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Abstract. Remotely sensed imagery is commonly used to map and monitor large land areas
based on the ability to detect vegetation stress. Many sensors are available, including both
hyper- and multispectral, but have varying costs, convenience, and characteristics. There
were two objectives in this study: (1) to compare a hyperspectral sensor to two multispectral
sensors with regards to each sensor’s ability to detect vegetation stress indicators in the visible,
red edge, near-infrared, and shortwave infrared portions of the spectrum and (2) to determine the
ability of coarser-resolution sensors to detect stress indicators in areas, where a finer resolution
sensor detected stress indicators. Pairwise agreements between the sensors were ∼80% in each
case, but much of this agreement was a function of agreement where stress indicators were
absent. Spatial sensitivity analysis supported a conclusion that coarser-resolution sensors were
consistently able to detect stress indicators in areas much smaller than their pixel size. © 2017
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.11.046025]
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1 Introduction

1.1 Relative Stress and Remote Sensing

Plants, even if productive, are not generally growing under optimal conditions, because they are
exposed to various stressors. Common stressors include water availability, low key nutrient
levels, pathogens, and toxins. The stressors can vary, even over small distances and small
amounts of time, such that, from a management perspective, relative stress is most relevant.1

In other words, it is important to consider that two plants in close proximity and exposed to
generally similar conditions might be presenting different levels of stress, so that management
prescriptions might focus on locations exhibiting higher levels of stress, since all vegetation
might theoretically be stressed at some level.

Monitoring the relative stress of plants in a particular area over time can provide important
information about a large landscape. Mapping transient and persistent areas of relative stress and
recognizing where changes in both are occurring can be a way to determine how the landscape is
changing over time. Changes in areas where persistent relative stress is located might highlight
certain issues that a land manager can then address to increase productivity, or alternatively,
might indicate areas where site conditions are inherently limiting. Alternatively, locations
exhibiting abrupt increases in stress might provide information related to changes in conditions
that require more immediate attention.
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Remote sensing, for decades, has been used to map vegetation stress over large land areas.
It has been used in below-ground carbon dioxide leak detection,2 nitrogen and water stress
monitoring,3 plant response to heavy metal toxicity,4 mapping tree mortality,5 and pipeline
monitoring,6 to name a few. Vegetation stress mapping has traditionally been conducted either
using a supervised or unsupervised classification with the use of ground or airborne-based
reference data. Given real-world limitations such as timing, inadequate resources, or limited
access, however, obtaining reference data is not always feasible. Vegetation in areas with no
reference data can still be mapped and monitored, however, based on the concept of relative
stress. There are physiological differences between healthy and stressed vegetation, and these
differences manifest themselves in the spectral response of plants.

1.2 Physiological Sources of Reflectance Changes

Vegetation has generally been said to respond in the same way spectrally regardless of the source
of environmental stress.7–9 These changes can be detected remotely as early as 16 days before
visible signs of stress are detectable,7,10,11 making it a useful monitoring tool. Physiological
changes in vegetation due to stress result in specific changes in the visible, red edge, near-
infrared (NIR), and shortwave infrared (SWIR) portions of the spectrum.

Leaf pigments are the primary absorbers of light in plants in the visible portion of the spec-
trum, from 400 to 700 nm.8,12 Chlorophyll is the key absorber, but carotenoids, xanthophylls,
and anthocyanins also have an absorptive effect.12 Stress causes a reduction in leaf pigments
either due to stress-induced pigment deterioration or impairment in pigment biosynthetic
pathways.13 This reduction, therefore, results in an increase in visible reflectance (Table 1).

The NIR portion of the spectrum, 750 to 1000 nm, experiences a decrease in reflectance due
to stress because of changes in the internal structure of plant cells.12,14 NIR reflectance is high in
healthy vegetation because of the intercellular spaces and internal scattering caused by cell walls.
Cell walls begin to collapse and mesophyll cells shrink as stress increases, resulting in less
intercellular space and cellular surface area and a decrease in NIR reflectance15 (Table 1).

The red edge, 680 to 740 nm, reflectance response to vegetation is a result of the sharp
increase in reflectance between the low red reflectance, due to chlorophyll absorption, and
the high NIR reflectance caused by internal leaf scattering.16 An increase in the reflectance in
red edge wavelengths is an early indicator of stressed vegetation17–19 (Table 1).

Water generally absorbs strongly in the SWIR portion of the spectrum, 1000 to 2500 nm.20

Leaf water content generally decreases as vegetation stress increases. Stressed vegetation,
therefore, has a higher SWIR reflectance than healthy vegetation15 (Table 1).

This information (Table 1) allows for the creation of stressed vegetation indicator maps by
locating anomalies in any of the aforementioned spectral regions. It is expected that vegetation
located in a similar area, i.e., having similar soil and climate, that is also managed similarly, will
have a similar spectral response; although, within a management area, species or other variability
are likely to still exist as confounding factors. A pixel that is exhibiting a spectral response that is
outside a predetermined range for a pixel in close proximity and with the same management

Table 1 Summary of the stress rules that are the basis of our spectral analyses herein.

