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Flight-based hyperspectral imaging systems have the potential to provide valuable information for
ecosystem and environmental studies, as well as aid in land management and land health monitoring.
This paper examines a series of images taken over the course of three years that were radiometrically ref-
erenced allowing for quantitative comparisons of changes in vegetation health and land usage. The study
area is part of a geologic carbon sequestration project located in north-central Montana, approximately
580 ha in extent, at a site requiring permission from multiple land owners to access, making ground
based validation difficult. Classification based on histogram splitting of the biophysically based parame-
ters utilizing the entire three years of data is done to determine the major classes present in the data set
in order to show the constancy between data sets taken over multiple years. Additionally, a method of
anomaly detection for both single and multiple data sets, using Median Absolute Deviations (MADs), is
presented along with a method of determining the appropriate size of area for a particular ecological sys-
tem. Detection of local anomalies within a single data set is examined to determine, on a local scale, areas
that are different from the surrounding area and depending on the specific MAD cutoff between 50–70%
of the anomalies were located. Additionally, the detection and identification of persistent (anomalies that
occur in the same location over multiple data sets) and non-persistent anomalies was qualitatively
investigated.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Multi-temporal imaging is a valuable tool for monitoring a mul-
titude of changes over time from land coverage/usage change
(Byrne et al., 1980; Lunetta et al., 2006; Rogan et al., 2002) to dis-
ease spread (Franke and Menz, 2007; Liangyun et al., 2004; Liu
et al., 2006) to urban expansion (Gomez-Chova et al., 2006; Li
and Yeh, 1988; Maktav and Erbek, 2005; Xian et al., 2008) and
many others (Demirel et al., 2011; Hong et al., 2010; Travelletti
et al., 2012; Tripathy et al., 1996). This technique has been driven
by free access to high quality satellite data and the long time-frame
of operation of these satellites, most prominently Landsat and
MODIS. Multi-spectral satellites have dominated the multi-
temporal field, but multi-temporal hyperspectral data would allow
for further advances in the areas mentioned previously. This paper
outlines two uses for multi-temporal radiometrically referenced
hyperspectral data, multi-year classification and single- and
multi-year anomaly detection, though the potential uses for radio-
metrically referenced data are extensive.

While there are several multi-temporal hyperspectral studies
utilizing ground based sampling (Lausch et al., 2013; Nguyen and
Lee, 2006; Strachan et al., 2002; Stuckens et al., 2011; Xie et al.,
2013) this paper focuses on flight-based multi-temporal hyper-
spectral studies (Franke and Menz, 2007; Liu et al., 2010) of which
there are limited examples especially at the mesoscale. With con-
stantly improving technology in terms of the sensors and more
advanced atmospheric models there is an ever-increasing array
of problems that can be addressed by multi-temporal hyperspec-
tral imaging. A sizable percentage of these problems will require
high quality radiometrically referenced data to draw quantitative
conclusions. Many multi-temporal studies rely on satellite or flight
data that lacks any type of absolute calibration to surface reflec-
tance (Conese and Maselli, 1991; Goenaga et al., 2013; Mallet
et al., 2015; Petitjean et al., 2012; Yuan et al., 2015). This approach
relies on unchanging atmospheric conditions and that the
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calibration of the sensor is maintained, limiting the quantitative
information that can be obtained.

One specific use of multi-temporal hyperspectral data is moni-
toring of geologic carbon sequestration sites. Geologic carbon
sequestration (Li et al., 2006; Zhang et al., 2002) provides a means
of capturing carbon dioxide (CO2) (Cuffey and Vimeux, 2001;
Monnin et al., 2001; Pachauri and Reisinger, 2007; Petit et al.,
1999; Siegenthaler et al., 2005) at a facility such as a power plant
and storing this captured CO2 underground in geologic formations.
The stored CO2 is removed from the atmosphere providing a miti-
gation technique for CO2 emission directly to the atmosphere. Suc-
cessful carbon sequestration requires the development of a variety
of technologies including carbon capture, understanding the stor-
age capacity and safety of the various geologic formations
(Benson et al., 2004; Cortis et al., 2008; Knauss et al., 2005;
Oldenburg et al., 2009; Pruess, 2008; Wilson et al., 2007), and mon-
itoring and verification technologies (Spangler et al., 2010;
Strazisar et al., 2009) and techniques to ensure the efficacy of
the carbon sequestration site. Monitoring and verification
technologies need to be able to efficiently monitor the large
areas associated with carbon sequestration sites, which are on
the order of tens to hundreds of square kilometers (Rutqvist
et al., 2010; Korbøl and Kaddour, 1995; Whittaker, 2004; Maldal
and Tappel, 2004).

