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Abstract: The location and distribution of wetlands and riparian zones influence the ecological functions
present on a landscape. Accurate and easily reproducible land-cover maps enable monitoring of land-man-
agement decisions and ultimately a greater understanding of landscape ecology. Multi-season Landsat ETM1
imagery from 2001 combined with ancillary topographic and soils data were used to map wetland and riparian
systems in the Gallatin Valley of Southwest Montana, USA. Classification Tree Analysis (CTA) and Sto-
chastic Gradient Boosting (SGB) decision-tree-based classification algorithms were used to distinguish wet-
lands and riparian areas from the rest of the landscape. CTA creates a single classification tree using a one-
step-look-ahead procedure to reduce variance. SGB uses classification errors to refine tree development and
incorporates multiple tree results into a single best classification. The SGB classification (86.0% overall
accuracy) was more effective than CTA (73.1% overall accuracy) at detecting a variety of wetlands and
riparian zones present on this landscape.
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INTRODUCTION

Wetland and riparian zones provide a variety of eco-
logical services that contribute to ecosystem functions
at local, watershed, and regional scales (Semilitsch and
Bodie 1998, Tabacchi et al. 1998, Ehrenfeld 2000,
Mitsch and Gosselink 2000). Wetlands can effectively
minimize sediment loss, control runoff volume, purify
surface water, and enhance aquifer recharge (Ehrenfeld
2000, Tiner 2003). The shape, size, and distribution of
wetland and riparian zones are largely determined by
geologic, topographic, and hydrologic conditions
(Peck and Lovvorn 2001, Toyra et al. 2002). The eco-
logical contributions of wetlands and riparian zones, if
factored into land values, suggest that these ecosys-
tems are more economically and ecologically valuable
than most other land cover types (Mitsch and Gosse-
link 2000).

Wetlands are ‘‘[areas] that under normal circum-
stances do support. . . a prevalence of vegetation typ-
ically adapted for life in saturated soil conditions’’
(U.S. EPA 2003. p.1) while riparian areas are ‘‘eco-
systems [that] occupy the transitional areas between
the terrestrial and aquatic ecosystems’’ (Montgomery
1996. p.2). Several fundamental ecological differences
exist between wetlands and riparian zones; however,
the ecological importance and human interaction be-
tween these ecosystems are very similar. These com-
mon characteristics enable synonymous discussion for

purposes of landscape resource mapping. The term
wetland, therefore, will be used to describe both wet-
land and riparian areas unless specified.

Accurate wetland mapping is an important tool for
understanding wetland function and monitoring wet-
land response to natural and anthropogenic actions.
Wetlands are often damaged or overwhelmed by in-
creased surface flows in urban or suburban areas with
high densities of impervious surfaces (i.e., buildings
and paved surfaces) (Ehrenfeld 2000, Mitsch and Gos-
selink 2000, Wang et al. 2001). Wetland mapping is
used to evaluate land-use decisions and monitor the
effectiveness of mitigation efforts (Muller et al. 1993).
Landscape scale mapping of these scarce habitats fa-
cilitates understanding of floral and faunal population
dynamics (Semilitsch and Bodie 1998).

The susceptibility of wetlands to human activities
and human dependence on the ecological contributions
of wetlands illustrate the importance of mapping wet-
land resources. Establishing the role of wetlands in
increasingly urban landscapes requires an understand-
ing of wetland density and distribution (Tiner 2003).
The three primary inventory techniques currently used
to map wetland ecosystems are on-site evaluations, ae-
rial photo interpretation, and digital image processing.
Wetland mapping projects using on-site measurements
of environmental conditions provide highly detailed
data including lists of floral and faunal species, water
chemistry, and soil characterization information (Tiner
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1993). The added expense of personnel, equipment,
and time rarely justifies the more detailed level of data
collected through on-site evaluations when mapping
wetlands at a landscape or watershed scale (Harvey
and Hill 2001).