Spectrum
portion Stress rule

Reflectance
response Physiological source

Visible vis-rule Increased
reflectance

Reduction of photosynthetic pigments, the main source of
absorption in this portion of the spectrum

NIR NIR-rule Decreased
reflectance

Collapse of cell walls and shrinkage of mesophyll cells—
resulting in less intercellular space and cellular surface area

Red edge edge-rule Increased
reflectance

Change in the visible reflectance, due to chlorophyll absorption,
and the NIR reflectance, due to internal leaf scattering

SWIR SWIR-rule Increased
reflectance

Decrease in leaf water content
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practices can be defined as an anomaly and potential area of stress that might warrant further
investigation.21 One example of a circumstance, and the driver of this study, where mapping
the relative stress of an area using remote sensing could be a valuable tool is in monitoring
geologic carbon sequestration areas by mapping indicators of vegetation stress. Carbon seques-
tration areas are often quite large, have access issues due to multiple landowners, and are
necessary to monitor because of the importance of detecting a leak quickly and efficiently.

1.3 Sensors Used in this Study

A variety of remote sensing instruments and data products are available with a wide range of
spatial and spectral characteristics. Determining which remote sensing instrument or data
product to use is based on the desired remote sensing application, availability, and cost of
data acquisition. The overarching goal of this study was to compare the agreement in detecting
vegetation stress indicators between three sensors with varying characteristics. The indicators are
based on decades of remote sensing research determining the spectral differences between
healthy and stressed vegetation. They are not necessarily determinative of vegetation stress
(i.e., a spectral indicator of stress does not guarantee the existence of stressed vegetation) but
might be indicative of areas that warrant further investigation in a monitoring scheme.

The sensors that were used in this study included the operational land imager (OLI)
aboard the Landsat 8 satellite,22 the multispectral sensor aboard RapidEye (Satellite Imagine
Corporation, Houston, Texas), and a commercial flight-based hyperspectral sensor (Pika II
from Resonon, Inc., Bozeman, Montana). These sensors have many differing characteristics
and represent, in many cases, the range of capabilities available in airborne and space-borne
sensors for moderate- to fine-scale vegetation monitoring.

Landsat 8 is a satellite that has been in orbit since 2014 and carries the OLI with nine bands
ranging from the visible to the SWIR (Landsat 8’s Thermal Infrared Sensor was not used for
this study). It has 30-m spectral resolution and a return interval of 16 days. The images are
available free of charge through the United States Geological Survey (USGS) Landsat archive
(earthexplorer.usgs.gov) (Table 2).

The RapidEye constellation of satellites is owned by the Blackbridge Group. It is a multi-
spectral sensor with 5-m spatial resolution and five bands ranging from the visible to the NIR.
It has a red edge band that is specifically designed for vegetation characterization. RapidEye has
an off-nadir daily revisit time and a 5.5 day at nadir revisit time. The images can be purchased
from the Blackbridge Group. Cost varies depending on numerous factors; the imagery acquired
for this study cost $3605 (Table 2).

The Pika sensor is a hyperspectral sensor sold by Resonon Inc.27 It has 80 bands ranging
from the visible to the NIR and a spatial resolution that varies depending on flight altitude
(1 m for this study). The instrument is mounted in a plane and flown over the area of interest,
which allows for a flexible revisit time (Table 2).

1.4 Study Objectives

The overarching objective of this study was to evaluate the extent to which these vastly different
sensors might agree or disagree in their detection of indicators of vegetation stress. Based on the
literature reviewed above, stressed vegetation should exhibit one or more indicators listed in
Table 1, and therefore, indicators of stress from these very different sensors should agree in
terms of spatial location and distribution. Failure of these sensors to so agree would indicate
that the choice of sensor might be critical for monitoring vegetation stress for either research
or operational purposes. We took two approaches to evaluating the level of this agreement or
disagreement. The first was to compare the agreement between these three sensors in their ability
to detect spectral indicators of vegetation stress. It is important to understand, given their differ-
ent characteristics, how well they detect stress compared to each other so that decisions can be
made regarding, which is most appropriate in individual monitoring schemes. The second objec-
tive was to analyze the spatial sensitivity of the lower-resolution sensors as compared to the
higher-resolution sensors. This analysis might assist in determining, if a given area threshold
is relevant for a manager, whether coarser-resolution imagery might be adequate for the
given application. For example, if Landsat consistently detected a stress indicator when only
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Table 2 Overview of the three sensors used in this study.

Characteristic Landsata RapidEyeb Pikac

Spatial
resolution (m)

30 5 1

Spectral range Visible: Visible: 425 to 925 nm

Coastal blue: 430 to 450 nm Blue: 440 to 510 nm

Blue: 450 to 510 nm Green: 520 to 590 nm

Green: 530 to 590 nm Red: 630 to 685 nm

Red: 640 to 670 nm Red edge: 690 to 730 nm

NIR: NIR:

850 to 880 nm 760 to 850 nm

SWIR:

1570 to 1650 nm

2110 to 2290 nm

Panchromatic:

500 to 680 nm

Cirrus:

1360 to 1380 nm

Thermal:

10,600 to 11,190 nm

11,500 to 12,510 nm

Applicable
rules

vis-rule vis-rule vis-rule

NIR-rule edge-rule edge-rule

SWIR-rule NIR-rule NIR-rule

Spectral
resolution

11 bands 5 bands 80 bands

Revisit time 16 days Daily (off-nadir) Variable, flights are
scheduled by user

5.5 days (at nadir)

Cost Free Order images Cost of sensor and
additional costs for

flightsCosts vary

Signal-to-noise
ratio (SNR)

150 to 360 (range) 50 to 150 (range)23 198 (max)

Quantization
(bit)

12 12 12

aDepartment of the Interior, Landsat 8 (L8) Data Users Handbook (2016).24
bSatellite Imaging Corporation25 (except signal-to-noise).
cResonon.26
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100 of 900 of the Pika pixels within that Landsat pixel detected a stress indicator, then Landsat
might be able to detect stress indicators at a scale of 100 m2, rather than 900 m2.

2 Methods

2.1 Study Area

The study area for this work is located in northcentral Montana at the big sky carbon seques-
tration partnership site28 located ∼24 km north of Shelby, Montana (Fig. 1). There are three
separate study sites within the larger study area. The larger study site is used primarily for non-
irrigated row crops, growing wheat and barley, unmanaged grass/shrubland, and small areas used
for domestic purposes. None of the domestic areas are located within our three study areas.

2.2 Image Acquisition

Five images were used in this study. The Landsat image, acquired July 12, 2014, was obtained
from the USGS Landsat archive and encompasses all three study sites. This image was chosen
because it is devoid of clouds and was near the date of the hyperspectral flight. The RapidEye
image, from June 18, 2014, was purchased through Apollo Mapping of Boulder, Colorado,
pursuant to a task order for our study location and also encompasses all three study sites.
The hyperspectral flight occurred on June 20, 2014, and resulted in three images. A Pika II
hyperspectral sensor was mounted into a viewhole in the fuselage of a single engine Cessna
Skyhawk airplane, which was flown at 1200 m over the study area and resulted in 1-m pixel
sizes. The original images were radiometrically referenced to one another and mosaicked to
produce three radiometrically consistent hyperspectral images.29

2.3 Analysis

The objective of this study was to compare the number of stress indicators present in each pixel
in similarly managed areas across all three sensors. A set of stress indicator rules was developed
based on the known physiological differences between healthy and stressed vegetation (Table 1).
Images were then subset by management regime and evaluated based on these stress indica-
tor rules.

Each of the three study sites contained seeded, fallow, and unmanaged areas. We would
expect vegetation within each of these management regimes to have similar spectral responses.
We, therefore, cropped each of the Landsat, RapidEye, and Pika images based on these

Fig. 1 Study site in northern Montana with the flight paths for the hyperspectral images. The three
separate study sites within the larger study area are outlined in green.
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management practices by creating a false color Pika image and visually interpreting where each
use was being practiced throughout the study area (Fig. 2). We created shapefiles, buffering
the edges to avoid mixed pixels, for each management practice in each of the three study
areas. This resulted in nine separate images per sensor, 27 total, to be used in this study.

The goal, once management areas were defined, was to detect areas that were spectrally
consistent with signs of stressed vegetation based on stress indicators (Table 1). An anomaly
was defined as being a certain standard deviation from the mean for a given management
area within an image. A high anomaly in any of the visible bands would be considered a stress
indicator. We generated images at 1, 1.5, and 2 standard deviations from the mean (Fig. 3). Visual
interpretation was used to determine that 1.5 standard deviations was an appropriate value to
define an anomaly for the goals of this study. A standard deviation of 1.5 is neither over- nor
under-inclusive of vegetation outside the norm for a study area with similar vegetation, as seen
previously.21 The standard deviation can be altered based on individual management goals that
might require more or less inclusiveness.

We formulated a set of stress indication rules (Table 1) based on the aforementioned research
documenting vegetation’s spectral response to stress. A stress indicator was defined as a high
visible anomaly (vis-rule), a low NIR anomaly (NIR-rule), a high red edge anomaly (edge-rule),
or a high SWIR anomaly (SWIR-rule). A map of relative stress within management zones using
these stress indicators was created for each of the 27 images. We reclassified each pixel based on
the number of stress indicators that were detected.

Fig. 3 Landsat NIR anomaly maps of the cropped management zone of the southernmost portion
of the study area. High anomalies are displayed in red, and low anomalies are displayed in yellow.
(a) Anomalies 1 standard deviation above or below the mean. (b) Anomalies 1.5 standard devia-
tions above or below the mean. (c) Anomalies 2 standard deviations above or below the mean.