Airborne remote sensing is one technique proposed for moni-
toring the large areas associated with carbon sequestration sites.
Flight based hyperspectral imaging has the potential to monitor
vegetation for signs of stress that may be associated with water
deficiency (Behmann et al., 2014; Dobrowski et al., 2005; Jones
et al., 2004; Kim et al., 2011; Suárez et al., 2008; Tilling et al.,
2007; Zhao et al., 2005), nitrogen deficiency (Strachan et al.,
2002; Tilling et al., 2007; Zhao et al., 2005), and elevated CO2 in
the soil (Bateson et al., 2008; Bellante et al., 2013; Bergfeld et al.,
2006; Keith et al., 2009; Maček et al., 2005; Male et al., 2010;
Noomen et al., 2008; Noomen and Skidmore, 2009; Pickles and
Cover, 2004), or other types of stress (Apan et al., 2004;
Dobrowski et al., 2005; Smith et al., 2004; Zhang et al., 2003).
Remote sensing-based surveys of carbon sequestration sites by
flight based hyperspectral imaging can then be used to direct more
expensive, time consuming, and resource intensive sensors (such
as hand-held CO2 sensors) to potential problem areas.

Hyperspectral imaging systems provide a reflectance spectra for
each pixel in the digital image. Low-cost hyperspectral imaging
systems can provide reflectance spectra in the 400–950 nm spec-
tral range containing important spectral features associated with
vegetation including the low spectral reflectance in the visible
associated with absorption of the chlorophyll, the rapid rise in
the reflectance spectra between 700 nm and 800 nm often referred
to as the red-edge, and the high spectral reflectance in the near
infra-red (IR) associated with the leafy mesophyll.

Elevated CO2 levels in the soil can cause stress in vegetation
which can manifest in changes in the spectral reflectance. Stress
causes a reduction of the photosynthetic pigments which results
in an increase in visible portion of the reflectance spectra (Carter
et al., 1992; Knipling, 1970). Furthermore, stress affects the inter-
nal structure of plant cells that decrease the reflectance spectra
in the near-IR portion of the reflectance spectra (Carter, 1991;
Knipling, 1970; Li et al., 2005). Both effects could be used as an
early indicator of stressed vegetation (Carter and Knapp, 2001;
Luther and Carroll, 1999; Eitel et al., 2011). The changes in the
reflectance spectra resulting from vegetation stress can be moni-
tored via flight-based hyperspectral imaging. In particular, a time
series of flight based hyperspectral images, either from aircraft,
unmanned aerial vehicles (UAV’s), or drones, will allow the moni-
toring of the evolution of vegetation stress over the course of a
growing season and/or from year to year.
Initial experiments demonstrating the ability of hyperspectral
imaging to detect stressed vegetation were conducted during con-
trolled sub-surface release experiments at the Zero Emission
Research Technology (ZERT) field site. Detecting vegetation stress
using a ground based hyperspectral instrument has been demon-
strated (Keith et al., 2009). Subsequent work by Bellante et al.
and others (Bellante et al., 2013; Male et al., 2010; Pickles and
Cover, 2004; Spangler et al., 2010), also performed at the ZERT field
site, demonstrated the ability of a flight based hyperspectral imag-
ing system to detect the evolution of the vegetation stress resulting
from a sub-surface release. During this experiment, eight flights
were conducted over the ZERT field sites, and data was collected
over an area of approximately 1 ha. Georeferencing corrections
were achieved using ground based targets that could have been
used for atmospheric correction as well.

Initial demonstrations of hyperspectral imaging indicate that it
is a viable method of monitoring carbon sequestration sites. Recent
work (McCann et al., 2017a) has demonstrated the ability to use
U.S. Geological Survey (USGS) 0.3 m resolution orthoimages for
georectification and the Landsat 8 surface reflectance data product
to produce radiometrically referenced large area hyperspectral
images with minimal ground access. Furthermore, a method of fit-
ting reflectance spectra with basis functions based on biophysically
relevant fit parameters as a means of data and noise reduction
(McCann et al., 2017a) has been demonstrated. Additionally, using
these fit parameters, an unsupervised classification technique
based on histogram splitting of the fit parameters has been demon-
strated (McCann et al., 2017a).

This paper looks at three georectified, surface reflectance refer-
enced data sets from hyperspectral imaging flights conducted on
06/21/2014, 06/24/2015, and 06/26/2016 at the Big Sky Carbon
Sequestration Partnership (BSCSP) site in north-central Montana.
This data is examined using an unsupervised classification tech-
nique based on biologically relevant fit parameters, the results
are used to look at changes in land usage throughout the time ser-
ies. Additionally, these clusters can be used in determining large
scale management areas or as inputs to a supervised classification
technique as a training data set. A method of local anomaly detec-
tion is presented using Median Absolute Deviations (MADs). These
local anomalies were used as a proxy for detection of a CO2 leaks. If
CO2 was present in the soil in higher concentrations than the sur-
rounding area the vegetation would appear stressed and appear
different spectrally and would be detected as a local anomaly.
These anomalies may also be related to different levels of stress
within a plant species, different species within the same area (such
as weeds in an agriculture field), different land use, soil differences
(such as a saline seep), etc. To better isolate local anomalies of
interest multiple data sets were compared to eliminate anomalies
that are present in the same location across multiple data sets. This
isolates anomalies that have developed (or become more anoma-
lous) between data sets indicating a local change that in the case
of a CO2 sequestration site might be an indicator on a leak, which
would warrant further investigation.