Aerial photographs provide synoptic views of study
areas, allowing ‘‘big picture’’ understanding of hy-
drology and vegetation patterns (Harvey and Hill
2001). Additionally, aerial photograph archives are
available for many regions of the United States, pro-
viding a valuable historical record of past landscape
conditions. Many concerns are still associated with the
use of aerial photos for wetland mapping, despite im-
provements in the quality of aerial photos. A primary
concern with landscape-scale wetland maps derived
from aerial photos is the extensive time lapse between
imagery acquisition and production of the final wet-
land map (Ramsey and Laine 1997). Repeatability is
another concern with human-derived photo-interpre-
tation products. As concern over global wetland re-
sources continues to escalate, so does the need for au-
tomated and reproducible wetland maps (Finlayson
and van der Valk 1995). Using quantitatively derived
wetland inventory maps in change detection analyses
reduces inconsistencies associated with human inter-
pretation and thus improves the power to identify ac-
tual wetland changes.

Multispectral sensors provide data with increased
spectral and radiometric resolutions and decreased spa-
tial resolutions compared to conventional aerial pho-
tography. Systeme Pour l’observation de la Terre
(SPOT) and Landsat are two satellites with sensors
that have been used to produce accurate maps of a
variety of wetland types in Australia, Canada, and the
United States (Sader et al. 1995, Narumalani et al.
1997, Kindscher et al. 1998, Harvey and Hill 2001,
Townsend and Walsh 2001, Toyra et al. 2002). Data
from the Indian Remote Sensing Satellite–Linear Im-
aging Self Scanning II (IRS–LISS-II) multispectral
sensor were used to map wetland meadows in Grand
Teton National Park, Wyoming, USA. The lack of
middle infrared (MIR) detection on the IRS instrument
inhibited the detection of vegetation and soil moisture,
which are distinctive features of wetland areas (John-
ston and Barson 1993, Mahlke 1996).

Several wetland-mapping studies suggest that Land-
sat-based classifications provide greater overall accu-
racies than other space-borne sensors (Civco 1989,
Hewitt 1990, Bolstad and Lillesand 1992a). A test of
this theory found that Landsat Thematic Mapper (TM)
based classifications provided wetland maps with 82%
accuracy for forested wetlands in Maine, USA (Sader
et al. 1995). A similar overall accuracy (80%) was
achieved when mapping riparian zones in xeric eco-
systems of Eastern Washington, USA with Landsat-

TM data (Hewitt 1990). Wetland classifications using
aerial photos (1-m resolution), SPOT (20-m resolu-
tion), and Landsat (30-m resolution) image data were
compared to determine the accuracy and applicability
of each data source (Harvey and Hill 2001) and found
that the sensitivity of Landsat band-2 (green), band-3
(red), band-4 (near infrared, NIR), and band-5 (MIR)
provided a more accurate classification than SPOT,
and overall accuracy comparable to that of aerial pho-
tos. These results demonstrate that accuracy is not sac-
rificed with automated wetland identification methods
or with coarser spatial data for landscape-scale anal-
yses.

The combination of readily interpretable classifica-
tion results and accurate class separations has contrib-
uted to the increasing popularity of rule-based and de-
cision tree methods for classification of multispectral
data (Bolstad and Lillesand 1992b, Sader et al. 1995,
Lawrence and Wright 2001). Interpretation using clas-
sification rules enables the image analyst to identify
inconsistencies in the data and validate true ecological
variation existing on the landscape. A supervised rule-
based classification method produced an overall ac-
curacy of 80% in wetland specific classifications of
forested wetlands in Maine, an 8% improvement over
the statistical clustering functions of unsupervised
classifications (Sader et al. 1995). The classification
rules used by Sader et al. were developed using ancil-
lary topography, geology, and hydrology Geographic
Information System (GIS) data sources to model for-
ested wetland characteristics.