Fig. 2 The hyperspectral image used to determine appropriate management areas, displayed in
as a standard false color composite. Interpretation followed three general guidelines: (1) seeded
areas appear as relatively uniform red (e.g., lower left red strips and middle left block), (2) fallow
areas appear as uniform cyan (e.g., upper left) or, in areas where there is strip cropping, greenish
areas between seeded, red strips (e.g., lower left green strips), and (3) the unmanaged areas are
those appearing as nonstripped, nonuniform colors (e.g., upper right area of mixed red, cyan, and
blue).
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2.3.1 Agreement analysis

We had two avenues of analysis in this study. The first was to evaluate the absolute agreement
between the sensors based on whether the coarser spatial resolution image showed the same
number of stress indicators as the finer spatial resolution image in each pixel (i.e., if a
Landsat pixel exhibited three stress indicators and any RapidEye pixel within the Landsat
pixel also exhibited three stress indicators, the sensors were judged to be in agreement for
the location occupied by the Landsat pixel). The output for this analysis was a series of tables.
These tables compared overall agreement between two sensors (i.e., where there was full agree-
ment as in the example above) and also where the sensors showed a different numbers of stress
indicators (e.g., where the Landsat pixel exhibited three stress indicators but no RapidEye pixel
within the Landsat pixel exhibited more than two stress indicators). This analysis demonstrated,
across scales, the relative spatial agreement of the sensors to detect spectral indicators of
vegetation stress.

2.3.2 Spatial sensitivity analysis

The second avenue of analysis was a sensitivity analysis to determine how many pixels where
stress indicators were detected in the higher spatial resolution image were contained within each
pixel of the coarser spatial resolution image. For each coarser spatial resolution pixel showing at
least one stress indicator, the number of finer resolution pixels contained within that pixel also
detecting at least one stress indicator was calculated. We then generated a histogram showing,
within the coarser-scale pixel detecting at least one stress indicator, the area occupied by finer-
scale pixels detecting at least one stress indicator. This analysis provided an indication of the
coarser-resolution imagery’s ability to detect subpixel indicators of stress that were detected by
the finer-resolution imagery.

3 Results

The general spatial distribution of stress indicators, including the number of stress indicators,
was similar for all sensors, based on a qualitative visual inspection of the results (Fig. 4). In this
image of the seeded portion of the northernmost study area, the pocket of stress in the southeast
corner exhibits the highest concentration of stress indicators for all three sensors, as do patterns
associated with strip cropping in the western portion of the images. As spatial resolution
increased, however, there was an increase in the detection of small areas containing stress indica-
tors that were not observed at coarser resolutions. This detection of smaller areas exhibiting signs
of stress is noticeable throughout the entire Pika/RapidEye images, but especially in the fields in
the western portion of the image when compared to the Landsat image.

Fig. 4 Stress indicator maps of seeded field from (a) Landsat, (b) RapidEye, and (c) Pika sensors.
Green areas indicate areas with no stress indicators present, yellow areas are instances of one
stress indicator, orange areas are instances of two stress indicators, and red areas are instances
of three stress indicators.
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3.1 Agreement Analysis

The culmination of the agreement analysis was a set of tables (Tables 3, 4, and 5) comparing the
overall agreement between the sensors and also the agreement between the number of stress
indicators in each pixel. The overall agreement between each sensor comparison is shown at
the bottom of this table. This number indicates the percentage of pixels in the images that
detected the same number of stress indicators, ranging between zero (no anomalies) to three.
Using Table 3 as an example, the tables should be read in the following way: The “% RapidEye
agrees with Landsat” column indicates, for one Landsat pixel, how often RapidEye detected the
same number of stress indicators as Landsat. For example, 50.17% of the pixels where Landsat
detected two stress indicators, RapidEye also detected two stress indicators. This number was
calculated by dividing the number of pixels in agreement (9555) by the total number of pixels in
which Landsat detected two stress indicators (19,047). The “% Landsat agrees with RapidEye”
row is read in a similar manner. It determines, where RapidEye detects a certain number of stress
indicators, how often Landsat detects the same number of stress indicators. Therefore, 40.58% of

Table 3 Agreement analysis, based on the number of stress indicators detected (0, 1, 2, or 3),
between Landsat and RapidEye sensors.

RapidEye % RapidEye
agrees with
Landsat0 1 2 3 Total

Landsat 0 504,854 19,866 8535 670 533,925 94.56

1 16,249 7561 4298 270 28,378 26.64

2 5679 2798 9555 1015 19,047 50.17

3 456 272 1160 1433 3321 43.15

Total 527,238 30,497 23,548 3388

% Landsat agrees
with RapidEye

95.75 24.79 40.58 42.30

% Landsat and
RapidEye agree
overall

89.52 Kappa 0.39

Table 4 Agreement analysis, based on the number of stress indicators detected, between
RapidEye and Pika sensors.

Pika

% Pika agrees
with RapidEye0 1 2 3 Total

RapidEye 0 10,979,028 176,0129 510,299 19,217 13,268,673 82.74

1 503,899 203,565 69,827 2499 779,790 26.11

2 302,051 114,697 151,125 4911 572,784 26.38

3 32,514 2448 23,299 3333 61,594 5.41

Total 11,817,492 208,0839 754,550 29,960

% RapidEye
agrees with Pika

92.90 9.78 20.03 11.12

% RapidEye and
Pika agree overall

77.21 Kappa 0.13
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the pixels where RapidEye detected two stress indicators, Landsat did as well. Again, this
number is calculated by dividing the number of times both RapidEye and Landsat detected
two stress indicators (9555) by the total number of pixels where RapidEye detected two stress
indicators (23,548). This same analysis was done for Tables 3 and 4 as well.