2. Materials and methods

2.1. Study area and imaging system

The primary study area (N48�5104300, W111�4401000, elevation
1143 m) was located in north-central Montana at the Big Sky Car-
bon Sequestration Partnership demonstration shown in Fig. 1. The
region of interest examined herein, the northern most region, Site
C, outlined in green in the inset of Fig. 1, was approximately
580 ha, and contained regions of fallow fields, planted wheat/
barley fields, grassland, arroyos, draws, and some buildings and
roadways.



Fig. 1. Location of the Big Sky Carbon Sequestration Partnership (BSCSP) demonstration site in north-central Montana. Inset: Map of the 3 test areas (green) and flight paths
(magenta) at the demonstration site.
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The hyperspectral imaging system used for data-collection con-
sisted of an imaging spectrometer, a global positioning system/
inertial navigation system (GPS/INS), and a flight computer all
mounted on a custom-built aluminum plate and flown in a
single-engine Cessna Skyhawk. The imaging spectrometer (Pika II
from Resonon, Inc., Bozeman, MT, USA) had a spectral range of
425–925 nm, and was binned to provide 80 spectral channels with
6.39 nm spectral resolution. The GPS/INS (Micro INS, MIS-100-000
from Rockwell Collins, Cedar Rapids, IA, USA) provided 0.2� pitch
and roll accuracy. Hyperspectral data and GPS/INS data were trans-
ferred to a flight computer (PACAQ PC-104 from Resonon, Inc.,
Bozeman, MT, USA) for later retrieval. Flights, shown in magenta
in the inset of Fig. 1, were made 1220 m above ground level with
a 22.5� field of view lens on 06/21/2014, 06/24/2015, and
06/26/2016. Data was taken in a push broom configuration that
captured all spectral information in a single instant of time across
an entire line perpendicular to the flight direction. Each line cap-
tured 640 pixels over 485 m, providing a 0.75 m cross-track resolu-
tion. The number of passes was chosen so that, even with the
presence of slight turbulence, there would be an overlap between
adjacent swaths of 100–150 m. This allowed adjacent swaths to
be referenced to each other and guaranteed complete coverage of
the test area. For the area examined in this paper, Site C in Fig. 1,
four separate flight passes were flown with all data acquired from
east-to-west to reduce issues associated with different look angles,
which produced four swaths that needed to be combined/mo-
saicked to produce the final hyperspectral data.

Initial data processing was completed using a technique that
combined individual swaths to form a high-resolution multi-
swath radiometrically corrected image (McCann et al., 2017a).
Briefly, post-processing software (GeoReg Resonon, developed for
Resonon, Inc. by Space Computer Corporation (SCC), Los Angeles,
CA, USA) was used to geocorrect the imagery using vector tracing
algorithms. Then user input was necessary to geocorrect each indi-
vidual swath to a master 0.3 m orthoimage, yielding an accuracy of
less than 2 m RMSE per swath. This accuracy will be one of the lim-
iting factors when comparing data sets from multiple years and
could be improved with more advanced instrumentation or with
ground references if available. After this spatial processing,
swath-to-swath radiometric correction was performed so that
the individual swaths could be mosaicked together. Atmospheric
effects were removed using a simple atmospheric model before
being radiometrically referenced to the Provisional Landsat 8 Sur-
face Reflectance (LaSRC) data product to create a large-area high-
resolution radiometrically referenced hyperspectral image
(McCann et al., 2017a).

2.2. Field reference data

As with many restricted-access sites, information about specific
land use was limited. For this work restricted-access refers to the
need for permission from multiple land owners to access the site,
but could also refer to wilderness areas, military areas, or other
inaccessible land. The self-reported land use provided by landown-
ers is detailed in Fig. 2. Limited site access was obtained in 2015 for
fields 2 and 3. This was the only site access during the study years
and consisted of visual observations and photographs only.

Additionally, historical rainfall data was obtained for the area
from the National Resources Conservation Services (NRCS) for
Shelby, MT (Station 7500, 48�300N, 111�510W, elevation 1003 m)
located approximately 55 km from Site C. No other stations
that monitor rainfall and had data for this time period were
near the site.