Classification tree analysis (CTA) is a rule-based
technique that has produced highly accurate classifi-
cations based on a variety of spectral and ancillary data
sources (Lawrence et al. 2004). Similar to neural net-
works, CTA is a non-parametric technique that does
not assume normal distributions in the available data-
sets. CTA forms dichotomous decision trees using
continuous or categorical data (Lawrence et al. 2004).
The CTA algorithm works to reduce both intra-class
and inter-class variability through recursive binary
splitting of training data values (Venables and Ripley
1997). The results of such binary splits are displayed
as branching dichotomous trees that serve as readily
interpretable illustrations of variability within the data.
Splits are applied to the classification of an image
through classification rules (Lawrence and Wright
2001). Combinations of multispectral and ancillary
data have been used in decision trees to produce highly
accurate land-cover classifications. Decision trees are
easily interpreted and can provide valuable insight into
ecological conditions.

Recent refinements of CTA approaches can result in
more accurate classifications, albeit easily interpretable
classification rules are often sacrificed when using
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more complicated refinements. Since CTA trees are
formed using a one-step-look-ahead, initial splits to
reduce the greatest variability largely determine the ef-
fectiveness of the tree to distinguish more detailed sep-
arations further down the tree (Venables and Ripley
1997, Lawrence et al. 2004). Less effective splitting
occurs when outliers are present in the data or when
attempting to classify land cover containing high with-
in-class variability. Additionally, if the class of interest
represents a small portion of the landscape and the
training data are collected in similar proportions, the
less dominant land-cover types can be under-classified
with CTA (Lawrence et al. 2004). These issues are
applicable to wetland classification within a large land-
scape and thus encouraged a closer examination as part
of our analysis.

Bagging, which uses random subsets of the data to
develop decision trees, and boosting, which uses errors
in trees to refine new trees, both use iterative tree de-
velopment to address some of the previously men-
tioned shortcomings inherent in the one-step at a time
CTA algorithm (Lawrence et al. 2004). Stochastic gra-
dient boosting (SGB) has the potential to provide im-
proved classification accuracies over CTA by combin-
ing the beneficial aspects of bagging and boosting
techniques (for comprehensive discussion, see Lawr-
ence et al. 2004). Using a steepest gradient boosting
algorithm, the most readily corrected classification
problems are emphasized in iterations of tree devel-
opment and the resulting collection of trees (a grove)
vote on the correct classification using a plurality rule
(Lawrence et al. 2004). Bagging and boosting proce-
dures develop large numbers of trees with minimal
user interaction to provide accurate and reproducible
results. Broad applicability of SGB for purposes of
land-cover classification has yet to be tested due to the
recent development of this technique and limited soft-
ware distribution, although lately this and related tech-
niques have become more readily available, notably
through contributions to the free R statistical program.
This technique has the potential to identify distinctive
characteristics of small and highly diverse ecosystems,
such as wetlands, from spectral and topographic data.

Our objective was to develop an accurate and easily
reproducible procedure for mapping wetlands across
natural and human dominated landscapes. Ancillary
environmental data were incorporated into spectrally
based classifications to improve the detection of iso-
lated or ecologically unique wetlands (Sader et al.
1995). The applicability and accuracy of two decision
tree algorithms, CTA and SGB, were compared to de-
termine the efficacy of both techniques for wetlands
mapping. Additionally, CTA and SGB were compared
on urban and rural subsets of the study area to deter-
mine specific strengths and weaknesses of each clas-

sification on different landscapes. The ultimate goal of
these analyses was to help identify a rapid, accurate,
and reproducible technique for mapping wetland and
riparian zones in landscape-scale analyses. The recent
introduction of bagging and boosting software for de-
cision tree classifications (e.g., TreeNet and See5) and
highly favorable results in studies using these methods
encourages land-cover classifications based on these
statistical algorithms. High diversity and inter-class
variability makes wetlands a difficult land-cover type
to classify accurately, therefore making wetlands ex-
cellent testing sites for these classifications.