The overall agreement, calculated by determining the number of pixels that were in agree-
ment and dividing that by the total number of pixels in the image, was highest in the Landsat/
RapidEye comparison (89.52%) (Table 3) but was still relatively high for the Landsat/Pika com-
parison (78.61%) and the RapidEye/Pika comparison (77.21%). Most of the agreement can be
attributed to areas where no stress indicators were detected in either sensor. In the RapidEye/
Landsat comparison, 94.56% of the pixels where Landsat did not detect any stress indicators,
RapidEye did not either, and 95.75% of the pixels where RapidEye detected no stress indicators,
Landsat did not either (Table 3). Agreement percentages decreased drastically for pixels where at
least one stress indicator was detected. In the same RapidEye/Landsat comparison, less than
half (40.58%) of the pixels where RapidEye detected two stress indicators did Landsat also
detect two stress indicators and in only 12.09% of the pixels where Landsat detected two stress
indicators did RapidEye also detect two indicators (Table 3).

The agreement in areas where both RapidEye and Landsat sensors detected all three stress
indicators was 43.15% and 42.30%, respectively, but it was quite low in the other instances. The
opposite is true in the Pika/RapidEye comparison (Table 4). Agreement percentage declined as
one sensor detected a larger number of stress indicators. Where RapidEye detected all three
stress indicators, Pika only detected three indicators in 5.41% of those pixels. The Landsat/
Pika sensors also showed low agreement in pixels where one sensor detected all three stress
indicators (7.03% of the pixels where Landsat detected all three stress indicators) but agreed
more frequently where one or two indicators were detected (31.79% where Landsat detected
one stress indicator) (Table 5).

We further explored graphically (Fig. 5) the level of agreement/disagreement among the sen-
sors where the coarser-resolution sensor detected no stress indicators, since these pixels were
driving the overall agreement results. This graph shows that when a coarser-resolution sensor
detected no stress indicators within a pixel, the majority of the time the finer resolution sensor
also detected no stress indicators within that same land area. When Landsat detected no stress
indicators within a 30-m pixel ∼70% of the time, RapidEye detects stress in less than 5% of
that land area as well.

We also evaluated the level of agreement for detecting any stress indicators, as opposed to the
number of stress indicators detected. This approach potentially loses information with respect to
the likelihood that stress is present (e.g., if three stress indicators are present, it is more likely that

Table 5 Agreement analysis, based on the number of stress indicators detected, between
Landsat and Pika sensors.

Pika % Pika
agrees with
Landsat0 1 2 3 Total

Landsat 0 11,103,505 1,718,325 480,892 15,151 13,317,873 83.37

1 390,671 224,990 89,615 2498 707,774 31.79

2 197,097 126,582 148,604 25,177 497,460 29.87

3 22,053 30,913 25,175 5905 84,046 7.03

Total 11,713,326 2,100,810 744,286 48,731

% Landsat agrees
with Pika

94.79 10.71 19.97 12.12

% Landsat and
Pika agree overall

78.61 Kappa 0.18
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vegetation stress is present than if only one indicator is present) but avoids potential confusion
caused by the sensors having different indicators of stress (e.g., Landsat does not have a red edge
indicator, whereas RapidEye and Pika do not have SWIR indicators).

These tables (Tables 6, 7, and 8) can be read similarly to the ones above (Tables 3, 4, and 5).
The overall agreement again indicates the percentage of pixels where the sensors agreed.
Contrary to the above tables, however, the sensors do not have to have agreement on the specific
number of stress indicators to qualify as pixel agreement. In these tables, “no stress” is defined as
a pixel where no stress indicators were detected, and “stress” is defined by at least one stress
indicator (either 1, 2, or 3) being detected in a pixel. Using Table 6 as an example, the “%
Landsat agrees with RapidEye” row indicates the percentage of times Landsat detected either
stress or no stress when RapidEye did. For example, 49.38% of the pixels where RapidEye
detected at least one stress indicator, Landsat did as well. This is calculated by dividing the
total number of pixels where both Landsat and RapidEye detected at least one stress indicator
(28,362) by the total number of pixels where RapidEye detected at least one stress indicator

Table 6 Agreement analysis, based on whether any stress indicators were detected, between
Landsat and RapidEye sensors. Numbers under “no stress” and “stress” indicate number of pixels
detecting any or no indicators of vegetation stress.

RapidEye % RapidEye
agrees with
LandsatNo stress Stress Total

Landsat No stress 504,854 29,071 533,925 94.56

Stress 22,384 28362 50,746 55.89

Total 527,238 57,433

% Landsat agrees with
RapidEye

95.75 49.38

% Landsat and RapidEye
agree overall

91.20

Fig. 5 Graph depicting, within a coarser-resolution pixel detecting no stress indicators, the percent
area of finer-resolution pixels detecting at least one stress indicator.
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(57,433). The “% RapidEye agrees with Landsat” column can be read similarly. It indicates,
where Landsat detects no or at least one stress indicator, how often RapidEye detects the same.
For example, 55.89% of the pixels where Landsat detects at least one stress indicator, RapidEye
also detects at least one stress indicator. This number is calculated by dividing the number of
pixels where both Landsat and RapidEye detect at least one stress indicator (28,362) by the total
number of pixels where Landsat detected at least one stress indicator (50,746).