2.3. Classification

Classification was performed using an unsupervised histogram
splitting classification method based on biophysically based
parameters (McCann et al., 2017b) on all three data sets. In this
method, each individual pixel is fit using a set of biophysically rel-
evant basis functions having 9 parameters associated with it. The
reduction from 80 spectral bands to 9 parameters provides data
reduction as well as noise reduction, but more importantly
re-expresses the data in a more physically meaningful way. The
biophysically relevant basis functions used consist of two distinct
functions, referred to as the red edge and the green peak, that



 Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8
2014 Fallow Barley Barley Fallow Barley Grassland Fallow* NR 

2015 Spring 
Wheat 

W: Fallow 
E: Barley 

Barley Spring 
Wheat 

Barley Grassland NR Fallow* 

2016 Fallow Barley Barley Fallow Field Peas Grassland NR NR 
*Determined based on visual examination, not used for analysis. 
NR is Not Reported by landowner, but containing some type of vegetation, not used for analysis. 

[ [ [ [ 800 m

Fig. 2. Map of Site C with field labels and corresponding table of land use as reported by the land owners for the 3 years under investigation.
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are summed to give the final modeled reflectance spectra. The
equations for the red edge basis function is

REðkHSÞ ¼ R2 � tan�1ððkHS � R3Þ � R4 � eðkHS�R3Þ2
R5 Þ

p
þ 1
2

2
4

3
5þ R1 ð1Þ

and defines the baseline reflectance in the visible, the location and
behavior of the red edge, and the strength of the near-IR reflectance.
The green peak basis function is

GPðkHSÞ ¼ G1 � G4 � eðG3�G4Þ2
2 �ðkHS�G2Þ�G4

� normcdf
kHS � G2

G3
� G3 � G4

� �
ð2Þ

and defines the characteristics of the green peak found in the visible
region. The parameters are described briefly in Table 1 in terms of
their meaning/effects.

Each data set has 9 parameters associated with each pixel, so
the classification was done on the full 27 parameters (9 parameters
per year for each of the 3 yearly data sets). During the classifica-
tion, a parameter is chosen and a histogram is generated for that
parameter. Certain parameters will exhibit peaks in the histogram
that can be easily separated forming into natural clusters. The
unsupervised classification scheme looks for a parameter with sep-
Table 1
Description of parameters associated with biophysically relevant basis functions used
in the fitting of the reflectance spectra of individual pixels.

Name Description

R1 Baseline in the visible portion of the spectra
R2 Difference between the visible baseline (R1) and the level of the near-

IR
R3 Location, in wavelength, of the inflection point of the arctan function,

and therefore the location of the red edge
R4 Steepness of the edge of the arctan function is in terms of reflectance

versus wavelength
R5 Changes the curvature of the arctan symmetrically near its minimum

and maximum
G1 Related to the total area of the green peak
G2 Location of the green peak in wavelength
G3 Width of the green peak
G4 Exponential modifier that gives rise to the ‘tail’ of the otherwise

Gaussian peak and causes a shift towards the red in the apparent
green peak location
arable peaks to do an initial split into clusters. Once this is done,
within each cluster parameters are examined until another param-
eter with separable peaks is found. This new parameter is used to
split the cluster into further subclusters. This process is repeated
multiple times generating a clustered image that does not possess
any further natural splittings and can be classified or analyzed as
desired (McCann et al., 2017b).

Specifically, this classification on the full set of 27 parameters
resulted in less than 10 dominant clusters and approximately
100 minor clusters. Dominant clusters are clusters that contain
more than 4% of the total area, minor clusters are the clusters that
contain less than 4% of the total area. This cutoff was determined
based on visual inspection of the sizes of individual clusters and
may differ for other areas. Dominant clusters were analyzed for
their behavior over the 3 data sets.
2.4. Single data set anomaly detection

Within a single data set it is possible to map local anomalies
based on how different the parameters for a given pixel are from
the surrounding pixels (Makki et al., 2017; Zhao et al., 2016). The
map of the anomalies is based on the number of Median Absolute
Deviations (MADs) for each parameter for a given pixel area sur-
rounding the center pixel being examined. The total MAD for each
pixel is the sum across all 9 parameters. MAD is defined as the
median of the absolute deviations from the median, or
MAD ¼ medianðjXi �medianðXÞjÞ, and is a robust measure of the
variability of a sample of quantitative univariate data (Howell,
2014; Leys et al., 2013). Determining the spatial extent for the area
in question was a compromise between including large areas,
thereby better representing the behavior of the local area, the pro-
cessing time required, and the relative change when moving to lar-
ger pixel area. For this work, the percent change between different
sized pixel areas was minimized at 41 � 41 pixels, as shown in the
upper right graph of Fig. 3. While the most appropriate pixel area
will depend on the spatial resolution of the data and the particular
ecological system being studied 41 � 41 pixels will be used for this
work. This choice of pixel area is further justified by the plots in
Fig. 3. The upper left graph of Fig. 3 shows a histogram of the total
MAD across all 9 parameters versus the percentage of occurrences
for different sized areas ranging from 11 � 11 to 61 � 61 pixels. As
the pixel area increases the change in the histograms decreases
relative to the next smallest size and the peaks shift towards