METHODS

Study Area

The 135,570-ha study site was the lower basin of
the Gallatin River watershed, located in the Gallatin
Valley of Southwestern Montana, USA (Figure 1). The
project area boundary generally follows the boundary
of the Gallatin Local Water Quality District. The foot-
hills and mountainous terrain of the Bridger, Gallatin,
and Madison ranges surround the plains of the Gallatin
Valley. The Gallatin and East Gallatin rivers have
formed the majority of landscape features on the valley
floor (Willard 1935). A semi-arid climate and fertile
soils support the prevalence of irrigated and dryland
agriculture in the valley. Primary crops of the region
are alfalfa, barley, wheat, and hay for livestock. Pop-
ulation growth over the past 50 years has resulted in
localized conversions of agricultural land to residential
and commercial development (Kendy 2001).

Precipitation averages range from 40 cm in the val-
ley (1,250 m) to over 100 cm in the higher elevations
(3,350 m) (Custer et al. 1996, Western Regional Cli-
mate Center 2002). Snow and rain from March
through June provide the majority of precipitation.
Surface and subsurface flow regimes have been altered
through the widespread construction of irrigation ca-
nals. Canals reduce in-stream flows and distribute wa-
ter throughout the interior and periphery of the valley.
The perennial streams contain much herbaceous and
woody vegetation, including chokecherry (Prunus vir-
giniana (Nutt) Torr.), willow (Salix spp.), black cot-
tonwood (Populus trichocarpa Torr. and Gray), nar-
rowleaf cottonwood (P. augustifolia James), quaking
aspen (Populus tremuloides Michx.), and several other
native and non-native species. Vegetation strips along
the ephemeral natural streams and artificial canals are
narrower, with less vegetation density and species di-
versity than perennial systems.

Image Processing

Landsat Enhanced Thematic Mapper Plus (ETM1)
images from May 22, 2001 and September 11, 2001
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Figure 1. Location map for the Gallatin Local Water Quality District.

were the spectral data sources used in the classification
procedure. The Landsat ETM1 sensor records 7 bands
of spectral data in the visible, infrared, and thermal
portions of the electromagnetic spectrum. The spatial
resolution of this sensor is 30 m (the 60-m thermal
band-6 was resampled to 30 m using nearest neighbor

interpolation), resulting in a 900 m2 (0.09 ha) mini-
mum mapping unit. Multi-date imagery was used to
capture the extent of seasonal variation between wet
(May) and dry (September) conditions. To help iden-
tify seasonal wetlands, the wet and dry images were
merged into a single classification using known up-
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land, riparian, and wetland areas as training sites. A
total of 65,467 training pixels were used to classify the
1,507,429 pixels contained in the study area.

The May image was geo-registered to the Septem-
ber scene (registration error less than 6.0 m). Both
scenes were corrected to at-sensor reflectance using the
United States Geological Survey (USGS) equation
(Huang et al. 2001) and ETM1 gain/bias header file
data. Tasseled Cap (TC) transformations, which pro-
duce components representing brightness, greenness,
and wetness, were performed using the at-sensor re-
flectance values and USGS TC coefficients (Huang et
al. 2002). Ancillary data used in this project included
a 30-m USGS digital elevation model (DEM), slope
map (calculated from the 30-m DEM), and digital hy-
dric soils data from the 1985 Natural Resource Con-
servation Service (NRCS) soil survey for Gallatin
County. Classification training sites were developed
for wetland, riparian, and other land cover using re-
cently digitized wetland and riparian data acquired
from 1:24,000 color infrared (CIR) aerial photography
of the study area and on-site surveys.

Image Classification

Seven land-cover types were identified in the pri-
mary classification procedure, including open water,
forest, urban, agriculture, grass/shrub, riparian, and
wetland. The first five cover classes were combined
into a ‘‘non-wet’’ class that was used for the remainder
of the analysis. The ‘‘wetland’’ class was primarily
composed of marshes, wet meadows, and slope wet-
lands. The ‘‘riparian’’ class included riparian wet-
lands, ephemeral drainages, and woody riparian veg-
etation (i.e., cottonwood and willow).