These tables also demonstrated a high level of overall agreement. The Landsat/RapidEye
comparison (Table 6) again had the highest agreement percentage (91.20%), but the Pika/
RapidEye (78.83%) (Table 7) and Pika/Landsat (79.20%) (Table 8) comparisons were also
relatively high. The high level of agreement again is largely attributable to pixels where no stress
indicators were detected by either sensor.

The Landsat/RapidEye comparison (Table 6) had the highest agreement outside of the pixels
where no stress indicators were detected but not substantially. Both comparisons with the Pika
sensor (Tables 7 and 8) were similar in that both had a percentage of finer-resolution pixels
agreeing with coarser-resolution pixels around 50% (43.50% and 51.98%) and a percentage
of coarser-resolution pixels agreeing with finer-resolution pixels around 20% (21.81% and
22.96%). This means that in pixels where Landsat or RapidEye detected a stress indicator,
Pika was about 50% likely to also detect a stress indicator. In pixels where Pika detected a stress
indicator, though, Landsat or RapidEye were only about 20% likely to also detect a stress
indicator.

Table 7 Agreement analysis, based on whether any stress indicators were detected, between
RapidEye and Pika. Numbers under “no stress” and “stress” indicate number of pixels detecting
any or no indicators of vegetation stress.

Pika

% Pika agrees with RapidEyeNo stress Stress Total

Landsat No. stress 10,979,028 2,289,647 13,268,675 82.74

Stress 829,464 638,614 1,468,078 43.50

Total 11,808,492 2,928,261

% RapidEye agrees
with Pika

92.98 21.81

% Pika and RapidEye
agree overall

78.83

Table 8 Agreement analysis, based on whether any stress indicators were detected, between
Landsat and Pika. Numbers under “no stress” and “stress” indicate number of pixels detecting any
or no indicators of vegetation stress.

Pika

% Pika agrees with LandsatNo stress Stress Total

Landsat No stress 10,103,505 2,214,368 12,317,873 82.02

Stress 609,821 660,126 1,269,947 51.98

Total 10,713,326 2,874,494

% Landsat agrees
with Pika

94.31 22.96

% Landsat and Pika
agree overall

79.20
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3.2 Spatial Sensitivity Analysis

The output for the sensitivity analysis was a histogram (Fig. 6). This histogram showed, when
a coarser-resolution pixel detected at least one stress indicator, the percentage of that land area
that the finer-resolution sensor also detected at least one stress indicator. For example, for one
Landsat pixel that is 30 m × 30 m, what percentage of RapidEye pixels, which each cover ∼3%
of a Landsat pixel, also detected at least one stress indicator. The histogram can be interpreted in
the following way (Fig. 6): using the example of the second vertical bar, for ∼18% of all of the
Landsat pixels that detected at least one stress indicator within the image, 0% to 10% of the land
area covered by RapidEye pixels also detected at least one stress indicator.

All three comparisons show a similar trend, with a spike at 0% to 10% or less and an addi-
tional spike at 91% to 100%. The large percentage of instances where the finer-resolution sensor
detected no stress indicators on at least 90% of the land area where the coarser-resolution sensor
detected a stress indicator (the left three vertical bars) was unexpected and warranted further
analysis. We, therefore, did a pixel-by-pixel breakdown of those occurrences.

The largest number of the Landsat pixels that detected at least one stress indicator con-
tained 36 RapidEye pixels (the entire number of RapidEye pixels within a Landsat pixel)
also detecting at least one stress indicator (Fig. 6). There are, however, 140 instances
where a Landsat pixel detected signs of stress and none of the RapidEye pixels within the
Landsat pixel detected a stress indicator. There were 147 stress indicators detected by
Landsat within these 140 pixels. Twenty-two (15.0%) were instances where Landsat detected
a high visible anomaly, 82 (47.1%) were low NIR anomalies, and 43 (29.3%) were high SWIR
anomalies.

Pika is likely to detect at least one stress indictor in all 900 pixels of a Landsat pixel
also detecting at least one stress indicator (Fig. 6). There is a relatively large number (105)
of pixels, however, in which Landsat detected at least one stress indicator and there were
zero Pika pixels detecting stress indicators in that same pixel, similar to the results seen in
the Landsat/RapidEye comparison. Of the 130 stress indicators in these 105 pixels, 39 (30%)
were in the visible portion of the spectrum, 51 (39.2%) were in the NIR, and 40 (30.8%) were in
the SWIR.

Fig. 6 Graph depicting the percentage of land area, when a coarser-resolution pixel detects
a stress indicator, that the finer resolution pixel also detects a stress indicator.
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The most significant difference between the RapidEye/Pika sensitivity analysis and the
others is that of the roughly 40,000 RapidEye pixels detecting at least one stress indicator,
in 15,000 instances all 25 Pika pixels within that pixel also detected at least one stress indicator,
but in ∼21; 000 of those pixels, more than half, there are zero Pika pixels that detected at least
one stress indicator (Fig. 4). There were 35,919 stress indicators that RapidEye detected in
these 21,000 pixels. Of those, 14,959 (41.65%) were in the visible portion of the spectrum,
9486 (26.41%) in the red edge, and 11,474 (31.94%) in the NIR.