Fig. 3. a: Histogram of the total MAD across all 9 parameters at different sizes areas. b: Relative Change, in percent, between different Edge Sizes showing the small change at
41 � 41. c: Time (based on fitting a 501 � 501 pixel area on a 3 � 3 GHz processor) versus Edge Size showing the exponential increase with larger sizes. d–i each oriented
North-Up: Example area at different sizes areas: 11 � 11, 21 � 21, 31 � 31, 41 � 41, 51 � 51, and 61 � 61. Z-axis is total MADs, larger numbers are more anomalous in
relation to surrounding area.
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larger MADs. This diminishing return with larger areas coupled
with the upper right graph showing an exponential increase in
processing time as the area increases and the relative change
between different sizes being minimized at 41 � 41 pixels leads
to the choice of using the 41 � 41 pixel size to represent the local
area. Qualitatively this choice can be seen by looking at an area
believed to be the boundary to a region that only has water a por-
tion of the year. This area is shown in the plots in the middle and
lower rows of Fig. 3. Anomalous areas were visually well distin-
guished using the 41 � 41 pixel area as compared to smaller areas,
and as the area increased the difference in appearance compared to
the next smallest size was minimal.

The deviations, as noted by the high MADs (colors away from
blues towards yellow then red on the color bar), from the sur-
rounding may be due to different levels of stress within a plant
species, different species within the same area, different land use,
soil differences, and other possibilities as well. A CO2 leak would
manifest itself as a plant stress initially, especially in agricultural
land that are uniformly planted with a single plant species.
2.5. Multi-data set anomaly detection

With radiometrically referenced (or radiometrically calibrated)
data it is possible to track changes based on having knowledge of
the end members in an area (Lucas et al., 2007; Somers and
Asner, 2012, 2013) or past members (Feitosa et al., 2009). This type
of analysis only required radiometrically consistent data as it is not
strictly necessary to maintain the same end member library for
each set of data. This could be due to imperfect sensor calibration,
but more likely would be affected by the natural variation in the
reflectance spectra during various stages in its life cycle. This vari-
ation can be considered by determining the end members based on
the changes over the course of the entire data set (Hemissi et al.,
2013).

It is also quite common to utilize invariant sites for calibration
(Gevaert et al., 2015; Kerekes et al., 2006; Ong and Cudahy, 2002;
Zarco-Tejada et al., 2005). This method works well if the invariant
sites are distributed throughout the area and the illumination does
not change during data collection (such as form a passing cloud).
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To ensure invariant sites, access is required at multiple times
(ideally before each flight) to ensure that the sites are truly
invariant and not covered with dust, vegetation, or some other
contaminant that could change the spectra. Pseudo-invariant
targets remove much of this difficulty if available and properly
spatially distributed (Hadjimitsis et al., 2009).

The extension of looking at a single data set to multiple data
sets can be as simple as subtracting one map from another (Yuan
and Elvidge, 1996). If the spatial registration between the images
is good then the difference in the total MADs between the data sets
will be a measure of the increase/decrease of how anomalous a
pixel is in relation to the surrounding area. Large increases in the
MAD point to an area that has increased vegetation stress relative
to the surrounding area, which might be related to either a CO2

leak or some other localized environmental change. This is just
one simple means of utilizing the temporal component of the
hyperspectral data.
3. Results and discussion

3.1. Dominant cluster analysis

The histogram splitting method returned a cluster map of
approximately 250 clusters as seen in Fig. 4. With the limited field
reference data available, it is possible to broadly assign behaviors
to the clusters as shown in the table in Fig. 4. These behaviors
are indicative of the broad scale land use and could be used to
determine management areas.

Depending on the scientific question under investigation it may
be necessary to merge clusters either manually, using an auto-
mated algorithm, or by defining management areas. However, here
the choice has been made to look at the dominant clusters for the
large-scale behavior. This assumes that the dominant clusters are
representative of the large-scale behavior of the landscape. This
conjecture is based on Fig. 5 that shows the relative percentage
of the total area of each cluster. There are 6 clusters that encom-
pass approximately 64% of the study area and are shown in
Fig. 6. These dominant clusters could also be used as training data
for a supervised classification method as well.