CTA decision trees were created using a combina-
tion of S-Plusy statistical software and ERDAS Imag-
iney image processing software (ERDAS 2001, In-
sightful 2001). Overfitting of CTA decision trees was
avoided through cross validation of the training data
(Lawrence and Wright 2001). The SGB decision tree
grove was created using the same training data sets as
CTA and was developed with TreeNety software (Sal-
ford Systems 2001). The decision trees provided in the
TreeNety grove file were then used to produce a clas-
sified map of the study area.

Accuracy Assessment

Accuracy assessment points were randomly gener-
ated in a stratified random format to define approxi-
mately 100 points each for the wetland and riparian
classes and 150 points for the more predominant non-
wet class. On-site evaluations, CIR photographs taken
September 9, 2001, and a 5-m digital image derived

from the 2001 CIR photos were used as reference data
for classification accuracy assessments. Land-cover
class assignments for accuracy assessment pixels were
determined using a modification the 50% vegetation
rule (Tiner 1993). In this project at least 20% of a 30-
m pixel had to contain hydrophytic vegetation in order
to be classified as wetland or riparian.

A spatial analysis of classification sensitivity was
performed to determine the accuracy of the two clas-
sification techniques on different landscapes. In this
analysis, we examined mis-classified pixels to ascer-
tain if errors of omission or commission prevailed with
either classification technique on specific landscapes.
The first subset was located in a primarily rural setting
with abundant agricultural land, and the second subset
included the urban/sub-urban regions surrounding the
town of Bozeman. The rural landscape contained larg-
er wetlands and riparian sites with greater diversity,
while the urban subset comprised smaller and more
distinct wetland types. Accuracy assessment of this
sensitivity analysis also used a stratified random design
to identify reference points for each of the three land-
cover classes. A focused accuracy assessment of these
distinct subsets exposed the strengths and weaknesses
of each technique in regards to wetland detection in
both heavily diversified and homogenous landscapes.

RESULTS AND DISCUSSION

Overall Classification Accuracies

Overall classification accuracy was 73.1% for CTA
and 86.0% for SGB, a 12.9% improvement over CTA
results (Table 1). Producer’s accuracies for wetland
and riparian classes in the SGB classification (93.2%
and 88.3%, respectively) were markedly higher than
CTA (58.3% and 57.5%, respectively). The producer’s
accuracy is a measurement of omission error and is
calculated by determining the probability that a refer-
ence pixel for each class is correctly classified. The
majority of the error in the CTA classification resulted
from wetland and riparian areas that were mis-classi-
fied as non-wet. Conversely, the majority of error in
the SGB classification resulted from non-wet areas
mistakenly classified as wetland. Simply stated, the
CTA tended to miss marginal wetland and riparian
sites, while SGB errantly classified moist upland sites
as wetland or riparian.

User’s accuracy is used to measure commission er-
rors and represents the mapping accuracy for each
class. User’s accuracy of SGB (94.5%) was 28.1%
higher than CTA (66.4%) for the non-wet class. The
tendency of CTA to underestimate wetland and ripar-
ian areas was the primary cause of the large difference.
The user’s accuracy values for the wetland and ripar-



470 WETLANDS, Volume 26, No. 2, 2006

Table 1. Error matrices using classified and reference data pixels for CTA and SGB classifications.

Classified Data

Reference Data

Non-wet Wetland Riparian Users Accuracy

CTA classification

Non-wet
Wetland
Riparian

142
10
1

142/153

38
60
5

60/103

34
6

54
54/94

142/214
60/76
54/60

66.40%
79.00%
90.00%

Producers Accuracy 92.80% 58.30% 57.50%
Overall Accuracy 73.10% Kappa 5 0.569

SGB Classification

Non-wet 122 3 4 122/129 94.50%
Wetland
Riparian

23
8

122/153

96
4

96/103

7
83

83/94

96/126
83/95

76.20%
87.40%

Producers Accuracy 79.70% 93.20% 88.30%
Overall Accuracy 86.00% Kappa 5 0.788

ian classes were similar for the two classifications. The
primary source of error in the wetland class for both
classifications was the inclusion of non-wet sites into
the wetland class. Commission errors in the riparian
class were more evenly distributed, with approximate-
ly equal numbers of non-wet and wetland sites erro-
neously placed in this class.

