Z. et al., 2002 
  The IJssel Lagoon, The Netherlands,     Semi-analytical       Gons, 1999 
    Scheldt Esturary, Belgium, and Lake 
    Tai, China 

11.1.2.1 Empirical Chlorophylla Algorithms 
Apparent Optical Properties (AOPs) such as Lw and Rrs measured over a water column is a function of 

absorption and scattering of incident light by OACs present in the water column. Therefore, information 
about OACs can be obtained from AOPs. Empirical Chla algorithms, often in the form of linear regression, 
multiple-linear regression, and non-linear regression, are employed to model the statistical relationship be-
tween Chla and AOPs, and indices representing reflectance band ratios or band differences (O’Reilly et al., 
1998; Tzortziou et al., 2007; Moses et al., 2009; Mishra and Mishra, 2012; Tebbs et al., 2013). 

11.1.2.2 Semi-quasi Analytical Chla Algorithms 
Semi-quasi analytical algorithms are based on radiative transfer equation (Gordon et al., 1988) and link 

inherent optical properties (IOPs) with AOPs in water bodies (Gons, 1999; Gons et al., 2002; Lee and 
Lathrop, 2002; Maritorena et al., 2002; Dall’Olmo and Gittelson, 2005). Semi-analytical models employ 
physical understanding of light propagation and attenuation in the water column to estimate OACs such as 
Chla. The simplified relationship that is commonly used as the basis of semi-quasi analytical algorithm is 
given in Equation 7-80. 
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𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆) ≈ 𝑓𝑓(𝜆𝜆) 𝑏𝑏𝑏𝑏(𝜆𝜆)
𝑎𝑎(𝜆𝜆)+𝑏𝑏𝑏𝑏(𝜆𝜆)

 (7-80) 

where: f (λ) (rs-1) is a coefficient accounting for the air-water interface effect, the angular variation of 
Rrs(λ) and the effect of multiple scattering; a(λ) and bb(λ) are absorption and backscattering coefficients 
with units of m-1; a(λ) and bb(λ) are expressed as the sum of all contributing OACs and often written as: 

𝑎𝑎(𝜆𝜆) = 𝑎𝑎𝑤𝑤(𝜆𝜆) + 𝑎𝑎𝑝𝑝ℎ(𝜆𝜆) + 𝑎𝑎𝑑𝑑𝑑𝑑(𝜆𝜆) (7-81a) 

𝑏𝑏𝑏𝑏(𝜆𝜆) = 𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆) + 𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆) (7-81b) 

where: aw, aph, and adg are absorption coefficients of water, phytoplankton, and colored detrital matter; 
and bbw, and bbp are backscattering coefficients of water and particulate matter in the water column. Semi-
quasi-analytical approach utilizes radiative transfer principles to retrieve absorption coefficients of individ-
ual components from Rrs measurements through inversion modeling and further uses specific-absorption 
coefficient of Chla to estimate Chla concentration from Chla absorption (Zheng et al., 2014). 

11.1.3 Applications, Potentials and Limitations 

11.1.3.1 Empirical Chlorophylla Algorithms 
Early assessment of chlorophyll concentration in coastal waters involved qualitative studies relating spa-

tial distribution of Chla and radiometric parameters derived from Coastal Zone Color Scanner (CZCS) in 
Gulf Guinea and Gulf of Lions, Mediterranean Sea (Viollier et al., 1978; Caraux and Austin, 1983) and 
empirical studies relating Chla concentration with airborne spectral reflectance in Georgian Bay (Miller et 
al., 1977). These early studies showed the potential of remote sensing to assess Chla dynamics in surface 
waters. Although qualitative assessment is relatively easy to perform, it required experience and back-
ground knowledge of the analyst and often subjected to personal bias. 

In open ocean waters, IOPs are influenced primarily by phytoplankton biomass and water molecules. As 
all other OACs co-vary with phytoplankton biomass, Chla concentration can be derived empirically from 
Rrs(λ) with reasonable accuracy. Regressions ranging from linear to quadratic models have been proposed 
by researchers in a wide range of areas. NASA’s SeaWiFS models designed initially for global oceans come 
in different variants ranging from ocean color-1 (OC-1) linear models to OC-4 cubic polynomial models 
(O'Reilly et al., 1998), making use of SeaWiFS bands at 412nm, 443nm, 490nm, 510nm, and 555nm. Studies 
applying these models report differing results. For example, a study in Alaskan waters compared these 
global models tested in coastal waters, and they reported that OC-2 performed OC-4. This could be due to 
the fact that the OC-4 training dataset contain very little data from Polar Regions with high productivity 
(Chla > 8mgm−3) (Montes-Hugo et al., 2005). A study in the Bay of Bengal, India showed that OC-4 over-
estimated Chla values when chl-a concentration was greater than 2mgm-3 and OC-5 appeared to be the most 
suitable algorithm for both coastal and open ocean waters (Tilstone et al., 2011). It should be noted that all 
these algorithms use Rrs blue-green band ratio as the predictor which primarily represent a change in the 
total absorption coefficient in the blue spectral region (Lee et al., 2010). In coastal waters, where colored 
detrital matter concentration vary independently, a change in a(λ) due to adg(λ) could be translated as a 
change in Chla concentration. This is the primary source of poor performance of blue-green OC algorithms 
in coastal waters. It also appears that empirical models lose their accuracy when there is a change in the 
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IOPs in the study region. To avoid this issue, global models may need to be regionally parameterized for 
better accuracy. 

Further advancement in Chla modeling was triggered by the development of satellite technology and 
field instruments. More options on operational sensors with improved spectral, spatial, radiometric, and 
temporal attributes supported the development of remote sensing-based Chla monitoring. The launch of 
MODIS with relatively higher spectral resolution became more suitable for resolving optical complexities. 
MODIS band configuration was exploited to derive fluorescence line height (FLH) using normalized radi-
ance measured at MODIS bands 13 (665.1nm), 14 (676.7nm), and 15 (746.3nm) (Letelier and Abbott, 1996; 
Gons et al., 2008). One of these wavelengths is closer to the chlorophyll fluorescence maximum (~ 683nm), 
while the rest were used for backscattering correction, shaping a baseline below the fluorescence peak. 
Figure 7-69 shows a FLH product computed from MODIS TOA radiance data over Vancouver Island area. 
High FLH values indicate high surface Chla concentration in the study area (Gower and Borstad, 2004). 
The advantage is that FLH is less sensitive to interference caused by the presence of other absorbing sub-
stances in surface waters, and it does not saturate at high chlorophyll concentrations unlike other algorithms 
relying on 443nm (Letelier and Abbott, 1996). However, prediction accuracy of MODIS FLH in an oligo-
trophic bay (i.e., Chla range 0.37 – 0.75mgm-3, r = 0.89) could not be repeated with MERIS FLH-based 
Chla algorithm in Green Bay waters with a range of Chla 11-131mgm-3 (Gons et al., 2008). MERIS FLH 
algorithm with 665nm and 708nm as baseline has been criticized for lower accuracy in coastal waters with 
more than 4mgm-3 Chla (Gilerson et al., 2007, 2008). However, Gower and King (2007) have demonstrated 
use of MERIS FLH with two NIR bands in waters with Chla up to 20mgm-3 with reasonable accuracy 
(Figure 7-70). Gilerson et al. (2007, 2008) reported that MODIS FLH performs well only for waters with 
Chla less than 4mgm-3 since particulate backscattering in turbid waters contaminates the MODIS FLH sig-
nal.  

In productive waters, MERIS FLH could underestimate Chla values due to the shift of Chla fluorescence 
peak. For higher Chla waters, the fluorescence peak shifts to longer wavelengths (i.e., up to 710nm). Be-
cause of the “red shift”, FLH derived with the three-band baseline method may be underestimated for highly 
productive waters (Hu et al., 2005). Another limitation associated with the FLH algorithm is the need for 
precise band placement, and difficulties interpreting FLH data (Harding, Jr., et al., 1994). 

 
Figure 7-69. Fluorescence image computed from MODIS TOA radiance data acquired on 22 September 2000 over 
Vancouver Island. Warmer tones represent high fluorescence levels. Land and cloud pixels are masked. From Gower 
and Borstad (2004). 
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Figure 7-70. Empirical relationship between the MERIS FLH product and surface Chla concentration from the Cana-
dian west coast. From Gower and King (2007). 

Another study investigated Chla sensitivity using AVIRIS hyperspectral data and bio-optical model in 
coastal waters in the Netherlands (Hoogenboom et al., 1998). A ratio of one of the AVIRIS bands around 
713nm to the band at 677nm was found to be most sensitive to change in Chla. Simulation results showed 
that AVIRIS can estimate Chla with an accuracy of 20% for relatively low Chla values (<10mgm−3) and 
~12% for Chla values more than 30mgm−3.  

Several indices using green-red-NIR spectral regions have been proposed by researchers to model Chla 
in optically complex coastal waters. The Red Green Chla Index (RGCI) was developed for MODIS and 
SeaWiFS with the ratio Rrs(667)/Rrs(547) and Rrs(670)/Rrs(555), respectively. The best equation to estimate 
Chla concentration was formulated as Equation 7-82. 

𝐶𝐶ℎ𝑙𝑙𝑎𝑎 = 0.86 ∗ 𝑒𝑒5.1∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (7-82) 

Validation of the linear regression model showed reasonable accuracy in Tampa Bay, Fld., USA for Chla 
ranging between 1.0 and 30.0mgm−3. Authors documented that modeling uncertainty from RGCI was lower 
than the traditional blue-green band ratio algorithms. 

Dall’Olmo and Gitelson (2005) developed a three-band Chla estimation model using red and NIR bands. 
The three-band model architecture is shown in Equation 7-83. 

Chl𝑎𝑎  ∝ [𝑅𝑅𝑟𝑟𝑟𝑟
−1(665) −  𝑅𝑅𝑟𝑟𝑟𝑟

−1(708)] × 𝑅𝑅𝑟𝑟𝑟𝑟(753) (7-83) 

The three band algorithm was based on several assumptions including, (1) the absorption by suspended 
solids and CDOM beyond 700nm is approximately equal to that at 665-675nm and the difference between 
them is very small and can be neglected; (2) the total Chla, CDOM, and TSS absorption beyond 730nm is 
nearly zero; and (3) the backscattering coefficient of Chla is spectrally invariant. The algorithm was suc-
cessful for predicting Chla in turbid productive water bodies with a wide range of optical complexity. Moses 
et al.(2009) further validated the three band algorithm using MERIS data from the Azov Sea and docu-
mented that it was able to retrieve Chla concentration with a RMSE of 5.02mgm-3, for a Chla  range: 18.37-
47.86mgm-3. In the same study, Moses et al. (2009) also presented a simplified two-band model using red 
and NIR bands to quantify Chla in turbid productive waters. To match the band configuration of MERIS 
sensor, the conceptual model was designed as Equation 7-84. 

Chl𝑎𝑎  ∝  𝑅𝑅𝑟𝑟𝑟𝑟
−1(665) × 𝑅𝑅𝑟𝑟𝑟𝑟(708) (7-84) 
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They applied the two-band algorithm to MERIS images over Azov Sea in Russia and reported the high 
accuracy potential of the model to estimate Chla in turbid productive waters. Similarly, Tzortziou et al. 
(2007) collected an extensive bio-optical dataset to examine the relationship between IOPs and AOPs in 
the mid-Chesapeake Bay, USA. They observed a fairly strong relationship (R2=0.54) between Rrs ratio at 
677nm and 554nm, Rrs(677)/Rrs(554), and Chla concentration in the bay compared to blue-green spectral 
band ratios.  