4 Discussion

4.1 Agreement Analysis

It is important, when using remotely sensed data, to remember that sensors are each different
and are, therefore, able to detect vegetation in different ways. The three sensors used in this
study have different specifications (Table 2) that contribute to their ability to detect vegetation
stress.

4.1.1 Areas of substantial agreement

The overall agreement between the three sensors was quite high. Most of this agreement can be
attributed to areas where no stress indicators were detected by any sensors. This is not surprising
given that we expect similarly situated and treated vegetation to have a similar spectral response.
The general spatial locations of stress indicators also demonstrated a high level of agreement
(Fig. 4).

4.1.2 Areas of substantial disagreement

Precise agreement of the location of stress indicators, however, was relatively low, especially
when analyzing agreement with the Pika sensor. Disregarding areas where no stress indicators
were present, which accounted for the high percentage of overall agreement, the agreement
between sensors on the number of stress indicators present in each pixel dropped dramatically
(Tables 3, 4, and 5). This is also reflected in the Kappa statistics for the full matrixes, which were
low, indicating that there was substantial potential that chance agreement accounted for a sub-
stantial portion of the accuracy. The collapsed agreement tables, which analyzed the level of
agreement when at least one stress indicator was present, did increase agreement in this area,
but it was still below 50% (Tables 6, 7, and 8). We believe there were two primary factors
resulting in this level of disagreement, spatial and spectral resolution, as discussed below.

4.1.3 Number of indicators present

An important revelation of this study was that many pixels that detected a stress indicator did not
detect all three. The reflectance differences associated with vegetation stress might be expected
to coexist, because the physiological changes associated with stress coexist. The reflectance
changes, however, do not always occur at the same rate or begin at the same time. The red
edge, for instance, is a good stress indicator in the early stages of stress but will eventually return
to its healthy vegetation value.30 The increase in reflectance in the SWIR portion of the spectrum
due to a decrease in leaf water content only manifests when the water content has decreased to
extreme water stress levels,7 which might not occur until much later than the visible, red edge,
and NIR differences can be detected. The red and NIR portions of the spectrum are commonly
used to detect vegetation stress, such as with the normalized difference vegetation index. The
physiological changes in stressed vegetation do not always occur at exactly the same time or at
the same rate, however.31 The reflectance changes, therefore, also do not always occur at the
same time or rate. This indicates the need, at least with respect to detection of vegetation stress,
for sensors that include both red edge and SWIR capabilities to best detect both early and
late vegetation stress. None of the sensors tested in this study contained both capabilities.
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The sentinel 2 satellites (European Space Agency) include both capabilities but were not
available at the time of this study.

4.2 Potential Sources of Disagreement in this Study

There are a multitude of possible explanations for the disagreement among the sensors as to
whether stress indicators were present and, if so, where. One source of potential disagreement
was the spatial accuracy of the sensors. After GPS/INU correction and manual georeferencing,
an root mean square error of 3 to 5 m for ground control points was reached (although accuracy
for nonground control points might be worse) while Landsat generally has a spatial accuracy of
at least 12 m.32 Therefore, there were likely disagreements among the sensors resulting solely
from spatial offsets, although these could not be quantified. Another unquantifiable source of
potential disagreement was atmospheric effects. All data used in this study was at sensor. The
Pika sensor, specifically, will be less affected by atmospheric effects than the Landsat or
RapidEye sensors because of the Pika’s platform low flight elevation. The two primary potential
sources of disagreement that were explored in this study were spatial and spectral resolution.

4.2.1 Spatial resolution

There are dramatic spatial resolution differences among these three sensors. Landsat has 30-m
resolution, RapidEye has 5-m resolution, and Pika has 1-m resolution. This difference results in
RapidEye and especially Pika having the capability to detect much smaller areas containing
stress indicators. One very noticeable example of this was when examining all three images
side-by-side. The higher resolution images detected stress in much smaller areas throughout
the image (Fig. 4).

4.2.2 Spectral differences

There are spectral differences among these three sensors as well, both in the number of bands and
in the portions of the electromagnetic spectrum represented by each sensor. RapidEye and Pika
both have bands from the visible to the NIR, whereas Landsat also contains bands, for our
purposes, into the SWIR, which does have a change in reflectance in the event of vegetation
stress. RapidEye and Pika also have bands covering the red edge portion of the spectrum, which
has commonly been used in vegetation stress studies while Landsat does not.

It was surprising to see in the sensitivity analysis that there were 140 pixels where no
RapidEye pixels detected any stress indicators where a Landsat pixel contained at least one
(Fig. 6). This can most likely be attributed to the different portions of the electromagnetic spec-
trum each sensor covers. 125 of the 147 stress indicators (85%) Landsat detected that RapidEye
did not were in the NIR or SWIR bands. As mentioned above, Landsat has two SWIR bands that
RapidEye does not. This explains the high number of SWIR stress indicators that RapidEye did
not detect.