A notably smaller percentage of classification errors
resulted from confusion between riparian and wetland
pixels. The presence of woody vegetation in riparian
zones appeared to minimize confusion, despite the hy-
drologic similarities of these sites. The over-inclusion
of wetlands in the non-wet class was primarily attri-
buted to the prevalence of flood-irrigated fields with
elevation, soils, and spectral values similar to those of
wetlands. Differences in the vegetation patterns be-
tween these two land covers were visible in the CIR
photographs, although this variability was not visually
discernable in the coarser resolution Landsat images.

Both techniques classified some wet and/or heavily
vegetated upland areas as wetlands, although the in-
clusion of marginal and severely impaired wetlands
was intentional. Detection of wetland and riparian sites
was a source of error in both classifications; however,
the overall and class accuracies were lower with CTA.
Recent investigations of CTA classifications indicate
that high within-class variability might positively in-
fluence the performance of SGB classifications com-
pared to CTA (Lawrence et al. 2004). This theory
would apply to the diversity of wetland and riparian
systems in the Gallatin Valley and might explain the
markedly improved producer’s accuracies of these
classes with SGB. The SGB tree development method
concentrates on correcting classification errors on the
most similar data and separating more distinctive clas-

ses on subsequent iterations of tree development. In
this manner, SGB can be more adept at separating
spectrally similar classes (Lawrence et al. 2004).

The classified images created through CTA and
SGB contain substantially different proportions of wet-
land and riparian areas (Figure 2). CTA classified
6.8% of the pixels as wetland and 2.3% as riparian.
The SGB classification placed 13.1% of the pixels in
the wetland class and 5.3% in the riparian. These per-
centages, however, cannot be used to estimate the total
area occupied by wetlands and riparian areas because
each pixel classified as wetland or riparian can be com-
prised of as little as 20% or as much as 100% wetland
or riparian vegetation. The buffers surrounding most
wetland and riparian zones were therefore notably
larger than aerial photo based inventories. Our objec-
tive was to determine the accuracy of classification
procedures designed to distinguish wetland and ripar-
ian areas from other land-cover types. It was advan-
tageous, therefore, to locate all areas potentially con-
taining wetlands or riparian areas rather than to neglect
marginal or smaller hydrologic ecosystems. In this re-
spect, isolated pixels classified as wetland can be in-
terpreted as a 900m2 site where 20% or more of the
area had wetland characteristics. These classification
parameters could be refined to detect specific wetland
types by selecting training sites that have the wetland
characteristics desired in a classification or change de-
tection analysis.

Classification Accuracy for Urban and Rural Subsets

Results of the sensitivity analysis for the rural subset
had an overall accuracy of 90.0% for SGB and 66.0%
for CTA (Table 2). The SGB method was more apt to



Baker et al., MAPPING WETLANDS USING LANDSAT IMAGERY 471

Figure 2. Classified images from CTA and SGB procedures.

Table 2. Summary accuracy data for classification sensitivity analysis of urban and rural data subsets.