Similarly, Mishra and Mishra (2012) proposed a Normalized Difference Chlorophyll Index (NDCI) to 
quantify Chla concentration in optically complex coastal waters. The basis for the index was to take ad-
vantage of the 708nm reflectance peak and 665nm absorption peaks to maximize Chla sensitivity. NDCI 
followed the basic structure of the most widely used VI, NDVI to retain the benefits of a normalized band 
difference index and formulated below as Equation 7-85. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑅𝑅𝑟𝑟𝑟𝑟(708)−𝑅𝑅𝑟𝑟𝑟𝑟(665)
𝑅𝑅𝑟𝑟𝑟𝑟(708)+𝑅𝑅𝑟𝑟𝑟𝑟(665)

 (7-85) 

NDCI was calibrated and validated using an extensive simulated dataset as well as field and MERIS 
satellite data from northern Gulf of Mexico coastal waters and Chesapeake Bay. NDCI based quadratic 
polynomial model (i.e., Equation 7-86) was successful in quantifying Chla with 12% overall bias (Figure 
7-71). Mishra and Mishra (2012) also warned that erroneous atmospheric correction of MERIS data could 
impact the model performance adversely by predicting extreme Chla values. 

Chla (mgm-3) = 13.55 + 87.99 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 212.6 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 (7-86) 

 
Figure 7-71. Validation of NDCI chlorophyll algorithm performance and its comparison with other algorithm consid-
ered in that research;  (A) NDCI, (B) Moses et al. (2009), (C) Dall'Olmo and Gitelson (2005), (D) Gons et al. (2008), 
(E) Tzortziou et al. (2007), and (F) MERIS case 2 Chla  product (Algal-2). Straight lines on the plots are the 1-to-1 
lines. From: Mishra and Mishra (2012). 
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Gons et al. (2008) used a nested band ratio approach to quantify surface Chla concentration in Keweenaw 
Bay. The band ratio model (i.e., Equation 7-87) produced an R2 of 0.81 with standard error of 0.049 mgm-

3. The algorithm, Morel’s modified blue-green algorithm, was tested for a composite of samples from three 
different sites with Chla concentration varying from 0.37 to 131mgm-3. 

𝐶𝐶ℎ𝑙𝑙𝑎𝑎 = 7.45 � 𝑅𝑅𝑤𝑤(510)
𝑅𝑅𝑤𝑤(443) 𝑅𝑅𝑤𝑤(560)⁄ � 0.6 (7-87) 

In another study, a multiple linear regression model was developed using Landsat TM bands 2 and 3 
ratio. The model was able to explain 72-76% of Chla variation in estuarine waters in Australia (Lavery et 
al., 1993). Similarly, a log-based empirical model was applied to quantify variation of Chla in Chesapeake 
Bay in Equation 7-88 (Harding, Jr., et al., 1994). 

𝑙𝑙𝑙𝑙𝑙𝑙10𝐶𝐶ℎ𝑙𝑙𝑎𝑎 = 𝑎𝑎 + 𝑏𝑏 �−𝑙𝑙𝑙𝑙𝑙𝑙10
𝑅𝑅490

2

𝑅𝑅460∗𝑅𝑅520
�, (7-88) 

where: Rn is radiance measured at (n) nm. 
Another group of empirical algorithms have also been proposed to quantify Chla in natural waters which 

are purely statistical in nature. These algorithms employ machine learning principles including ANN, sup-
port vector machine, random forest, and other similar methods to model Chla. These models are completely 
data-driven and are often hard to interpret due to lack of physical principles. One major advantage of ma-
chine learning approaches is that, unlike traditional regression approach, it can model non-linear trends in 
the data. For example, ANN approach has been exemplified in many waters with varying chl-a range such 
as in Delaware Bay using Landsat TM images (Keiner and Yan, 1998) and in Rias Baixas, Spain using 
MERIS data (González Vilas et al., 2011). Results showed that the ANN algorithm was better than the 
MERIS case II regional processor (C2R) routine. Similar performance was obtained when the algorithm 
was tested for the same study area but in different condition (i.e., upwelling) (Spyrakos et al., 2011). How-
ever, ANN method is also considered as site specific, which is hardly transferable to other geographic areas. 

11.1.3.2 Semi-quasi Analytical Algorithms 
As discussed earlier, semi-quasi analytical algorithms are used to invert Equations 7-80 and 7-81a, b to 

estimate IOPs from Rrs data. There have been three primary types of approaches reported for analytical 
inversion of Rrs data including: (1) bottom-up; (2) top-down; and (3) inversion using the red-NIR band ratio. 
Examples of algorithms falling into the category of bottom-up approaches are the linear matrix inversion 
(Wang, P. et al., 2005) and spectral optimization algorithm (Maritorena et al., 2002). Bottom-up approach 
requires the algorithm to use bio-optical models for each component during the inversion and retrieves the 
bulk and individual components simultaneously.  

On the other hand, algorithms in top-down approach such as Lee, Z., et al. (2002)s Quasi-Analytical 
Algorithm (QAA) does not require bio-optical models or spectral shapes for individual components during 
inversion. Rather, QAA independently retrieves bulk absorption at first and further decomposes to retrieve 
individual absorption components (Craig et al., 2006). As the first step, QAA converts Rrs(λ) to sub-surface 
remote sensing reflectance, rrs(λ) and retrieves absorption coefficient a(λ) empirically from rrs(λ) at a refer-
ence wavelength (λ0), where a(λ0) is dominated by aw(λ0). It further estimates particulate backscattering 
coefficient at the same wavelength bbp(λ0) by using bio-optical relations derived from radiative transfer 



ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

799 
 

equations. Then, it estimates bbp(λ) using a wavelength dependent hyperbolic function and eventually re-
trieves a(λ) spectrum analytically from measured Rrs(λ). a(λ) is further decomposed into phytoplankton ab-
sorption coefficient aph(λ) and absorption coefficient of colored detrital matter adg(λ). Finally, Chla concen-
tration is retrieved by dividing aph(λ) by the specific absorption coefficient of chlorophyll, 𝑎𝑎𝑐𝑐ℎ𝑙𝑙

∗ (𝜆𝜆). Earlier 
versions of QAA were primarily designed for open ocean waters. However, researchers have demonstrated 
the application of QAA to coastal waters by moving the reference wavelength to longer wavelengths such 
as 640nm, 710nm based on the level of productivity and turbidity (Lee, Z. et al., 2002; Le et al., 2009; 
Mishra et al., 2013). 

One example of third semi-analytical algorithm approach which can be applied to optically complex 
coastal waters is a three-band algorithm proposed by Gitelson et al. (2008). A three-band model designed 
for MERIS sensor in the following form (Equation 7-89): 

𝐶𝐶ℎ𝑙𝑙𝑎𝑎 = (23.09 ± 0.98) + (117.42 ± 2.49) ∗ [ 𝑅𝑅𝑟𝑟𝑟𝑟
−1(660 − 670) − 𝑅𝑅𝑟𝑟𝑟𝑟

−1(700 −
730)] ∗ 𝑅𝑅𝑟𝑟𝑟𝑟(740 − 760)  (7-89) 

and, a two band-model for MODIS sensor, form shown in Equation 7-90. 

𝐶𝐶ℎ𝑙𝑙𝑎𝑎 = −(16.2 ± 1.8) + (136.3 ±  3.2) ∗ [𝑅𝑅𝑟𝑟𝑟𝑟
−1(662 − 672) ∗ 𝑅𝑅𝑟𝑟𝑟𝑟(743 − 753)]  (7-90) 

The models were calibrated and validated for lakes and reservoirs in Eastern Nebraska with a wide range 
of Chla concentration (1.2 - 236mgm-3).  

In another study, Simis et al. (2005) proposed a semi-analytical algorithm to retrieve Chla concentration 
in optically complex waters of Lake Loosdrecht and Lake Ijsselmeer in The Netherlands. The Chla absorp-
tion equation was formulated as Equation 7-91. 

𝑎𝑎𝑐𝑐ℎ𝑙𝑙(665) = ({[𝑅𝑅(709)/𝑅𝑅(665)] ∗  [𝑎𝑎𝑤𝑤(709) + 𝑏𝑏𝑏𝑏 ]} − 𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑤𝑤(665)) ∗  𝛾𝛾−1  (7-91) 

where: R is subsurface irradiance reflectance at wavelength λ and depth 0; aw and bb are water absorption 
coefficient and back-scattering coefficients respectively; and γ is the correction factor that links retrieved 
absorption versus measured absorption by pigments at a particular wavelength. Once achl (665) is estimated, 
Chl-a concentration can be obtained by using the Equation 7-92. 

𝐶𝐶ℎ𝑙𝑙𝑎𝑎 (𝑚𝑚𝑚𝑚 𝑚𝑚−3) =  𝑎𝑎𝑐𝑐ℎ𝑙𝑙(665)
𝑎𝑎𝑐𝑐ℎ𝑙𝑙

∗ (665)
  (7-92) 

where: 𝑎𝑎𝑐𝑐ℎ𝑙𝑙
∗ (665) is the Chla specific absorption coefficient at 665nm. 

11.1.4 Conclusion 
There exists a suite of empirical and semi-analytical algorithms to quantify Chla in coastal waters (Table 

7-15). Since the beginning of satellite remote sensing era, the ocean color community has put its effort to 
model Chla concentration in open ocean waters. Traditionally, blue-green band ratio algorithms have been 
successfully used to model Chla in the open ocean where IOPs are dominated by phytoplankton pigments 
and water. However, these algorithms tend to perform poorly in optically complex coastal, estuarine, and 
inland waters where terrestrial colored dissolved organic matter and detrital matter often strongly influence 
the AOPs in the blue spectral region. To overcome this issue, researchers have used red-NIR band ratios to 
retrieve Chla in coastal and inland waters. Although, red-NIR band ratios are not completely immune to the 
presence of other OACs, relative interference of CDOM and detrital matter is much lower than blue-green 
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or green-red band ratios. For eutrophic waters with Chla concentration greater than 10mg m-3 red-NIR band 
ratios are preferred for Chla retrieval as the relative contribution of colored detrital matter is often very 
small or negligible (Gons et al., 2002; Gitelson et al., 2007; Moses et al., 2009; Mishra and Mishra, 2012). 

In addition to empirical algorithms, MERIS and MODIS FLH have great potential for retrieving Chla in 
optically complex waters. It has been reported that suitable band configuration of MERIS provides a better 
FLH product than MODIS (Gower and Borstad, 2004). However, the main disadvantage of FLH is the 
requirement of specific spectral bands to estimate FLH. Due to lack of specific band configuration, FLH 
algorithm cannot be applied to many past and current sensors such as CZCS, SeaWiFS, and VIIRS. 

Semi-quasi analytical algorithms have somewhat addressed the limitation of empirical algorithms by 
providing better retrievals of IOPs and Chla concentration in optically complex coastal waters. The major 
disadvantage of semi-quasi analytical algorithms is its sensitivity to the errors in atmospheric correction to 
obtain water leaving reflectance data. A bad atmospheric correction can produce erroneous IOPs eventually 
affecting the retrieval accuracy of Chla. Similarly, these algorithms are also highly sensitive to Chl-a spe-
cific absorption coefficient values, which is used to retrieve the concentration of Chla. Another challenge 
associated with semi-quasi analytical algorithms is the requirement of a robust bio-optical dataset including 
in situ IOPs, AOPs, pigment measurements and pigment-specific absorption coefficients for model calibra-
tion and validation (CAL/VAL). Collection of these bio-optical dataset is not only expensive but also time 
consuming. Therefore, regional parameterization of these algorithms is often a challenging task. Moreover, 
IOPs are constantly changing in coastal and global ocean (Dierssen, 2010). To address the continuous 
change in water optical properties, semi-quasi analytical algorithms may require constant CAL/VAL efforts 
for keeping them as accurate and reliable as possible. 

11.2 Forest Fire Modeling 

Forest fires affect ecosystem processes and functions at broad scales: driving succession; maintaining 
biodiversity; and regulating biogeochemical cycles (Cochrane, 2003; Herawati et al., 2015). In recent years, 
changes in climatic and anthropogenic processes have altered the driving forces that govern wildfires in 
natural systems. For example, while temperature increases are expected to cause frequent fires of different 
magnitude and at broader scales (Balch, 2014; Gauthier et al., 2015), intensive human activities lead to an 
increased number of fires. The complexities of these dynamic systems complicate wildfire management 
and, therefore, entail modeling with data that address critical aspects of forest fire dynamics. 