Examination of each dominant cluster gives the spectral plots in
Fig. 7. Plots 7a and 7b are produced from the biophysically relevant
parameters used to fit the spectra of each pixel and therefore show
the noise reduction achieved by using basis functions. Plots 7c and
Year Dark Red Light Red Yello
2014 Fallow Fallow Ra
2015 Planted Planted Ra
2016 Fallow Planted Ra

Fig. 4. Histogram based classification using 3 years of biophysical parameters as inpu
Table shows roughly how color corresponds with land use over the three years.
7d are shown for comparison and contain the original 80 spectral
bands. Focusing in on cluster 2, and looking at the spatial location
it can be seen that they are located primarily in the field labeled 5
in Fig. 3. This field was reported to contain Barley in 2014, Barley
again in 2015, and Yellow Field Peas in 2016. If environmental con-
ditions were the same it would be expected that the spectra from
2014 (solid lines) and 2015 (dotted lines) would be very similar,
but this is not the case. The spectra in 2015 is higher in the visible,
and slightly lower in the near-IR. This type of change is a common
indicator of plant stress (Carter et al., 1992; Carter and Young,
1993; Carter and Knapp, 2001; Chapin, 1991). Upon examination
of the historical rainfall for this area there is evidence that 2015
was a dry year as compared to 2014, as shown in Fig. 8. This lack
of moisture could be the cause of this stress. However, the grass-
land, area 6 and cluster 3, do not show this relative stress between
2014 and 2015, and in fact are very uniform through all three
years. Since the field was not allowed a fallow year between plant-
ings this relative stress could be due to depleted soil nutrients, or it
could simply be due to grasslands being better suited for the envi-
ronment and being less affected by the dry year.
3.2. Single data set anomaly map

A map of suspected anomalies for a single data set, taken in
2015, is shown in Fig. 9. Gullies are observed as anomalies in the
otherwise uniform grassland as they contain vegetation that is
greener than the surrounding native grasses as well as water, as
seen in Fig. 10 (Left). Also, the rows between the fallow planting
rows appear as anomalies, most likely due to residual vegetation
that was not tilled when the field was left fallow for the year, as
qualitatively identified in the hyperspectral data. The final area
to point out is on the east edge, field 3, where barley has been
planted contained a saline seep that made growing conditions less
than ideal in the surrounding area. Field 3 had large weeded areas
throughout, Fig. 10 (Middle), and stunted vegetation, Fig. 10
(Right), which were observed as anomalies in Fig. 9.

There are three areas that are worth noting specifically in this
anomaly map. The first is a location of an oil well (API
#25101072270000) (Wells Search, 2017) with the surrounding soil
being barren shown in Fig. 11 (Left). The second area is located
near the oil well and is where when the field was being seeded
the seeder stopped before the edge either due to running out of
seed or from a slight GPS misalignment. This area seen in Fig. 11
w/Orange Light Blue Dark Blue
ngeland Planted Planted 
ngeland Fallow Planted 
ngeland Planted Planted 

ts for a total of 27 parameters, vertical color bar corresponds to cluster number.



Fig. 5. Relative percentage of individual clusters, here 6 clusters make up approximately 64% of the study area, and if numerically similar classes are included approximately
68% of the study area is included.

Fig. 6. Dominant clusters. Most of the clusters are constrained to field boundaries and appear to be representative of the large-scale behavior of areas noted in Fig. 3.
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(Left) is of the same scale as the local area under consideration
(41 � 41 pixels) and shows up as a barbell shape. The third area
was mentioned previously and consisted of numerous weed
patches in a barley field (southern portion of Field 2) and also a
nearby saline seep shown in Fig. 11 (Right) qualitatively identified
during the limited site access to this area.

The oil well is expected to be a persistent anomaly that will
appear in every data set. The nearby area that was missed when
seeding should be an anomaly that is only present for a single
growing season. The size of the saline seep may change depending
on the rainfall for the season though the location will be fixed.
Finally, the weeded areas are expected to vary in size from year
to year if the field is not sprayed, and if sprayed there may be other
patches in different areas.

While a single data set can detect local anomalies, some that
can be positively identified, a single data set has limited utility
because many of the anomalies will be present in multiple data
sets. However, with radiometrically referenced data it is possible
to examine multiple data sets to remove these persistent local
anomalies and focus solely on new local anomalies that may result
from the CO2 leak. With enough temporal resolution, easily obtain-
able with this type of flight-based system, it would be possible to
focus solely on temporal anomalies, but since this work consisted
of data separated by one year the focus was on spatial anomalies.

3.3. Single data set accuracy assessment

To evaluate the accuracy of the technique, a small sample area
was chosen with features that could be identified as anomalies.
The MAD technique was compared to these anomalies to
determine the accuracy of determining these anomalies as well
as the amount of areas that were found that are not considered
anomalies. Fig. 12a shows a 500 � 500 m area of state land consist-
ing primarily of grasses with small bushes and rock outcrops
throughout. These bushes are labeled as anomalies along with
shallow gully features and boundaries of seasonal ponds. Fig. 12b
shows the accuracy of the MAD method in finding the anomalies
in 12a as well as the percent of the anomalies found by the MAD
method that are not considered anomalies in 12a. From Fig. 12b
it can be determined that a value of around 15–35 MADs can locate
anomalies with a 50–70% accuracy, though at the expense of over
finding anomalies by approximately 70%. Most of the anomalies
that were missed by the MAD technique were around the areas
of dense anomalies such as the upper right portion of Fig. 12a.
The MAD technique does not see these areas as spatially anoma-
lous since they are larger than the pixel area being investigated.
Over found areas can be attributed to extending beyond the
boundaries of the anomalies in Fig. 12a. Finally, looking at
Fig. 12d there is evidence that MAD values below 30 are primarily
background and above the values are the anomalies. Using this
values of 30 as the cutoff for classifying a pixel as anomalous is
an appropriate choice for this data set, though for other systems
the value will be different.