Rural Subset
Users

Accuracy
Producers
Accuracy Urban Subset

Users
Accuracy

Producers
Accuracy

SGB SGB

Non-wet
Wetland
Riparian

100.0%
86.0%
84.0%

89.3%
86.0%
95.5%

Non-wet
Wetland
Riparian

96.0%
36.0%
56.0%

53.3%
69.2%
82.4%

Overall Accuracy
Kappa

90.0%
0.850

Overall Accuracy
Kappa

62.7%
0.440

CTA CTA

Non-wet
Wetland
Riparian

57.8%
81.8%
80.7%

100.0%
36.0%
56.8%

Non-wet
Wetland
Riparian

78.5%
27.6%
71.4%

93.3%
30.8%
29.4%

Overall Accuracy
Kappa

66.0%
0.476

Overall Accuracy
Kappa

68.0%
0.381

include marginal wetlands and moist ecotones in the
wetland class. Inclusion of marginal and degraded wet-
lands is advantageous when performing comprehen-
sive wetland inventories that identify all possible wet-
land sites. SGB more successfully classified altered or
impaired wetlands, such as cropped wetland sites that
were partially converted to agriculture or heavily
grazed.

The ability of SGB to detect isolated and drier-end
wetlands also served as a source of error for irrigated

pastures and cropland. CTA was less susceptible to the
inclusion of wetlands in the non-wetland class but
more likely to exclude drier wetland and riparian areas.
Evidence of such predictable differences might allow
analysts to select a classification technique based on
the level of hydrologic sensitivity desired in the clas-
sification. It is possible that classification of broad and
spectrally distinctive land-cover types might be more
accurately performed with CTA, while detection of un-
der-represented or highly variable land cover will re-
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Figure 3. CTA decision tree for wetland, riparian, and non-wet classes (urban, agriculture, rangeland, forest, and water).
Rules at each tree split indicate the conditions for the left branch at that split.

quire the increased sensitivity of SGB. Choosing be-
tween classification methods (such as CTA or SGB)
or data sources (moderate spatial resolution or high
spatial resolution) could enable stakeholders to select
the level of classification detail.

Both classification techniques produced lower ac-
curacies in the urban dominated landscape subset.
While the increased sensitivity of SGB to wet condi-
tions was advantageous for rural landscapes, this
served as a source of error in the urbanized areas. Clas-
sification errors for SGB in the urban subset partially
resulted from irrigated forests (e.g., city parks and
cemeteries) erroneously classified as riparian areas and
heavily irrigated pastures that were mistakenly classi-
fied as wetlands.

The accuracy of decision-tree-based classifications
was potentially dependent on the inherent variability
within the landscape, as demonstrated by the sensitiv-
ity analysis. The modest performance of CTA and
SGB on the urban landscape subset was not necessar-
ily indicative of limitations with either technique but,
rather, a result of the inherent similarity of certain ur-
ban land uses to wetlands and, potentially, inadequate
training for complicated urbanized wetland and ripar-
ian areas. Furthermore, the 30-m spatial resolution of
ETM1 limited the detection of small, yet ecologically

healthy, wetland and riparian systems present in the
highly fragmented framework of urban and suburban
areas. Higher spatial resolution data and a concerted
effort to sample the variability of urban wetland and
riparian sites could potentially improve identification
of these areas in spectrally diverse landscapes.

Evaluation of Variables Used

SGB developed 80 total decision trees, which was
later reduced to 29 trees to avoid overfitting. Overfit-
ting of the single CTA decision tree was avoided using
cross validation to reduce the number of terminal
nodes from 39 to 17 (Figure 3). SGB produces a large
number of trees that can neither be displayed practi-
cally nor interpreted individually. SGB does, however,
indicate the relative importance of variables within the
model. Despite the distinctive statistical approaches of
CTA and SGB, both algorithms relied on several com-
mon spectral and ancillary variables. These similarities
are evident in the decision splits of the CTA tree and
the variable importance table from the SGB output
(Table 3). SGB used data from 19 of the 23 available
variables while CTA used 18 out of the same 23.

Of the 23 total variables, elevation (DEM), hydric
soils, NIR-Band 4 (September), TC-Brightness (Sep-
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Table 3. Variables used for classification listed in order of im-
portance from SGB output. The number of CTA decision nodes
utilizing the same classification variables.