Successful wildfire management requires landscape-scale information on: (1) fire regime - the temporal 
change in fire frequency, severity, extent, seasonality, and successive effects within an ecosystem; (2) fuel 
load - accumulation and distribution of fuels in both vertical and horizontal space; and (3) landscape char-
acteristics such as moisture content, forest types, and topography. Fire regimes influence the abundance 
and distribution of fuel, thus affecting fire behavior over time (Rollins et al., 2004). Complexity of fuel 
types and their high spatiotemporal variability poses a challenge to mapping but recent advancements in 
sensors and improved algorithms show promise for achieving high accuracy in information for successful 
fire management. Therefore, in-depth analysis of fire regimes can inform strategies that reduce fuel load, 
and improve fire resilience. 
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Several methods are in use currently to estimate fire regime, fuel load and landscape characteristics using 
optical remote sensing, ground surveys and statistical modeling (Keane et al., 2001). However, none of 
them are comprehensive enough to address all these methods at broad scales. For example, maps of fuels 
and fire regimes based on gradient modeling can provide variables that determine fire regimes at broad 
scales. However, due to data sparsity, this approach requires integrating extensive field databases, multiple 
sources of fire history information, optical remote sensing data, and biophysical modeling to map fuels and 
fire regimes (Keane et al., 2001; Rollins et al., 2004). To fill these gaps, a growing number of studies have 
used remote sensing methods to model forest fires incontext of both the vertical and horizontal distribution 
of species along environmental gradients. 

Remote sensing provides a cost-effective broad scale alternative to extensive field data collection for 
forest fire modeling (Table 7-16). There is a wide range of sensors and algorithms for deriving information 
about fire regimes and forest fuel distribution. The sensors available for these analyses provide a means for 
comprehensive coverage. For example, optical satellite sensors can be used to characterize vegetation types 
and their horizontal distribution. LiDAR measures the three-dimensional arrangement of forest stands and, 
therefore, is suitable for the accurate and precise estimates of forest structure and composition that is crucial 
for assessing forest fuels.  
Table 7-16. Available Forest Fire Applications to Model Fire Behavior, Effects, and Regimes that Use Survey and 
Satellite Products.  
Forest fire modeling   Applications    Characteristics      Geospatial database 
Fire behavior      Behave plus    Models fire behavior,    LANDFIRE 
                   fire effects, and fire 
                   environment 
          FlamMap     Fire behavior and growth 
                   across the landscape 
          FARSITE     Wildfire growth and behavior 
 
Fire effects       FFE-FVS     Forest growth model    Field surveyed tree parameters 
          FIRE SEVerity   Evaluate fire severity maps  Uses satellite image products 
            Mapping Tools 
          First order fire   Predicts tree mortality, fuel  Input values are derived from fuel 
          Effects Model    consumption, smoke      models based on forest cover 
                   production         types 
          FuelCalc     Measures crown fuels    Ground, surface, and canopy fuel 
                               Characteristics 
 
Monitoring      FFI: Ecological   Collection, storage and   Field survey data 
            Monitoring     analysis of ecological 
                   information 
          FIREMON: Fire   Links data with satellite   Uses satellite imagery 
           Effects Monitoring   imagery, and maps the 
           and Inventory    sampled data across the 
           System       landscape via image 
                   processing 
Information source: www.firelab.org   

11.2.1 Optical Remote Sensing 
Optical remote sensing has been used widely for assessing the effect of fire on vegetation. Products 

derived from optical sensors assist in evaluating plant response to fire severity and exposure. Accuracy of 

http://www.firelab.org/


ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

802 
 

these analyses depends on a sensor’s spatial, spectral, and radiometric characteristics (Arroyo et al., 2008). 
Medium to low resolution MS data (e.g., Landsat and SPOT) are used to classify forest into vegetation 
categories, and then fuel characteristics are assigned to each category. Spectral indices are used widely to 
predict fire severity, exposure and geographic extent using ground reference data to relate spectral proper-
ties to forest fire (Epting et al., 2005). While these data are useful for delineating fire severity, exposure, 
and extent at broad scales, accuracies for mapping fuel types are uncertain. Alternatively, very high-reso-
lution data such as from QuickBird and IKONOS have provided forest characteristics and fuel types at sub-
meter resolutions (Mitri and Gitas, 2008). Hyperspectral data are useful for discriminating spectral and 
spatial attributes of fire-related vegetation (Veraverbeke et al., 2014). However, due to spectral similarity 
and mixing problems, these data often have limited success in estimating fuel types and loads with high 
accuracy (Jin and Chen, 2012). For example, mapping fuel based on forest types such as deciduous and 
evergreen is easy, but it is difficult to map fuel types based on two different maple species. Moreover, 
optical sensors are unable to provide vegetation height, which is a critical variable for classifying fuel types. 

11.2.2 LiDAR Remote Sensing 
LiDAR remote sensing has been applied successfully to forest fire studies. Compared to optical sensors, 

LiDAR sensors can capture three-dimensional forest structure, making them a key data source for forest 
fire modeling (Andersen et al., 2005). LiDAR facilitates accurate representation of forest structure from 
stands to individual trees, and provides landscape characteristics such as elevation, slope, aspect, and other 
important properties of the canopy and surface.  

11.2.2.1 Applications of LiDAR in Forest Fire Modeling 
As LiDAR data are becoming more cost effective, forest managers are approving data applications to 

forest fire modeling. The accurate height-above-ground and topography information make LiDAR data 
highly effective compared to other remote sensing data. For example, due to their capacity to record accu-
rate elevation information below vegetation cover, the last returns of LiDAR data provide a potential for 
creating high-resolution DEMs. DEM parameters such as slope, elevation, aspect and solar radiation index 
are used in fire management decision support systems (Morsdorf et al., 2004). These inputs are essential to 
successful fire behavior prediction models such as fire area simulator (FARSITE) and fire behavior predic-
tion and fuel modeling system (BEHAVE) (Burns, 2012). DEM and digital surface models (DSM) are used 
together to estimate canopy heights for assessing fuel metrics over large areas (Andersen et al., 2005; 
Morsdorf et al., 2004). LiDAR has been used to generate fuel metrics such as canopy fuel weight, canopy 
bulk density (CBD), canopy base height (CBH), and canopy height. Estimated fuel output can also be used 
directly for an accurate prediction of fire spread and intensity. Due to the similarity between LiDAR and 
field measured canopy height, LiDAR height measurements are suitable for estimating biomass and offer 
an alternate to field surveys. Thus, accurate height-above-ground and topography information not only 
make LiDAR data suitable for mapping fuel and topographic features of targeted forest landscapes, but also 
for integrating LiDAR data directly to available forest fire behavior models.  



ASPRS Manual of Remote Sensing, Fourth Edition, doi: 10.14358/MRS/Chapter7 
 

803 
 

11.2.3 Estimating Forest Canopy Fuel 
Fuel assessments based on ground surveys have been questionable due to their inability to capture spatial 

heterogeneity of fuels at stand and landscape levels. Skowronski et al. (2007) used first-return LiDAR 
measurements to quantify forest structure and fuels. In another study, height-above-ground data were used 
to estimate forest fuel parameters, including CBD and CBH (Agca et al., 2011). Andersen et al. (2005) used 
LiDAR-based fuel prediction models to develop canopy fuel maps for Pacific Northwest forests, and rec-
ommend using LiDAR for accurate measurement of forest structure over extensive areas. Combining Li-
DAR with optical sensors is also profitable. For example, Haala et al. (2004) combined a terrestrial scanner 
and a panoramic camera accurately for recognizing tree species. LiDAR returns stratified into height inter-
vals along with spectral information can provide accurate fuel type maps. Gajardo et al. (2014) findings 
suggest that LiDAR and optical data together map fuel properties more accurately due to the synergy of the 
structural and spectral information than using any of these sensors alone.  

11.2.4 Fire Severity Assessment 
The complexity of forest landscapes, including extreme changes in slope, inaccessibility of area, vege-

tation heterogeneity, and high biodiversity makes mapping fire severity across a landscape a challenging 
task, in particular, using traditional field methods. Spectral remote sensing can detect changes resulting 
from fire easily due to the reduction in chlorophyll. Reduced chlorophyll causes an increase in the visible 
and a decrease in the NIR region of the electromagnetic (EM) spectrum (Escuin et al., 2008). However, it 
is difficult to categorize remnant fuel loads from spectral remote sensing. Montealegre et al. (2014) have 
suggested that canopy relief ratio and percentage of all return from LiDAR data are significant variables 
for creating a fire severity map. LiDAR-based studies are often done at the pre-fire stage and/or during the 
fire to characterize fuels for fire management. Gajardo et al. (2014) suggested that multi-temporal LiDAR 
data also have high potential at the post-fire stage to estimate burn severity and vegetation regeneration. 

11.2.5 Large Area Forest Fire Modeling 
Forest managers use wildfire behavior models to inform strategies that mitigate the possibility of large 

area forest fire such as forest thinning and prescribed fires. Modeling requires spatial data that represent 
forest landscape, structure, and composition accurately, such as elevation, slope, aspect, canopy height, 
canopy cover, crown base height, crown bulk density, and forest fuel types. Jakubowski et al. (2013) found 
that these parameters can be predicted accurately using LiDAR with MS images, but noticed that specific 
fuels were difficult to identify in dense forest stands. Large area fire modeling has been performed using 
geoscience laser altimeter system (GLAS) data. Peterson et al. (2013) used vegetation structure and fuel 
layers from GLAS and the Landscape Fire and Resource Planning Tools (LANDFIRE) layers to model fire 
behavior. Their study suggests that including GLAS data enabled better landscape-level characterization of 
vegetation structure for a better forest fire modeling. 
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11.2.6 Commonly Used LiDAR Metrics 

11.2.6.1 Canopy Base Height 
Scott and Reinhardt (2001) define CBH as the lowest height above the ground at which there is sufficient 

canopy fuel to propagate fire vertically through the canopy. There are several ways to estimate CBH at plot 
level; namely, Lorey’s mean, the arithmetic mean, and percentiles. Maguya et al. (2015) used a moving 
voxel method to estimate the height of the gaps below tree crowns for modeling CBH. This approach ac-
commodates variations in LiDAR data that occur due to seasonality (e.g., leaf-on and leaf-off) and tree 
species. Often, the presence of dense shrubs in forests leads to underestimation of CBH. To account for 
this, an improved classification of the point cloud can distinguish between over‐ and understory vegetation. 
Ladder fuels are difficult to quantify. Kramer et al. (2014) suggest LiDAR as a way forward to better char-
acterize ladder fuels. 

11.2.6.2 Canopy Bulk Density 
CBD is the density of available canopy fuel in a stand. This metric can be estimated using LiDAR, field 

measurements from the foliage biomass, and crown volume. Several studies have used LiDAR to estimate 
CBD at both the plot and landscape levels. CBD is used as an input to decision support systems such as 
FARSITE (Erdody and Moskal, 2010). This is also used in the First Order Fire Effects Model (FOFEM) to 
determine the proportion of the crown that might be consumed in a wildfire (Erdody and Moskal, 2010; 
Molina et al., 2014). These metrics form the basis of fuel maps. 

11.2.6.3 Canopy Cover Fraction 
Canopy cover is expressed as a percentage of total ground area. It is a relative amount of ground area 

covered by the vertical projection of tree crown perimeters, and the metric is related inversely to the laser 
pulse penetration rate into the canopy. Thus, canopy cover can be computed as the proportion of the canopy 
returns over all the LiDAR returns. LiDAR provides highly accurate canopy cover compared to field‐based 
estimates.  

11.2.7 Recent Developments in Forest Fire Modeling 
Two trends in forest fire modeling have emerged. The first trend combines structural and spectral data 

to address the needs for wildfire growth and behavior modeling. For example, FORSITE, which is a fire 
simulation model, requires information on topography and fuels along with weather and wind data. The 
combined use of these data in fire modeling programs improves the quality and accuracy of their prediction. 
The second trend involves integrating LiDAR data into the LANDFIRE program for mapping vegetation 
and fuel. These are used to model fire behavior at large scales. Peterson, B., et al. (2015) developed a tool 
called Creating Hybrid Structure from LANDFIRE/LIDAR Combinations that allows one to develop a set 
of vegetation structure and fuel parameters from LiDAR data and integrating them into existing LAND-
FIRE data sets. Increasing availability of large area lidar data sets will help fill gaps of otherwise sparse 
LiDAR data in LANDFIRE or other similar programs. 
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11.3 Species Distribution Modeling and Remote Sensing 

11.3.1 Introduction to Species Distribution Modeling 
Many mathematical modeling tools have been developed to link species observation records with envi-

ronmental variables for characterizing natural distributions of organisms across landscapes based on areas 
of similar environmental composition. The resulting distribution models are known commonly as species 
distribution models, ecological niche models, environmental niche models, bioclimatic envelope models, 
and predictive habitat distribution models (aka, species distribution models (SDM)). These models vary in 
their utility based on the quality and type of data used as input, the degree to which the species is at equi-
librium in its environment, and the temporal and spatial extent of the input data and the resulting model 
(i.e., the need for extrapolation) (Elith and Leathwick, 2009).  