3.4. Multi-data set anomaly map

One of the most basic approaches in comparing data sets is to
take the difference between the individual anomaly maps. This
generates a map that shows how much a given area has changed
relative to its surrounding area. This is particularly useful for



Fig. 7. Mean reflectance spectra of parameters, (a and b), and spectral bands, (c and d), for selected dominant clusters based on biophysical parameters, colors correspond to
the same areas in Fig. 6. Data is offset by 30% for clusters 3 and 6 for clarity.

Fig. 8. Historical Monthly Rainfall for Shelby, MT obtained from the NRCS.
Precipitation data marked with asterisk are when hyperspectral data was obtained
at the end of June. 2015 had markedly less rainfall than 2014.
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agricultural areas where the land cover changes dramatically from
one year to the next or between plantings during a single growing
season. Areas that are more anomalous, either because they are
new or because they have become even more different from their
local environment, can be considered as new anomalies. A small
subset of this type of map is shown in Fig. 13 where for better visu-
alization a cutoff of 10 MADs is imposed and anomalies smaller
than 50 m2 have been removed. This means that areas in red are
more than 10 MADs different in 2016 than in 2015. The opposite
is true of regions in green, they were more different in 2015 than
in 2016. Finally, black are regions are not different enough between
the data sets to appear as anomalies.

There are some weaknesses to this approach such as the road
that shows up as an anomaly when it runs between two planted
fields, but not when only one of the fields is planted. This type of
anomaly would be improved as more data are analyzed or if known
areas such as roads and buildings were masked out before analysis.
Similarly, anomalies between planting rows (or fallow rows) in the
field in the lower left are seen due to the farmer consistently plant-
ing in the same rows. Edges of these rows are consistently fallow
(or sparsely vegetated) as compared to between the rows being
vegetated so depending on whether the fields are planted these
edges may or may not show up as anomalous.

Looking specifically at the positively identified anomalies
described previously, namely the oil well, the unseeded region,
the saline seep, and the numerous weed patches, as test cases for
the technique a number of conclusions can be drawn. On initial
examination, the location of the oil well appears to have grown
and moved as evidenced by the green and red crescent shapes in
Fig. 13. If the area grew or shrank there would be a single colored
circular shape, and if were purely movement (such as imperfect
spatial registration) the crescents would be the same size. This
apparent change in size can be attributed to in 2015 the barren
area was compared to a barley field that had a young crop present
so many of the individual pixels still contained a strong signal from
the soil that would make the area less different than the surround-
ing as compared to 2016 when it is compared to a lush pea crop.



Gaps between fallow rows 
still contain vegetation.

System of gullies in an otherwise 
uniform untended grassland.  Water 
and healthy green vegetation are 
anomalous amidst the grassland 

Poorly managed agricultural 
area having large weed clusters 
and stunted crop growth 
throughout. 

Fig. 9. Anomaly map for data taken in 2015. Vertical color scale corresponds to the number of median absolute deviations a pixel is from the median of the surrounding
41 � 41 pixel region, summed over all 9 biophysical parameters. Larger numbers are more likely to be anomalies.

Fig. 10. Photographs of areas seen as anomalies in Fig. 9. a: Gullies and surrounding grassland showing greener vegetation near the water at the bottom of the gullies. b: An
example patch of weeds located in Field 3. c: Stunted crops and sporadic vegetation throughout Field 3.

Weed PatchesSaline SeepOil wellUnseeded

a. b. 

Fig. 11. Examples of identifiable anomalous areas in 2015 data. Red/orange areas are more anomalous than blue/black areas. a: An oil well causing barren soil around it and
an unseeded region are both anomalous in an otherwise uniformly planted barley field. b: A barley field with a saline seep and numerous weed patches throughout.

C. McCann et al. / ISPRS Journal of Photogrammetry and Remote Sensing 131 (2017) 121–133 129
The unseeded region near the oil well is seen to disappear
(shown as green in Fig. 13) with the exception of a small area in
the center that appeared in the 2016 data (shown in red). This area
can also be identified as a much smaller unseeded area. This
appearance is again related to comparing a fallow area against a
lush green crop; however, it also shows a weakness to simply
examining the difference between data sets.