Variable
SGB
Rank Variable

# of CTA
Decision
Nodes

Soils
Elevation (DEM)
TC Greenness
TC Brightness
ETM1 Band 4
ETM1 Band 3
ETM1 Band 6
ETM1 Band 1
ETM1 Band 7
ETM1 Band 2

1
2
3
4
5
6
7
8
9

10

Soils
Elevation (DEM)
TC Greenness
TC Brightness
ETM1 Band 4
ETM1 Band 3
ETM1 Band 6
ETM1 Band 1
ETM1 Band 7
ETM1 Band 2

2
2
1
2
2
0
2
0
1
0

tember), TC-Wetness (September), and thermal-Band
6 (September) were used in the primary splits of the
CTA tree and were among the top 10 most important
variables listed for SGB. Topographic position and
moisture-sensitive middle infrared response provided
the greatest reductions in deviance on the CTA output.
These responses can be interpreted as the most distin-
guishable characteristics between the riparian or wet-
land sites and the rest of the landscape. DEM data was
most useful in separating the forests and lakes in the
surrounding mountains from features on the valley
bottom. Similarly, slope data were most evident in
splits between sloping rangelands and the flatter agri-
cultural or wetland features. Hydric soils data proved
helpful in separating wetlands from irrigated agricul-
tural land and riparian zones. These sites often con-
tained similar vegetation types and surface moisture
conditions, which enabled non-spectral variables, such
as soils, greater power of separability.

Spectral data from the September image were more
frequently used by both classification algorithms to
separate landcover types than the May image. Mois-
ture and vegetation vigor was sharply contrasting in
the September image between moderately-to-extreme-
ly moist wetlands and the senescent upland vegetation.
Such contrasts were not visible in the May image,
where the majority of the landscape was irrigated by
spring rains and snowmelt.

CONCLUSIONS

The results of this study supported previous findings
that applying SGB techniques to decision trees can
improve classification accuracy (Lawrence et al.
2004). Using a combination of Landsat imagery and
ancillary environmental data with an SGB classifica-
tion algorithm was a highly effective technique for dis-

tinguishing a variety of wetland conditions from the
surrounding landscape. Wetland and riparian areas
were classified with minimal omission errors and an
aptitude for detecting isolated and marginal wetland
areas. Mapping this landscape with 86% accuracy pro-
vides a valuable resource inventory map of hydrolog-
ically dependent ecosystems. These results also dem-
onstrate that boosted decision trees provide improved
sensitivity to characteristics of marginal and damaged
wetlands that are often missed in other wetland map-
ping procedures. Further investigation is necessary to
determine the ability of SGB classifications for map-
ping specific wetland types, with the potential to use
higher resolution sensors such as IKONOS or
QuickBird. Wetland maps of this spatial resolution
would enable calculations of wetland area in addition
to rapid change-detection methods.

Some recently introduced boosting procedures are
somewhat of a hybrid between the CTA and SGB al-
gorithms and therefore might result in more balanced
classifications. Investigating such balance might en-
able the development of one classification procedure
that is equally accurate on rural and urban landscapes.
See5 (which provides CTA with or without boosting)
and R (which has packages available for CTA, a re-
gression version of SGB, and some related techniques)
are two such software packages that are much more
affordable (R is available for free) than either S-Plus
or TreeNet and therefore might warrant a thorough
investigation for purposes of wetland detection. Future
research in this area would include the use of higher
resolution sensors, such as IKONOS or QuickBird,
along with SGB algorithms to improve detection of
small wetland sites and narrow riparian zones.

Wetlands and riparian areas are highly diverse eco-
systems that have significant variability of physical
properties. Our results provide further evidence that
highly accurate detection of such diverse land-cover is
feasible using automated classification procedures. Re-
peat temporal coverage, unbiased data collection, and
effective sampling of landscape variability are advan-
tages provided by remotely sensed data that enable
systematic inventories of these ecosystems (Lakshmi
et al. 1997). Combining automated classifications with
recently acquired remote sensing data can quickly and
accurately determine the location of small, isolated,
and highly variable ecosystems, thus enabling the sys-
tematic monitoring of these important ecological re-
sources.
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