SDMs are commonly used to describe aspects of species ecology, revealing for example, species’ land 
use patterns, habitat and micro-habitat preferences, community- and population-level interactions, or pat-
terns of allopatry for further investigation (Carpenter et al., 1993; Peterson, 2006; Raxworthy et al., 2007). 
These models are also applied increasingly to predictive questions such as the prediction of species’ histor-
ical ranges based on paleoclimate layers (e.g., Richards et al., 2007), species’ predicted responses to future 
climate scenarios (e.g., Beaumont and Hughes, 2002; Hilbert, 2004; Thuiller, 2004), extrapolation of ob-
served records to distributions of broader or different geographic extents (e.g., Anderson et al., 2002), and 
the predicted future extent of invasive species (Peterson et al., 2003; Ficetola et al., 2007; Mainali et al., 
2015). These predictive models are often applied to conservation problems and used to support decision 
making regarding endangered species, critical habitats, biological invasions, and more (Guisan et al., 2013). 
Serious challenges arise in predictive modeling of species distribution due to issues regarding the selection 
and availability of appropriate environmental predictor variables, the identification of an appropriate spatial 
extent for modelling, and problems with identifying distributions for non-equilibrium species (e.g., invasive 
species) (Mainali et al., 2015). These challenges may be moderated by including dominant species/envi-
ronment patterns while excluding hyper-local species/environment interactions (Mainali et al., 2015).  

Two broad categories of SDM techniques emerge based on the types of species occurrence data or re-
sponse variables they require: presence/absence records or presence-only data (Hernandez et al., 2006). 
While presence-absence records provide a more complete picture regarding the species’ use of space and 
habitats, these data are typically more difficult to obtain and the vast repository of museum and historical 
records are largely presence-only data. Repositories of presence-only data represent a wealth of information 
that statisticians and ecologists have worked to develop tools to analyze (Elith et al., 2009; Phillips et al., 
2009). Kumar and Stohlgren (2013) give a detailed description of the algorithms used and the data required 
by the various SDM tools described in Table 7-17. 
Table 7-17. Commonly Used Models for Predicting Species Distributions (from Morain, et al., 2013). 
Model          Advantages*        Disadvantages 
Maxent (Phillips et al., 2006)  P; Nl; Np; NS-C; RIV; E; U   Pseudo-absence or background data 
GARP (Stockwell and Nobel  P; Nl; Np; NS-C; U; NE    Pseudo-absence or background data; no RIV 
1992; Stockwell and Peters 
 1999) 
Classification and Regression  Np; Nl; P/A; E; RIV     Absence data needed 
 Tree (CART) (Breiman et al., 
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  1984) 
Random Forest (Breiman, 2001) Np; Nl; P/A; RIV      Absence data needed 
 Boosted Regression Tree    Np; Nl; P/A; RIV      Absence needed, limited spatial data; need more 
 (Friedman, 2001; De’ath, 2007)              statistical details 
Logistic Regression (McCullagh P/A           Absence data needed; sensitive to multi- 
 and  Nedler, 1989)                   collinearity 
BIOCLIM (Busby, 1991)    P; simple         Needs absence data; less accurate than other 
                         niche models 
DOMAIN (Carpenter et al.,   P; simple         Needs absence data; less accurate than other 
 1993)                       niche models 
Mahalanobis distance (Farber  P; Nl           No absence data 
 and Kadmon,  2003) 
Environmental niche factor   P            No absence data 
 analyses or ENFA (Hirzel 
 et al., 2002) 
Artificial Neural Network   P/A           Absence data needed 
 (ANN) (Pearson et al., 2002) 
(Jarnecivh et al., 2009)    P or A only can be run     All environmental factors are weighted equally 
* Codes: P = species presence; P/A = Presence/Absence; Np = Nonparametric; Nl = Non-linear; NS-C = not sensi-
tive to multi-collinearity; RIV = relative importance of variables; CRV = continuous response variables; E = Effi-
ciency; W = widely used. 

11.3.2 Remote Sensing and Species Distribution Models 
Characterizing species’ distributions over geographic space requires quantifying topographic and bio-

physical features of the landscape that are gradational and continuous in nature. To link landscape and 
species patterns effectively, the quantification of landscape features or predictor variables must occur at 
spatial and temporal resolutions compatible with the modeled species’ ecology, behavior, and the density 
of observation records used for modeling (Elith and Leathwick, 2009). Advancements in the field of remote 
sensing have generated a broader range of remotely-sensed predictor variables at increasingly higher spatial 
and temporal resolutions, and have subsequently improved species distribution model predictions (He et 
al., 2015). Remotely-sensed products can be used to clip the modeled geographic extent to only pixels 
deemed suitable for a species’ distribution. The inclusion of remotely-sensed predictor variables representa-
tive of biophysical characteristics (e.g., chlorophyll content, leaf area indices, soil moisture estimates) can 
further enhance descriptions and predictions of species distributions ( Zimmermann et al., 2007; He et al., 
2015). Continued development of high spatial, temporal, and spectral resolution sensors (e.g., WorldView-
2, IKONOS, radar, LiDAR, CubeSat programs) and increased accessibility of UAVs also enhance studies 
of this type (e.g., Hodgson et al., 2013).  In selecting remotely-sensed predictor variables for modeling, it 
is important to consider the impacts these choices may have on model outcomes; as Bradley et al. (2012) 
point out, use of remotely-sensed predictor variables may inadvertently bias one’s model toward actual 
species presence rather than habitat suitability for a species of interest. This is particularly relevant in the 
case of modeling plant distributions, where using VI or land cover classification data as predictor variables 
may bias distribution models toward the species’ presently used habitat (Bradley et al., 2012).  

In addition to providing data on predictor variables, remote sensing technology has the potential to trans-
form the development of SDMs through the derivation of response variables or species occurrence data (He 
et al., 2015). Remotely-sensed occurrence data have been implemented for detecting and estimating popu-
lations of both plant (e.g., Wilfong et al., 2009; Tuanmu et al., 2010) and animal (e.g., Fretwell et al., 2014) 
species. Detection of plant presence is facilitated by unique phenological properties or plant chemistry, and 
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detection of animal presence is facilitated by large body size or topographic footprint (e.g., coral reef struc-
ture, large woody nesting sites) and unobstructed aerial observations (He et al., 2015). 

11.3.3 Summary 
Species distribution modeling is based on a broad range of statistical tools and techniques, and the value 

of model output depends on the suitability of modeling choices relative to the species, environment, and 
data in question. SDMs have a wide range of applications, from the descriptive study of species ecology 
and interactions to the application of model results to impending conservation issues. These modeling ef-
forts and their associated applications can be enhanced by including remotely-sensed data as both predictor 
and response variables. Increasing accessibility of remotely-sensed, high resolution data that represent bi-
ophysical parameters and species occurrence has, and will continue, to transform species distribution mod-
eling for greater and more accurate applications to questions of species ecology. 

11.4 Vegetation Radiative Transfer Theory and Modeling with PROSAIL2 

Acronyms/Abbreviations: community land model (CLM); carbon dioxide, (CO2);) photosynthesis, 
(PSN); photosynthetically active radiation, (PAR); absorbed PAR, (APAR); fraction of PAR absorbed by 
a whole canopy, fAPARcanopy, also referred to as FPAR; fraction of PAR absorbed by all the leaves of a 
canopy, fAPARfoliage; fraction of PAR absorbed by chlorophyll throughout a canopy, fAPARchl; fraction of 
PAR absorbed by non-chlorophyll components of all the leaves of a canopy, fAPARnon-chl; leaf area index, 
LAI; gross ecosystem production (GEP); gross primary production, (GPP); net primary production, (NPP); 
light use efficiency, (LUE); Moderate Resolution Imaging Spectrometer, MODIS; bi-directional distribu-
tion function, (BRDF); radiative transfer model, (RTM). 

11.4.1 Fractions of Light Absorption by Chlorophyll, Foliage and Canopy 
A vegetation canopy is partitioned into foliage and non-foliage (hereafter referred to as stem) compo-

nents, and the foliage is further partitioned into chlorophyll, non-photosynthetic pigments (hereafter re-
ferred to as brown pigment) and dry matter. Therefore, one can calculate the fraction of PAR absorbed by 
these components and LAI as: fAPARcanopy (Goward and Huemmrich, 1992), fAPARfoliage, fAPARchl, 
fAPARnon-chl and LAIchl (Zhang, Q., et al., 2005; 2006; 2009; 2012; 2013; 2014; Zhang; Q., Cheng, Y.B, 
2015) with the following Equations (7-93 through 7-96): 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑔𝑔𝑒𝑒 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (7-93) 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐ℎ𝑙𝑙 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐ℎ𝑙𝑙 (7-94) 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐ℎ𝑙𝑙 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (7-95) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐ℎ𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐ℎ𝑙𝑙
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 (7-96) 

where: fAPARcanopy, fAPARfoliage, fAPARstem, fAPARchl, fAPARnon-chl, fAPARdry_matter, and fAPARbrown_pigment 
are fractions of absorbed PAR by canopy, foliage, stem, chlorophyll in foliage, non-chlorophyll components 
in foliage, dry matter in foliage, and brown pigment in foliage, respectively. 
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11.4.1.1 The MODIS fAPARchl/LAIchl Algorithm Description and Proof-of-Concept Studies 
SAIL2, a canopy-level RTM, is coupled with a leaf-level RTM (PROSPECT) in this algorithm (hereafter 

called PROSAIL2). SAIL2 is a modified version of the SAIL model (Andrieu et al., 1997; Badhwar et al., 
1985; Braswell et al., 1996; Goel and Deering, 1985; Goel and Thompson, 1984; Jacquemoud et al., 2000; 
Major et al., 1992). The algorithm uses an improved version of the PROSPECT model, which includes 
other pigments except photosynthetic pigments (i.e., lumped together as “brown pigment”) and has five 
leaf-level variables: a leaf internal structure variable (N); leaf total chlorophyll content (Cab); leaf dry matter 
content (Cm); leaf water thickness (Cw) and leaf brown pigment (Cbrown) (Baret and Fourty, 1997; Demarez 
et al., 1999; Di Bella et al., 2004; Hosgood et al., 1995; Jacquemoud and Baret, 1990; Newnham and Burt, 
2001; Verhoef and Bach, 2003). The PROSAIL2 model has three groups of parameters: (1) observation 
viewing geometry variables; (2) an atmospheric condition (i.e., visibility) variable; and (3) biophysical and 
biochemical variables (Table 7-18). The fourteen biophysical and biochemical variables are plant area index 
(PAI), stem fraction (SFRAC), cover fraction (CF), stem inclination angle (STINC), stem BRDF effect 
variable (STHOT), leaf inclination angle (LFINC), leaf BRDF effect variable, five leaf variables that sim-
ulate leaf optical properties (N, Cab, Cm, Cw, Cbrown), one soil/litter variable that simulates soil/litter optical 
properties (SOILA), and one variable that simulates stem optical properties (STEMA). MODIS observations 
are used here to describe parameter retrievals with PROSAIL2. For the MODIS observations, all seven land 
spectral bands designed for studies of vegetation and the land surface are utilized to invert the PROSAIL2 
model: blue (459-479nm), green (545-565nm), red (620-670nm), near infrared (NIR1: 841-875nm; NIR2: 
1230-1250nm), and the shortwave infrared (SWIR1: 1628-1652nm, SWIR2: 2105-2155nm). For atmospher-
ically corrected MODIS data, the atmospheric visibility variable was set to be large and constant throughout 
this algorithm. Solutions for fAPARcanopy, fAPARfoliage, fAPARchl, fAPARnon-chl and LAIchl are derived using 
the PROSAIL2 model and Equations 7-93 to 7-96. 
Table 7-18. List of Variables in the PROSAIL2 Model and Their Search Ranges. 
         Variable  Description                  Unit 
Biophysical     PAI    Plant area index, i.e., leaf + stem area index       m2/m2 
/biochemical variables  SFRAC   Stem fraction 
         CF    Cover fraction: area of land covered by vegetation/total area  
               of land 
         Cab    Leaf chlorophyll a + b content            µg/cm2 
         N     Leaf structure variable: measure of the internal structure of 
               the leaf 
         Cw    Leaf equivalent water thickness           cm 
         Cm    Leaf dry matter content              g/cm2 
         Cbrown   Leaf brown pigment content            g/cm2 
         LFINC   Mean leaf inclination angle             degree 
         STINC   Mean stem inclination angle            degree 
         LFHOT   Leaf BRDF variable: length of leaf/height of vegetation   m/m 
         STHOT   Stem BRDF variable: length of stem/height of vegetation  m/m 
         STEMA   Stem reflectance variable range (for a fitted function) 
         SOILA   Soil reflectance variable range (for a fitted function) 
Atmospheric     VIS    Diffuse/direct variable: scope of atmospheric clarity    km 
condition variable 