An alternative means of displaying and working with the data is
to define an anomaly cutoff for each data set individually. The
working definition was that any pixel with a total MAD greater



Fig. 12. 500 � 500 m area of state land consisting primarily of grasses with small bushes and rock outcrops throughout. These bushes and rocks outcrops are labeled as
anomalies in 12a along with shallow gully features and boundaries of seasonal ponds. Anomalies are visualized as: red, areas higher in the visible; green, areas higher in the
green region; and blue, shifted red edge. 12b shows the accuracy of the MADmethod in finding the anomalies in 12a as well as the percent of the anomalies found by the MAD
method that are not considered anomalies in 12a. 12c shows the number of MADs each individual pixel varies from its 41 � 41 surrounding pixel area. 12d is a histogram of
occurrences of MAD values shown in 12c.

Road is considered anomalous in 2016 
(red) as it is now between two 
vegetated areas 

Edges of planting rows are consistently fallow 
(or sparsely vegetated) as compared to 
between the rows being vegetated.  Depending 
on whether the fields are planted these edges 
may or may not show up as anomalies. 

Unknown anomalous regions may 
warrant investigation as to why they 
have appeared (red) or disappeared 
(green). 

Fallow region around oil 
well that grew and shifted. 

Fig. 13. Anomaly change map from 2015 and 2016. Persistent features whose local environment changes, such as the road, are seen as anomalies but there are large areas
that do not have simple explanations.
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Fig. 14. Display of anomalies determined from individual data sets. Red are anomalies only seen in 2015 data, green only in 2016, and blue are anomalies seen in both sets of
data.

Fig. 15. Example of developed area (a farmhouse and outbuildings). 15a is an anomaly map from 2015 (like Fig. 11). 15b is an image taken from Google Earth. 15c is like
Fig. 14 showing areas which were anomalous in 2015 (red), 2016 (green), and both (blue). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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than 20 was considered anomalous (this corresponds to twice the
mean MAD across the entire image). In Fig. 14, red areas are
anomalies in the 2015 as seen earlier, green areas are anomalies
in the 2016 data set, and blue are areas that were anomalous in
both years. By displaying the data this way, it is easier to see
how the spatial extent of the oil well appears to have changed,
but more so it shows the anomalies due to unseeded regions more
clearly. Displaying the data in in this way also shows how persis-
tent anomalies may be subtly changing and the effects of spatial
registration.

One final qualitative example of the technique as applied to
manmade structures is shown in Fig. 15. While the data
collection was focused on agricultural areas one homestead
was present near the edges of the collection area and serves
as an example of detecting manmade structures. Further opti-
mization would need to be done urban environment including
a different pixel area as it was not necessarily optimized for
determining buildings. Despite this shortcoming, most of the
buildings on the farm were detected as anomalies as seen
when comparing 15a (anomaly map) to 15b (Google Earth
image). The smaller buildings are detected as being more
anomalous due to the pixel area used. Furthermore, the build-
ings were detected as anomalies near the trees and the trees
were detected as anomalies as well. Unfortunately, the data
from 2016 had gaps due to camera recording errors that
caused calibration issues that in turn contributed to the regions
near the left side of the image to not have anomalies detected.
Fig.15c shows agreement between the years is excellent in the
center of the image, but has disagreement due to spatial
registration on the road on the right and as mentioned the left
side had issues with anomaly detection in the 2016 data. Even
with these deficiencies this shows the potential of the
technique in urban environments.
4. Conclusions

An inexpensive hyperspectral system that can be flown on small
aircraft at variable intervals allows for collection of mesoscale
radiometrically referenced data even over area with no access to
place spatial/spectral reference targets. These data can be used to
answer a wide range of scientific questions, but this study was cen-
tered on the idea of extending the idea of detecting anomalies that
can be associated with vegetation stress as a means of detecting a
CO2 leak from a sequestration site. Despite there being no CO2 leak
present, controlled or otherwise, it was possible to use the hyper-
spectral data to detect local anomalies within a single data set as
well as to compare multiple data sets to remove persistent anoma-
lies and detect new anomalies. While the cause of these anomalies
could not be investigated, some can be explained with knowledge
of the area obtained from aerial/satellite imagery and show the
potential of the technique. Using aerial/satellite imagery as a
means of verification the MAD technique found between 50–70%
of the anomalies, with the largest source of error being related to
large anomalous areas in the aerial/satellite imagery not being con-
sidered anomalies by the MAD technique.

Both the MAD based anomaly detection technique and the his-
togram based classification technique are examples of techniques
that are improved with radiometrically referenced data. These
tools can be used to further work based on as series of measure-
ments over a period of time, and the use of radiometrically refer-
enced data allows for quantitative comparison between data sets
that might not otherwise be possible for land coverage/usage
change, or disease spread, or monitoring urban expansion, etc.
Over shorter time periods having radiometrically referenced data
allows for more rigorous crop monitoring or effects of mesoscale
environmental differences on plant growth, and many other
applications.
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