The large numbers of NIR differences, a band both sensors have, are most likely attributable
to the different portions of the NIR that RapidEye and Landsat cover. The RapidEye NIR band
covers the shorter NIR portion of the spectrum, from 760 to 850 nm. The Landsat 8 sensor’s NIR
band covers the longer NIR portion of the spectrum, from 850 to 880 nm. Earlier Landsat
missions spanned a much larger portion of the NIR spectrum, from 770 to 900 nm, but the
band was narrowed for the Landsat 8 mission to avoid the water absorption feature in the shorter
wavelengths.30 There is, as a result, no overlap between the Landsat and RapidEye NIR bands.
Stresses might manifest differently in different portions of the NIR. This is a prime area for
further research considering the differences in bandwidth and coverage across sensors.

This trend continued in the Pika/Landsat sensitivity analysis as well (Fig. 6). There were
105 pixels, 130 stress indicators, where Landsat detected a stress indicator and Pika detected
none. 39 (30%) were visible anomalies, 51 (39.2%) were NIR anomalies, and 40 (30.8%) were
SWIR anomalies. The Pika sensor, like RapidEye, does not have bands in the SWIR portion of
the spectrum, which can account for the 40 indicators in this portion that Landsat detected that
Pika did not. Unlike RapidEye, however, the Pika sensor has bands in the longer wavelengths of
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the NIR portion, so that the explanation for the differences with RapidEye does not apply to the
Pika. This is true of the high number of visible anomalies that were undetected by Pika as well,
as the two sensors have similar wavelength coverage in this portion of the spectrum. The ability
of Landsat to detect stress indicators that the Pika did not might be the result of the superior
radiometry of the Landsat OLI sensor. The OLI sensor has a much higher SNR, topping out at
∼350 in the blue band, making it potentially much more sensitive to spectral differences than
the Pika, which has a maximum SNR of 198.33

4.3 Limitations

This study did not have reference data to determine the accuracy of using these stress indicators
as actual locations of vegetation stress. There are some real-world instances, such as this one, that
make obtaining reference data impossible. There were also site access issues due to much of the
site being private property that required the permission of the landowners for access, which was
not always available. We were able to confirm that some of the areas with detected anomalies
were located in areas where anomalies would be expected, such as in saline seeps.

Figure 7 shows some similarities between the images and also areas that we would expect
stress to be present. In the east-central portion of the image, there are rolling hills throughout the
landscape. We expect vegetation to respond differently, spectrally, on the top of hills, where soil
moisture is likely to be lower and vegetation, therefore, is likely to exhibit relative stress, as
opposed to in valley bottoms. There is also evidence of anomalies in the western portion of
the images between fields where limited vegetation is growing in fallow fields, which is

Fig. 7 (a) Landsat, (b) RapidEye, and (c) Pika images showing anomalous pixels in three areas of
the study site.
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also to be expected. The eastern-most portion of the image is a shrubby grassland with areas of
bare ground, which is why anomalies are present in that region.

The black areas between these fields can be attributed to areas where we were trying to avoid
edge effects and to areas where it was impossible to determine whether that portion of the field
had been seeded or fallow in 2014, when the images were acquired.

5 Conclusion

The goal of this study was to highlight both the similarities and the differences among sensors
with different characteristics. We did not use analysis techniques that take full advantage of the
large number of bands in the hyperspectral sensor. Usually, hyperspectral and multispectral sen-
sors are analyzed using different methods. In order to compare them, however, we used a band-
by-band approach. This can hopefully provide guidance for managers as to tradeoffs among
different sensors. The sensors in this study are representative of some of the sensor options that
exist for vegetation stress monitoring. Cost, accessibility, and accuracy (Table 2) are all impor-
tant considerations when determining which sensor is appropriate for the goals at hand. Landsat
is free and relatively easy to access through the USGS Landsat archive. RapidEye, on the other
hand, can become very costly very quickly if multiple images are needed for monitoring, but are
relatively accessible by ordering them. Pika is a one-time cost. It does require flight planning
when images are needed, and each flight is several hundred dollars, depending on the contractor
and flight distances required. The accuracy of the sensors is also very important in a monitoring
scheme. Landsat does have the largest pixel size, but as the sensitivity analysis indicates, it is able
to detect stress indicators that occur over less than a full pixel. Landsat consistently detected
stress indicators when only about 1∕3 of the RapidEye pixels within, the Landsat pixel detected
them, and 1∕6 of the Pika pixels. Landsat also has the narrower NIR band and the additional
SWIR band that detected stress indicators when the RapidEye and Pika did not. All of these are
considerations land managers should take into account when planning a monitoring program.
The sentinel 2 satellites might provide an excellent alternative, because they (1) have higher
spatial resolution than Landsat in the relevant bands, (2) include coverage in the red edge,
(3) include coverage in both areas of the NIR covered by RapidEye and Landsat, and
(4) have coverage in the SWIR, which was important in our Landsat analysis.

This study also highlighted many opportunities for future research. For example: (1) an
analysis of agreement as a function of standard deviation, (2) an analysis of whether agreement
improved using band combinations or indices as opposed to a band-by-band approach, and
(3) a similar study in a controlled environment to further explore one obstacle of this study,
a lack of reference data, are all potential options.
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