 
Each MODIS reflectance observation [ρobs] for the seven land bands (red, NIR1, blue, green, NIR2, 

SWIR1 and SWIR2), and associated view zenith angle [θv, in degrees], relative view azimuth angle [φ, in 
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degrees], and solar zenith angle [θs, in degrees] contains some noise, although small differences in angles 
may be ignored. Each reflectance observation can be treated as a sample of Equation 7-97. 

 (7-97) 

where: N(0,1) is the normal distribution with a mean of zero and SD = 1. Processing can use as many 
samples from the distribution from Equation 7-97, as needed. 

Inversion of RTMs requires careful choices of optimization procedures and multiple approaches have 
been employed for model inversion. In this example, the PROSAIL2 model was inverted using the Metrop-
olis algorithm (Metropolis et al. 1953; Hurtt and Armstrong 1996; Braswell et al. 2005), a type of Markov 
Chain Monte Carlo (MCMC) estimation procedure. This method estimates posterior probability distribu-
tions of the variables and thus can provide estimates of uncertainty (e.g., such as standard deviations and 
confidence intervals) of individual variables, by inspecting the retrieved distributions. At each step out of a 
predetermined number of iterations, the algorithm uses the current variable estimate to generate a new 
“proposal” estimate randomly in variable space. This new variable estimate will be the input for a new 
model run. Model-retrieved and observed reflectance values are used to calculate the likelihood of an error 
probability model. The Metropolis algorithm then accepts the new variable estimate with a certain proba-
bility. The resulting Markov Chain of accepted variable values converges to the posterior distribution of 
the variables conditional on the observations after a transient “burn-in” period. MCMC theory assures that 
such a sampling scheme provides Markov chains, whose values represent draws from the posterior distri-
butions. In the following formalism, Pr(∙) denotes probability in a general sense, or more specifically, the 
value of a probability density function; Pr(v) denotes the prior distribution assumed for the set of variables; 
Pr(vnew|data); and, Pr(vold|data) refers to the conditional probabilities of “new” and “old” variable estimates 
(i.e., variable points) given the known “data”. 

According to Bayes’ theorem, 

 (7-98) 

Let  (7-99) 

 (7-100) 

where: L(·) is the likelihood function. In this example, it is assumed a set of independent uniform prior 
distributions for the variables. Let (p=7, the 7 MODIS bands), is the subscript of data 
point, subscripts 1, …, p mean spectral bands, and is reflectance. 

This algorithm assumes that the observed spectral values  differ from the model predicted values 
according to a mean zero p-variate Gaussian error model that results in the likelihood 

function. 

 (7-101) 

where: n is the number of data points sampled according to Equation 7-100 and  is the variance-
covariance matrix of X.  is estimated by the usual sample variances and covariances in each step of the 
algorithm: 
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.  (7-102) 

The natural logarithm of the likelihood, the “log-likelihood” (log(L), is used in the algorithm during its 
operation (e.g., Bishop, 1995).  

The algorithm defines the probability of accepting the new point as following: 

 (7-103) 

If the algorithm accepts the new point, it will become the “old” point in the next iteration; otherwise, the 
old point will still be the “old” point in the next iteration.  

To accelerate the speed of convergence of the Metropolis algorithm, the adaptive algorithm used in other 
studies (e.g., Hurtt and Armstrong 1996; Braswell et al. 2005) can be modified as follows: 

In each iteration, one variable is selected to change as: 

 (7-104) 

where: s=1, … , 14, is the number of variables in PROSAIL-2 that are allowed to search for solutions, r 
is randomly selected at each step between , are the maximum and minimum values 
allowed for the search, and Ts is the adaptive length parameter. If  is accepted, then  is increased 
by a factor of 1.006569. If it is rejected, then  is decreased by a factor of 0.99. By changing the adaptive 
length parameters in this way, the Ts (s=1, … , 14) of all variables are adjusted until varying any given 
variable leads to acceptance of about 23% to 44% of the time, which is considered an ideal acceptance rate 
for the Metropolis algorithm (Gelman et al., 2000).  

From the posterior distribution above, solutions can be obtained for fAPARcanopy, fAPARfoliage, fAPARchl, 
fAPARnon-chl and LAIchl according to the PROSAIL2 model and Equations 7-93 to 7-96, which would be 
derived posterior distribution. 

11.4.1.2 Examples with 500m MODIS Images 
For this example, the fAPARchl/LAIchl algorithm was applied to nine 500m Terra/MODIS images (i.e., the 

8-day composite reflectance product) that covered the Harvard Forest site in 2008. Selected days of year 
were 105, 149, 185, 233, 241, 265, 289, 297 and 305. fAPARchl was mapped for the area as 500m (9×9) 
pixel blocks where the central pixel covered a flux tower. Figure 7-72 exhibits seasonal and spatial (9×9) 
dynamics of fAPARchl. The evergreen forest pixels had greater fAPARchl values than deciduous forest pixels 
on day of year (DOY) 105. All pixels had their greatest fAPARchl values in mid-summer on DOY 185. 
Deciduous forests had a different fAPARchl pattern from evergreen forests during the senescence period. 

Validation of the fAPARchl product has used MODIS images obtained over a five-year period to analyze 
the seasonal and inter-annual variability of fAPARchl and LUE for the Southern Old Aspen flux tower site 
located in Canada. Using the additional information provided by flux tower-based measurements of gross 
ecosystem production (GEP) and incident PAR, 90-minute averages for absorbed photosynthetically active 
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radiation (APAR) and LUE (slope of GEP: APAR) have been determined for both the physiologically active 
foliage and for the entire canopy (Equations 7-105 and 7-106). 

 

 (𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐ℎ𝑙𝑙 = 𝐺𝐺𝐺𝐺𝐺𝐺
𝑃𝑃𝑃𝑃𝑃𝑃×𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐ℎ𝑙𝑙

) (7-105) 

 (𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐺𝐺𝐺𝐺𝐺𝐺
𝑃𝑃𝑃𝑃𝑃𝑃×𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

) (7-106) 

The flux tower measurements of GEP were strongly related to the MODIS-derived estimates of APARchl 
(r2 = 0.78) but only weakly related to APARcanopy (r2 = 0.33). Gross LUE between 2001 and 2005 for LUEchl 
was 0.0241 µmol C µmol-1 Photosynthetic Photon Flux Density (PPFD) whereas LUEcanopy was 36% lower. 
The five-year time series of LUEchl corresponded well with both the seasonal phase and amplitude of LUE 
from the tower measurements but this was not the case for LUEcanopy (Figure 7-73). It is interesting to note 
that both LUEchl and LUEtower are greater than the maximum LUE used by the MOD17 GPP product for this 
biome type. LUEchl derived from MODIS observations could provide a more physiologically realistic pa-
rameter than the more commonly used LUEcanopy as an input to large-scale photosynthesis models. In other 
words, fAPARchl and LUEchl provide more ecophysiologically realistic information than the more commonly 
used fAPARcanopy and LUEcanopy. Validation examples for crop fields can be found in (Zhang, Q., et al., 
2014). 

 
Figure 7-72. fAPARchl maps for 9 x 9 MODIS pixel area around the Harvard Forest tower site for day of year/Year: 
(a) 105/2008 (early spring), (b) 149/2008 (late spring), (c) 185/2008 (early July), (d) 233/2008 (August), (e) 241/2008 
(late August), (f) 265/2008 (September), (g) 289/2008 (October), (h) 297/2008 (October) and (i) 305/2008 (early 
November). 
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Figure 7-73. Comparison of the annual means ± SE for MODIS-derived LUEchl and LUEcanopy during the five-year 
period (2001-2005) for the growing season between DOY =152-259. LUEchl was significantly higher than LUEcanopy 
in every year, averaging a 0.007 µmol C µmol-1 PPFD difference. Annual LUEflux values (Krishnan et al., 2006) agree 
well with LUEchl, falling within the SE range in 4 of 5 years. The maximum LUE (LUEmax) used by the MOD17 (a 
MODIS GPP product) is shown as a horizontal dashed line. 

12 STRUCTURE FROM MOTION AND 3D RECONSTRUCTION 

12.1 Introduction 

The geospatial field has witnessed an explosion on the measuring, representation, and manipulation of 
the third dimension. Significant advances in our ability to measure and represent terrain elevation and the 
dimensions of targets on Earth are increasing user access to 3D data and transforming how scientists interact 
with software tools while adopting or proposing solutions to spatial problems. Traditional survey methods 
for 3D extraction are demonstrated to be accurate, but costly and sometimes infeasible. Recently, with the 
popularization of LiDAR technologies, novel data acquisition methods and metrics have expanded our an-
alytical capabilities for identifying multi-point elevation and the reconstruction of surface models. In par-
ticular, ground-based LiDAR systems have been used widely in many fields, including urban planning, 
architecture, forestry, and military operations. 

CV and algorithm developments for image processing and analysis have also advanced considerably in 
recent years. As a result, many CV analytical procedures have been developed and are now available at 
different stages of maturity. Among these procedures, the reconstruction of 3D geometry by using Structure 
from Motion (SfM) and related technologies, including the generation of 3D models from images acquired 
from multiple perspectives and use of UASs, is expanding the toolset(s) available to geospatial analysts. 
This section presents recent developments in 3D reconstruction and modeling based on non-metric 
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photography/imagery applied to the geospatial field. Here, SfM is explored to introduce the principles in-
volved in reconstructing 3D structures from a set of photographs acquired from multiple camera positions. 
The section discusses applications of the SfM technology, including practical aspects affecting 3D recon-
struction results. Study cases involving point cloud generation using SfM-based 3D reconstruction are pre-
sented. 

12.2 Structure from Motion and Multiple Image Matching 

Dating back to the 1950s, objects of interest have been reconstructed using 3D geometry, including the 
generation of point clouds. Traditionally, information regarding scene geometry, camera parameters, cam-
era orientation, and GCPs were required when using stereo photogrammetry, including a series of overlap-
ping, offset images. However, when using SfM, the main requirement to resolve 3D structure is overlapping 
images only. Neither ground-control reference targets nor knowledge of the camera exposures are required 
(Dellaert et al., 2000, Westoby et al., 2012). In place of operator collected data, the camera and scene 
parameters are solved automatically during the SfM process. This process was conceived in the CV com-
munity which integrates automatic feature matching/extraction algorithms to combine multiple overlapping 
images (Westoby et al., 2012). Features are extracted automatically using simultaneous, highly redundant 
and iterative bundle adjustment procedures resulting in very accurate point matching across photographs. 
Combining overlapping photographs in this manner extracts a dense RGB-encoded point cloud (Mancini, 
2013). SfM performs best with highly overlapping images, >60% overlap, and a range of perspectives of 
the 3D structure. Both of these requirements can be extracted from a moving sensor by using individual 
frames from video. 

Although internally consistent, models derived from SfM typically lack scale and orientation provided 
by using GCPs. The 3D point clouds generated from SfM are created in a relative image-space coordinate 
system and are thus often satisfactory for many basic applications since they can still be scaled by using a 
known distance imaged in a scene. However, a multidimensional data adjustment can be achieved by uti-
lizing 3D similarity transforms using a few GCPs measured after the model is complete. Thus, if more 
precise measurements are needed for analysis and repeatability, the data must be aligned to a real world, 
object space coordinate system. To meet high accuracy workflow requirements, known control points and 
the definition of direction and dimension must be made. Control points can be implemented into the model 
output by defining specific 3D points calculated by the model. Several software solutions exist to process 
a series of images and generate a point cloud dataset: cloud based (Autodesk® 123D Catch®), free or open 
source desktop software (e.g., Visual SfM, Insight3D), and commercial (e.g., Agisoft PhotoScan, Eos Sys-
tems PhotoModeler, University of Stuttgart SURE) (Madden et al., 2015). Examples below demonstrate 
the SfM workflow for 3D point clouds, digital surface models and microterrain extraction for building 
vegetation and geomorphic structure representation. 

Algorithms for SfM vary and here we present a set of principles and frequently found steps and data 
structures used by softwares and services while performing 3D reconstruction. Vergauwen and Luc Van 
Gool (2006) introduce their Web service based SfM and list four procedural steps for 3D reconstruction, 
including comparison procedures for the identification of image pairs out of the multiple images presented 
to the algorithm. Comparisons and the identification of pair candidates also involve image subsampling. 
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Pair matching supports subsequent steps of the 3D reconstruction pipeline associated with analog feature 
identification and guarantees that photographs can be used without the need for identifying a particular 
image sequence.  

The success of SfM while reconstructing a DEM or objects far from the camera can be affected by at-
mospheric conditions during photograph acquisition. Contrast reduction by haze obfuscates detail and may 
offer considerable challenges during the SfM pipeline, particularly during the identification of matching 
pairs and analog features on photographs acquired from different angles. Atmospheric correction can, in 
theory, be added to the 3D reconstruction workflow aiming to increase contrast and feature recognition. 
However, besides involving the manipulation of multiple photographs, these procedures may result in the 
creation of image aberrations or artifacts which have also the potential to impact processing. 

12.3 3D Models of Natural and Cultural Resources Using UAS Imagery 

Researchers at the Center for Geospatial Research (CGR) within the Department of Geography at the 
University of Georgia have used DJI Phantom 2 Vision and Phantom 2 Vision Plus quadcopters to collect 
imagery. Based on the objectives of a specific mission, both operator-controlled first-person view (FPV) 
and automated navigation to preplanned waypoints can be utilized. As an example, images acquired at the 
Georgia State Botanical Garden demonstrate the advantage of using a multi-rotary UAS to document sea-
sonal changes in a cultural landscape. Specifically, the flexibility and ease of deployment of UAS allowed 
the operator to take advantage of optimal flying conditions (i.e., calm winds and clear skies) synchronized 
with plant phenology and the planting schedule of the gardens. This simple application provided managers 
with a vantage point that allows them to better plan planting and maintenance, to inspect infrastructure, and 
to evaluate visitor experience (Figure 7-74). 

 
Figure 7-74. Bird’s-eye-view of the Georgia State Botanical Gardens acquired with a rotary-wing Phantom 2 Vision 
Plus (DJI) quadcopter used for image acquisition and resource mapping. 
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More precise information was gathered once the quadcopter was lowered to an altitude of 30m. At this 
height, with the camera positioned at roughly 15° from nadir, video was recorded while the UAV was flown 
at ~2m/s. Multiple overlapping frames were selected from the video to be used as input for PhotoScan 
(AgiSoft, Inc.) for SfM processing. To achieve optimal alignment images should overlap by at least 70%. 
While some images overlapping by only 50% were able to be aligned, the output from these images resulted 
in poor data quality. The product from images with proper overlap was able to produce 3D point clouds and 
image models of the gardens for unique geovisualizations (Figure 7-75). Furthermore. the images and mod-
els were georeferenced using specific objects located within the images. 

 
Figure 7-75 (a) 3D point cloud of the Georgia State Botanical Gardens, and (b) geovisualization of the area. 

Images acquired of the Abbey of the Holy Cross in Cañon City, Colorado, demonstrate the advantage of 
using a multi-rotary UAS to document heritage buildings and gardens in a cultural landscape. Built in 1866 
of Gothic Revival style as a monastery, the Abbey was subsequently used as a boarding school for boys 
and a winery, and is now listed on the USA National Register of Historical Places (Figure 7-76a). Naviga-
tion by FPV was used to guide the Phantom 2 Vision Plus quadcopter with its RGB camera pointing at a 
low oblique angle and record video of the cultural landscape following roughly parallel flight lines (Figure 
7-76b). Although flight missions will vary depending on the physical configuration of the ground features 
of interest, typical data sets should involve at least three flight lines with the camera tilted at slightly differ-
ent angles to obtain multiple views of the features. Errors in the resulting products are minimized by flying 
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low oblique video in two to four directions to ensure all surfaces are visible in multiple overlapping images 
(Figure 7-76c). 

In practice, the UAS imagery is collected and preliminary processing is performed on a laptop in the 
field. The first pass performs a low or medium density point matching and low-density point cloud. If the 
resulting point cloud is not complete (e.g., there are gaps) the video can be reflown without the added 
expense of traveling to the site for a second time. Further processing, typically reserved for the lab because 
of the needed computing power/time, includes high accuracy point matching and the creation of a high-
density point cloud. This processing step usually takes substantially more time than the generation of low-
density point cloud and benefit from dedicated hardware and batch mode processing. Point matching re-
finement is based on lens distortion and removes the barrel distortion caused by typical cameras of wide 
angle and short focal length. 

 
Figure 7-76. (a) Frame selected from the UAS video for the Colorado Abbey, (b) black lines indicate 418 frames 
extracted from video collected along multi-directional flight lines, and (c) the same 418 frames demonstrating the low 
oblique angles used for data collection. The accompanying video was obtained using a DJI Phantom 2Vison+ quad-
coppter equipped with a digital camera.  

https://my.asprs.org/images/animations/Chap7-Fig76a.mp4
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Nine GCPs, well-distributed corners of sidewalks surrounding the Abbey, were identified in Google 
Earth™ and X, Y, and Z coordinates extracted from high-resolution DigitalGlobe imagery in Google Earth 
for all GCPs (Figure 7-77a). To avoid having to input the locations of the nine GCPs on each of the 418 
images as required by PhotoScan to rectify the images individually, a point cloud consisting of 10.6 million 
points was created in PhotoScan, scaled a priori in LASTools and then transformed in Quick Terrain Mod-
eler (Applied Imagery, LLC) by measuring the nine GCPs once. The QTModeler software transformed the 
point cloud to an accuracy of 0.34m in XY, 0.30m in Z and 0.45m in XYZ (Figure 7-77b). This level of 3D 
point cloud accuracy is suitable for most natural and cultural resource applications. 

 
Figure 7-77. (a) Control points obtained from high resolution images are used to assign real-world coordinates to 3D 
models, and (b) The resulting RGB 3D point cloud. 
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12.4 Conclusions 

Detailed point clouds and comprehensive spatial information can be gathered from basic photographic 
techniques using SfM. UASs provide the best platforms for this analysis because of their ability to gather 
images quickly, with sufficient overlap (>80%), and from different perspectives. By utilizing photogram-
metric techniques performed by readily available software, images, or screen grabs from video, can be 
transformed into 3D models with associated RGB values, providing an accurate, multidimensional perspec-
tive of a variety of natural to anthropogenic features. 
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13 IMAGE PROCESSING OF VERY LARGE DATASETS 

13.1 Introduction 

This section focuses on requirements for, and examples of, processing very large image datasets. Data 
from the Landsat series of satellites provides an exemplar of the type of large image datasets ripe for data 
mining. Since 1971, the Earth Resource Observation and Science (EROS) has received and processed 
petabytes of Landsat data, comprising over five million scenes of roughly 185km by 180km. Recent ad-
vances in cloud computing have made it possible to access and process the entire catalog of Landsat scenes 
and other sizable image data catalogs. This section describes some of the requirements for processing da-
tasets of this size, and provides examples of how these analyses are happening today. 

13.2 Examples 

To provide a sense for what kinds of analyses are possible, and the computational complexity of per-
forming image processing on large image datasets, two examples are presented of large scale analyses per-
formed in Earth Engine®, Google's public cloud-based platform for geospatial analysis: the creation of a 
30-meter scale global animation of change from 1984 to 2012, called Timelapse, and a global analysis of 
forest change from 2000 to 2012. 

13.2.1 TIME’s Timelapse Project 
The Timelapse project is a global, zoomable, time-lapse 30-meter resolution map of change over the 

Earth from 1984 to 2012, built through a collaboration by Google, NASA, USGS, the CREATE Lab at 
Carnegie Mellon University, and TIME magazine. This animation is comprised of one 1.78 terapixel image 
for each year of the animation. The images were created by combing through 909 terabytes of Landsat-4,  
-5, and -7 data to find the best available pixels and to extract clouds and data errors. An additional 20 
terabytes of MODIS data were used to account for seasonal effects. The Landsat, MODIS, and petabytes 
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of other Earth observation data are stored in Earth Engine's catalog and available for analysis on Google's 
infrastructure using a geospatial analysis programming interface. Once the yearly mosaics were complete, 
they were transformed into multiresolution, overlapping video tiles so that they could be viewed in a Web 
browser. The combined process required 1.8 million core-hours (i.e., over 200 core-years), but because it 
was spread over 66,000 cores running in parallel, it took approximately 3 days to complete. 

13.2.2 Global Forest Change 
Hansen, et al. (2013) provides an example of mining the Landsat catalog for measurable change detec-

tion. The study used Earth Engine's archive of Landsat-7 data and 10 000 central processing unit (CPU)-
cores to characterize tree cover in the year 2000, and subsequent tree cover loss and gain through 2012. The 
browsable dataset revealed a total loss of 2.3 million square kilometers over the study period. This analysis 
involved 143 billion Landsat pixels drawn from 654 178 Landsat ETM+ scenes. Earth Engine was used to 
resample images, convert raw DNs to TOA reflectance, screen for clouds, cloud shadows, and water, and 
normalize the data. It handled all the necessary data format conversion, reprojection and resampling, and 
data access. The resulting imagery was then used to create a set of metrics over the study interval, including 
per-band reflectance percentiles and a slope of linear regression of band reflectance value versus image 
date. These metrics were related to a set of percent tree cover, forest loss, and forest gain training data using 
decision trees, and the resulting model was applied to generate global forest cover, loss, and gain. Earth 
Engine provides both an interactive mode, which the researchers used for debugging and development, and 
a batch mode, which is meant for longer tasks such as rendering the global forest change image. 

13.3 Challenges 

These analyses require a computational framework that provides access to the data, the ability to combine 
datasets that come with different resolutions and projections, the ability to perform analyses on a global 
scale in a reasonable amount of time and the ability to analyze the data in an interactive mode that allows 
analysts to refine their methods before applying them to complete petabyte-scale datasets. 

13.4 Requirements 

13.4.1 Accessing the Data 
The first challenge is to access the data for analysis. There are two main approaches to data access: (1) 

centralized, and (2) distributed. In the centralized mode, all of the data to be analyzed are stored in a central 
repository. In a distributed system, the data are stored on a variety of servers and downloaded when needed. 
Although there are many schemes for distributed databases, none of these scale well when trying to analyze 
petabytes of data. It simply takes too long to download all of the necessary data. The rest of this section 
assumes that data reside in a centralized data store before analysis begins. 

A related challenge in data access involves data availability. Different storage media have different cost 
and latency profiles. Less expensive storage media, like tape, have slower access times when arbitrary parts 
of the dataset are required. Active media, like optical drives or solid state drives, are considerably more 
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expensive, but provide quicker access. In any case, intelligent indexing of data assets is critical for fast data 
access, which, in turn, is critical for enabling analyses of large amounts of image data. 

Even when a data provider makes their data available for analysis, there are limits on how quickly data 
can be accessed. For example, most data providers limit the number of connections any given entity can 
use to download data which impacts the speed at which data may be acquired. 

13.4.2 Combining Disparate Datasets 
Geospatial image datasets represent their data using specific resolutions, bit depths, band names, projec-

tions and datums. These factors vary both between datasets and among images within a single dataset. In 
addition, datasets often attach arbitrary metadata to each image. Any system that combines large image 
datasets needs to be able to deal with this variability. This variability can be dealt with at various places in 
the pipeline from data ingestion, to data access, to data analysis, to output production. When dealing with 
only a few datasets, it may be possible to select a common representation system into which to cast datasets 
upon ingestion that degrades the datasets minimally As a centralized data store involves a larger number of 
datasets or is applied in a wider range of applications, however, it becomes valuable to store the input 
datasets in their native formats. That way, a different common format can be determined for each pair of 
datasets at the time of analysis. This approach requires an ability to reproject and redescribe datasets on 
demand, potentially increasing the computation involved in any analysis. 

13.4.3 Global-scale Processing 
Analyses that take advantage of large amounts of image data will demand some kind of parallelism. As 

seen in the case studies, global analyses can require the analysis of hundreds of terabytes of data and mil-
lions of CPU hours. Running them on a single commodity CPU is simply not feasible. Alternatives include 
running analyses on supercomputer clusters, like the Pleiades5 supercomputer, leveraging conventional 
cloud computing infrastructure, such as Google’s Compute Engine, Amazon EC2, or Microsoft Azure Vir-
tual Machines, or using a cloud-based geospatial analysis platform such as Google Earth Engine. 

Any implementation will require an interface that lets analysts access the image data and apply the re-
quired analyses. Graphical interfaces are simple to use, but tend to be inflexible. Programming interfaces 
offer more flexibility at the cost of a steeper learning curve. In any case, the operations available via the 
interface must be able to access the imagery in the datastore and run analyses in parallel over a number of 
CPUs.  

The literature related to parallel processing of images is quite rich. Some tasks are "pleasingly parallel." 
These are tasks where very little or no communication is needed between tasks. For example, per-pixel 
analyses of images, where the value of a pixel in the output is dependent only on the values that occur in 
that pixel, are straightforward to parallelize. Consider the NDVI of a Landsat scene, for example. The output 
of each pixel is simply the difference of the values of NIR and red band at that pixel divided by their sum. 
In the most extreme case, each pixel could be analyzed using a different CPU, and the resulting image 

 
5 http://www.nas.nasa.gov/hecc/resources/pleiades.html 
 

http://www.nas.nasa.gov/hecc/resources/pleiades.html
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would be a collection of the outputs. In practice, an image would be divided into tiles and each tile would 
be sent to a separate machine for analysis.  

Some operations require neighborhood-based parallelization, which offers additional challenges. A basic 
example is image convolution, in which a given spatial kernel is used to compute pixel values using the 
values from many surrounding pixels. Even more challenging to parallelize are tasks that inherently involve 
iteration. For example, finite element models which use iteration to find approximate solutions to boundary 
problems involve data interdependencies that make them difficult to parallelize. Flow models, where flow 
is computed by executing an unknown number of iterations, are also difficult to parallelize. In such cases, 
it is often necessary to rely on methods that are non-parallel, and therefore less scalable. 

13.4.4 Local-scale Processing 
Any system that supports analysis of large image datasets needs to subset the data in a variety of ways 

(e.g., temporally, spatially, and spectrally). A calculation of NDVI on a part of global MODIS image, for 
example, should apply that calculation to just the area of interest. An analysis of springtime surface water 
must apply to only those images that were taken at the appropriate times. One of the critical factors impact-
ing the performance of any analysis is the simple act of retrieving the relevant data from disk. Therefore, 
these filters should restrict not only which output pixels are computed, but also which input pixels are 
retrieved from disk in the first place. Two means to these ends are lazy evaluation and filter propagation. 

13.5 Conclusion 

A number of requirements have been presented for systems analyzing large image datasets. Some or all 
of these features have been implemented by a number of systems, for example Google Earth Engine, the 
NASA Earth Exchange (NEX), and any number of institution-specific systems like the one created by the 
EROS data center to process Landsat imagery. Increasingly, commercial cloud infrastructure providers, 
such as Amazon EC2 are providing access to large image datasets as well, without explicitly providing 
many of the services described above. We believe that adding services on top of the data greatly improves 
their utility and impact. More is presented in the section on cloud computing. 

Our already large image datasets are growing larger. Operational satellites collect more data continually, 
and more satellites are being added to this existing swarm. In addition, aerial imagery, imagery collected 
by people, and a variety of ground-based image sensors all provide datasets that present their own chal-
lenges. Integrating datasets within a given stratum (e.g., integrating Landsat and MODIS imagery), and 
analyses that involve multiple strata, such as integrations between aerial and ground data, remains an inter-
esting area of work and provides many future challenges. 

14 CLOUD-BASED IMAGE PROCESSING 

14.1 Introduction 

In 2013, Seagate reported that more than 60% of information technology managers have moved to cloud 
based processing. Since then that number has continued to increase. Managers see improvements in cost of 
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computing infrastructure, environmental benefits, extended collaboration support and improved security. 
The benefits of cloud computing apply to image processing as well. This section describes cloud computing 
in general and provides several case studies of different cloud implementations of image processing. 

14.1.1 Definition of Cloud Computing 
The U.S. National Institute of Standards and Technology (NIST) has defined cloud computing as "a 

model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable 
computing resources (e.g., networks, servers, storage, applications, and services) that can be provisioned 
and released rapidly with minimal management effort or service provider interaction." They go on to define 
five essential characteristics: on-demand self-service, broad network access, resource pooling, rapid elas-
ticity, and measured service. 

14.1.2 Cloud Services 
Cloud services are typically defined as falling into one of three categories: Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).  
IaaS suppliers generally provide access to virtual machines that effectively replace computer servers that 

an organization would need to purchase and maintain on-site. These virtual machines offer traditional pro-
cessing and storage just as a set of physical servers would. The benefit is that these servers are, in effect, 
rented and can be used only when needed. This situation is suited perfectly to conditions where computers 
are not utilized 24 hours a day. Current examples of IaaS services are Google Compute Engine, Amazon 
EC2, and Microsoft Azure Virtual Machines. 

PaaS suppliers offer toolkits and application programming interfaces (APIs) that are designed for devel-
opers to leverage into products and services of their own. These services often include databases, Web 
servers, programming environments, and networking tools. Examples of PaaS are Google App Engine, 
Amazon Web Services, and services built into Microsoft Azure. 

Finally, SaaS supplies provide full Web-based software that runs in their clouds. Web-based solutions 
for email, tax preparation, social media, data-file storage, spreadsheets and word processing are all exam-
ples of SaaS.  

Each of these types of services has been used to process images. Google Compute Engine, Amazon EC2, 
and Microsoft Azure Virtual Machines have all been used to process Earth observation imagery. Google 
Earth Engine, a cloud-based PaaS for large scale geospatial analysis provides APIs that enable developers 
to rely on Earth Engine for their geospatial processing. Parts of Earth Engine are also SaaS, providing a 
Web interface for performing geospatial analysis. Esri ArcGIS® online is another example of SaaS, provid-
ing a cloud-based interface to Esri GIS tools. 

14.2 A Menu of Cloud Geospatial Image Processing Features 

Existing cloud-based image processing systems provide a wide variety of features. No system currently 
supports all the below features, but each of the features occurs in at least one of the systems that was dis-
cussed above. The discussion will focus on processing geospatial images such as data collected from Earth 
observation satellites. 
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14.2.1 Core Raster Processing Facilities 
All cloud-based geospatial image processing systems provide raster operations at their foundation. Con-

sider a single scene collected by Landsat-8, the most recent of the Landsat satellites. The core features of 
any geospatial processing system will support viewing the scene using a single satellite band, composing 
three satellite bands into an RGB image, stretching the band values to highlight certain sets of values, and 
performing simple arithmetic on the bands to create indices, such as NDVI. In addition, a geospatial image 
processing system should be able to reproject imagery into different map projections, subsample imagery 
to provide a zoomed-out visualization, and combine raster data with geospatially defined vector data. 

In addition, geospatial image processing systems should be able to work with collections of images. For 
example, the Landsat series of satellites takes an image of the same part of the Earth every 16 days. Some 
of those images are cloudy. However, given that clouds move, a cloud-free composite image can be created. 
Take a set of images that cover the same area of the Earth and stack them with the most recent Landsat 
image on the top, making a cube where the X-dimension runs North/South, the Y-dimension runs 
East/West, and the Z-dimension cuts through time. Then, for each X, Y position, choose the most recent 
cloud-free pixel to represent that position. If there is a cloud-free pixel, and the cloud detection algorithm 
is sound, this process will result in a cloud-free mosaic. Any geospatial processing system should be able 
to manage sets of images in this way. This involves accessing images that are stored in the cloud, and 
providing tools to filter large collections of images to retrieve just those that are necessary for a given 
analysis. 

Finally, performing statistics on regions on images is a key aspect of any geospatial image processing 
framework. Computing averages over areas of interest, collecting histograms of values, and calculating 
slopes of time series are typical examples. 

14.2.2 Interfaces 
Any image processing system requires an interface. That interface can be a GUI that requires no pro-

gramming abilities, or it can be nothing other than a programming interface that can be called using a given 
programming language. Cloud image processing systems cover the gamut of possible interfaces. 

14.2.3 Graphical User Interfaces 
Some cloud image processing frameworks rely entirely on a GUI. These services present a set of features 

that can be configured using options panels. For example, a viewing feature can be configured to select a 
set of satellite image bands to assign to red, green, and blue, and perhaps provide min and max values to 
constrain the range of values displayed. More advanced GUIs could apply algorithms as complex as ma-
chine learning, or morphological operators like dilation and erosion. 

14.2.4 Application Programming Interfaces 
On the other extreme, some cloud image processing systems have no GUI and are controlled entirely via 

a programming language. These systems exchange ease of use with flexibility. An API allows other sys-
tems, such as Web sites, to issue commands to the image processing system, which then return results that 
may be visualized in the Web sites. Alternatively, the image processing system can return tables of values 
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when queried. In each of these cases, a programming language, such as Java, JavaScript, Python, C++, or 
R is used to issue commands to the image processing system. 

14.2.5 Integrated Development Environments 
Integrated development environments (IDE) can fall between these two extremes. IDEs provide devel-

opers a framework for programming against APIs combined with the ability to visualize, debug, and profile 
the results of their programming efforts. A geospatially informed IDE can provide rapid prototyping of 
algorithms and methods. When integrated with code versioning systems, an IDE can also provide a frame-
work for collaboration. 

14.2.6 Delivery 
Any cloud image processing system requires mechanisms for disseminating the results of its processing. 

This can involve storing imagery, either on local computers or in the cloud. It can also involve providing 
mechanisms to display the results live via Web pages, Web services, or other online mechanisms. The 
former case is fairly straightforward. The image processing system is required to write bits out to files that 
are then stored on one or more computers. The main requirement here is that the files are readily available 
for the intended recipients. The main complexity is determining how best to store the output given the 
limitations of whatever file format is chosen.  

The latter case, providing live access to the data, is more complex. A major consideration here is whether 
to store the results of analyses on disk, or simply recreate them on demand. Especially when generating 
extremely large datasets, such as global 30m data, it may be that certain areas are never visited. For example, 
consider the dataset of NDVI for each of the millions of Landsat images. The number of times that the 
NDVI value of a given pixel in Antarctica in 2012 will be requested is quite small, and probably does not 
merit being stored when the calculation of NDVI from the source data is quite simple. The complexity of a 
calculation and the frequency with which that data are requested determines whether or not storing the data 
makes sense. Given that the costs of processing units are currently dropping more rapidly than the costs of 
storage, the decision to recompute rather than store will shift steadily toward the side of recompute. This 
assumes an environment where the processing capabilities of a cloud framework are always available, and 
not brought up only when processing is needed. 

Caching the results of an analysis falls in between storing processed bits on data for download, and 
reprocessing bits on demand. With caching, the results of an analysis are stored temporarily and eventually 
age out. The expectation is that if a bit of data is requested once, there is a good chance it will be requested 
again, but that chance drops over time. Many cloud systems provide caching as a service available to de-
velopers building applications. 

14.2.7 Processing Models 
Cloud processing tends to occur in one of two modes: interactive or batch. In interactive mode, an oper-

ator can iterate with the system in real-time, running an analysis, checking the results, and adjusting the 
methodology until it is ready to apply to a larger area. At some point of complexity or scale analyses will 
take too long for interactive processing, at which point batch mode is used. In batch processing, a set of 
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resources is reserved for a task, and that task is divided among the allocated processing units. The task is 
then executed and the results stored in some format.  

Both of these modes benefit from being able to parallelize tasks over thousands of computer processing 
units. The standard map-reduce framework introduced by Google and made open-source through the Ha-
doop project generally relies on parallelizing operations over many relatively simple computers. Some op-
erations lend themselves easily to being parallelized. For example, operations such as band math on single 
satellite images can be split easily among as many CPUs as necessary. Simply divide the image into as 
many pieces as necessary, send each piece to a different CPU, and when each piece is complete, gather and 
stitch them together to get the result. Other operations, such as computing image segmentation are harder 
to run in parallel. Since any given object in the image might span the entire image and splitting the image 
into smaller pieces and segmenting those will result in a set of segmented images, recombining these into 
a single result presents challenges. What is the best way to join segments that cross the borders of two or 
more of the divided pieces? In some cases relying on a single computer with a great deal of random access 
memory (RAM) is more suitable. 

14.3 Cloud Image Processing Implementations 

This section presents three different examples of cloud geospatial image processing systems running on 
Google infrastructure today, one from each type of cloud computing service type as examples of how cloud 
computing is currently being applied to geospatial data processing. 

14.4 Infrastructure as a Service 

Google Cloud Platform (GCP) provides data storage through Google Cloud Storage, a variety of database 
tools such as BigQuery, and computational infrastructure through Google Compute Engine. A number of 
organizations have used GCP for analysis of Earth Observation data. For example, Descartes Labs has used 
a petabyte of Landsat data stored in Google Cloud Storage and 30 000 processor cores in Google Compute 
Engine to estimate global corn crop yields. Having the data already available in Google Cloud Storage 
meant that Descartes Labs did not have to download and manage the data themselves. Relying on Compute 
Engine meant that they did not have to purchase and house their own servers. Instead, they could, in effect, 
borrow the 30 000 cores, perform their analysis and then, give all the cores back. However, Descartes Labs 
needed to manage all 30 000 cores, ensuring that they were running the appropriate software and managing 
the processing on their own. 

14.5 Platform as a Service 

While IaaS platforms like Compute Engine provide scalable hardware, they offer little software support 
for geospatial analyses. In the previous example, Descartes Labs6 created their own software, installed it 
on all the processors, and managed all the data. Platform as as Service solutions for geospatial analysis 
provide more software support. The Google Earth Engine platform, for example, provides access to multiple 

 
6 http://www.descarteslabs.com/ 

http://www.descarteslabs.com/
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petabytes of satellite data and a programming interface to analyze the data. Earth Engine also supports the 
upload of user specific data, and the download and saving of analyses and the raw input data. The approx-
imately 800 geospatial imaging operations in the Earth Engine library can be combined to create a wide 
variety of applications, ranging from global forest monitoring (Hansen, et al., 2013) to crop yield estimation 
(Lobell et al., 2015), and computing urban extents (Zhang, Q., et al., 2015). Earth Engine handles details 
like parallelizing analyses over a cluster of computers, reprojecting data when necessary, and using filters 
to access exactly the required data. In addition to using Python or JavaScript to create scripts using its 
library, called Earth Engine provides an interface for Web sites that would like to call out to the platform 
to execute geospatial queries. For example, the Global Forest Watch application calls Earth Engine when a 
user circles an area to discover how much tree cover loss and gain occurred over that area. Similarly the 
Map of Life application uses Earth Engine to refine species habitat ranges using additional data such as 
elevation and land cover type. Earth Engine can be called in both an interactive mode, described more 
below, and in a batch mode for large and complex analyses. 

14.6 Software as a Service 

The Earth Engine platform described above has two main graphical interfaces, each of which can be 
considered SaaS. The Google Earth Engine Explorer provides a GUI that lets users browse the collection 
of satellite imagery available and create simple image processing pipelines supporting band math, morpho-
logical operations, and machine learning algorithms. This interface is effectively a Web-based version of 
a desktop system for geospatial image analysis. However, unlike traditional desktop software, analyses run 
on the Earth Engine Explore are executed by a cluster of computers in parallel. This enables very large 
analyses that would otherwise not be possible. The Earth Engine Explorer has been used mostly for educa-
tional purposes, but has also been used in scientific applications such as measuring mangrove extent in 
South Asia (Giri et al., 2015). 

The Earth Engine Code Editor is an integrated development environment which provides access to doc-
umentation, tools for debugging and profiling algorithms developed using the Earth Engine library of op-
erators, an interface into the Earth Engine data catalog, mechanisms for sharing scripts with collaborators, 
and tools for managing user-uploaded imagery. It supports both an interactive mode, where the results of 
an analysis can be seen on a map, and a batch mode with simple tools for monitoring the progress of long-
running jobs. The Code Editor is one of the primary interfaces into the Earth Engine Platform and has been 
used to develop all of the methodologies described in the PaaS section of the chapter. 

14.7 Challenges 

Cloud computing has proven itself to be cost effective, energy efficient, and secure. However, moving 
image processing to the cloud has a number of challenges. 

14.7.1 Internet Access 
The cloud cannot be used without access to the internet. Internet access has been expanding rapidly 

worldwide. Approximately 40% of the world has access to the internet in 2015, up from 6% in 2000. 
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Projects such as Project Loon and internet.org, plus more traditional infrastructure expansion aim to remove 
this limitation over time. That said, people in areas with limited internet connectivity will have limited 
opportunities to use the cloud for image processing. 

14.7.2 Trust 
A serious hurdle in cloud processing across-the-board is user trust in the cloud. Geospatial data are often 

sensitive, and people question whether data uploaded to the cloud are secure. Cloud providers counter that 
data are safer in the cloud than on local machines because cloud providers hire teams of computer security 
professionals to ensure that their clouds are secure and this claim is borne out by data. Alert Logic's Annual 
State of Cloud Security, for example, shows regularly that cloud solutions are more secure than on-premise 
solutions. However, trust continues to be one of the largest barriers to cloud adoption.  

14.7.3 Licensing 
Centralizing the data poses challenges of its own, political and technical. The political challenges relate 

to data licensing: not all datasets that are useful for performing a required analysis may have licensing that 
permits their sharing. Some data providers would rather not share their data in this way, due to concerns 
about processes for updating the data in the future, or due to restrictions on how they would like the data to 
be used. Non-commercial use policies are not unusual, but can be difficult to enforce in a centralized system 
and can prevent commercial cloud service providers from hosting data for their users in the first place. 

14.7.4 Versioning 
The version of traditional desktop software can be frozen. Although most modern software packages 

provide constant updates to improve the software or patch security holes, a user can ensure that the version 
of the software being used does not change. Similarly, data on a desktop computer can be controlled by the 
computer's owner. This is different in the cloud, where the cloud provider can update software regularly 
and may not guarantee that old versions of the software will be maintained or even be available. This ab-
sence of guaranteed stability can be a challenge for people who want to ensure that the results of their 
analyses can be replicated years in the future. 

14.8 Conclusion 

This chapter has described cloud computing as it applies to geospatial imagery analysis, and has given 
examples of how different kinds of cloud services can apply to the imagery analysis space. Cloud computing 
is in its infancy, and although impressive results have already been achieved, we are just scratching the 
surface of what is possible. As more satellite data are made available via these platforms, and more services 
are provided, the scope of geospatial analyses will continue to expand. Some of the greatest advances may 
be made in the application of machine learning and artificial intelligence, which are currently revolutioniz-
ing applications throughout the cloud. One area to watch is the ability for geospatial analysis platforms to 
move beyond monitoring the Earth to predicting areas of likely change. 
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15 CURRENT STATUS AND FUTURE DEVELOPMENTS IN IMAGE PROCESSING AND 
ANALYSIS 

Processing remotely-sensed data is key to a large variety of project workflows and activities, including 
environmental resource management, food production, and diseases monitoring, among many others. These 
activities, involving academia, government, non-governmental organizations and the private sector, use 
data processing techniques to bring immeasurable benefits to human life on Earth, This chapter presented 
important theory and techniques involved in processing and analyzing those remotely-sensed data. The text 
introduced pre-processing strategies involved in data preparation and enhancement, and included data pro-
cessing techniques associated with information extraction. Concepts were illustrated by examples that in-
corporated the preparation and analysis of those datasets. Future developments in the field are closely as-
sociated with the increased availability of remotely-sensed data. For instance, UASs are revolutionizing 
remote sensing, as well as many fields that use remotely-sensed data for information extraction. Use of 
rotary or fixed wing aircraft of many sizes and capable of carrying a rich array of sensors has led to high 
control over image acquisition. Benefits resulting from UAS include shortening revisiting intervals for data 
collection, as well as full control over the time (e.g., time of the day, season) and environmental conditions 
when remotely-sensed data are acquired. Small satellites and sensors mounted on orbital platforms (e.g., on 
the International Space Station) have become an important alternative for data acquisition and should bring 
significant increase in data availability. The incorporation of UAS and other data sensors into projects also 
brings multiple image processing and analysis challenges, including those associated with variations in 
platform attitude, changes in acquisition geometry, atmospheric correction, data fusion, image mosaicking 
and management of increased volume of data. 

In addition, image processing and analysis have benefitted greatly from advances in computing, includ-
ing multiple development fronts in hardware and software. The large volume of data being acquired chal-
lenges our ability to process and use those data efficiently. The increased processing power of computer 
systems, including the use of multicore systems and applications that make use of specialized GPU to ac-
celerate processing, contribute to reduce processing time and expedite product generation. Initiatives in-
volving cloud processing, such as the NEX and Google Earth Engine, have made available unprecedented 
processing power to the community of users of remotely-sensed data. A rich image processing and analysis 
toolset is being produced by those and other initiatives, including the free and open source software efforts. 
Some of this software include transformative approaches and algorithms, such as deep learning. These ad-
vances are empowering the user community and making possible the processing and analysis of vast 
amounts of data, including multitemporal wall-to-wall renditions of the entire globe at multiple spatial res-
olutions. 

Further, advances in CAL/VAL of sensors have facilitated data processing steps and, in some cases, 
users may not need to preprocess their data. Agencies, such as the ESA and the USGS, have gone beyond 
the distribution of raw data and have incorporated multiple processing steps into their image distribution 
workflows. Geometrically and atmospherically corrected images converted into surface reflectance or into 
derived products (e.g., vegetation indices and metrics indicating light absorption by vegetation and produc-
tivity) are now routinely produced and made available by these groups at no extra cost to the user 
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community. Current efforts exist to incorporate intelligent payloads into sensor systems, which will enable 
onboard processing and the downlink of resulting products.  

Finally, analyses using data from remote sensors have traditionally emphasized the spatial domain. In-
creased data availability and longer time series, associated with the increased ability to process and compare 
these data, have allowed investigations to incorporate changes increasingly over space and time into their 
analyses and to consider the dynamics of processes happening on our changing planet. Indeed, as our ob-
servations and explorations expand beyond the Earth’s surface to the subsurface, ocean depths, within and 
beyond Earth’s atmospheric layers and through space, we will continue to stretch our image horizons and 
understand a myriad of dynamic processes. As a result, these are transformative and exciting times for those 
involved in image processing and analysis, which is facilitated by the increasing availability of rich datasets 
and tools to analyze them. 

The text presented here will be augmented and revised to reflect the dynamic nature of remote sensing. 
Future developments in image processing and analysis will be incorporated into this chapter, following a 
living document concept. Additions to the chapter will include the processing of data acquired in different 
regions of the electromagnetic spectrum (e.g., thermal and radar) as well as by a variety of sensor platforms 
that are now becoming available. 
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