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Abstract: Accurate, efficient, and repeatable mapping of changes in wetlands and riparian areas

(referred to collectively as wetlands) is critical for monitoring human, climatic, and other effects on these

important systems. We used Landsat-based satellite imagery from 1988 and 2001 to map changes in

wetland ecosystems in the Gallatin Valley of southwest Montana. Stochastic gradient boosting (SGB)

was used to classify the 2001 image, and change vector analysis (CVA) was used to identify locations

where wetland areas might have changed between 1988 and 2001. These potentially changed locations

again were classified for the 1988 Landsat image using SGB. Areas of change constituted 3.4% of the

study area, thus only this small percentage of the image was reclassified for the 1988 image. Overall

change detection accuracy was 76%, although changes along the periphery of wetland boundaries and in

areas of smaller upland inclusions were not distinguished as well as other changes. Overall accuracies of

the SGB wetland classification maps were 81% for 1988 and 86% for 2001. CVA significantly reduced the

number of pixels involved in the historical image classification compared to conducting independent

classifications, thus reducing the potential for compounding classification errors in unchanged areas.

Key Words: classification trees, riparian zones, satellite imagery, stochastic gradient boosting, wetland

mapping

INTRODUCTION

Anthropogenic activities such as urban develop-

ment and agricultural management have caused

a significant loss of wetland and riparian areas

(Syphard and Garcia 2001). The majority of lost

wetlands historically were drained or filled to create

agricultural land; more than 80% of all wetland

conversions since 1980, however, have been non-

agricultural (Brown and Lant 1999). The 1972 Clean

Water Act drastically decreased the rate of wetland

loss, although wetland and riparian alterations

continue (Brown and Lant 1999). Although certain

ecological differences exist between wetlands and

riparian zones (Baker et al. 2006), the ecological

importance and human interaction between these

ecosystems are very similar, and we use term

wetland to describe both wetland and riparian areas

unless otherwise specified.

Activities such as agriculture, road building, and

urbanization often cause indirect damage to wetland

systems. The hydrological alterations associated

with these activities affect water supply and drainage

patterns of surface and subsurface moisture, re-

ducing the size and distribution of ecosystems

dependent on these water sources (Ehrenfeld 2000,

Winter et al. 2001). Wetlands often continue to

provide effective water purification and storage

functions until they are overwhelmed by pollution

or excessive runoff (Ghermay et al. 2000, Mitsch and

Gosselink 2000, Wang et al. 2001). Monitoring these

changing ecosystems helps to determine the toler-

ance of wetland ecosystems to human activities

(Ghermay et al. 2000).

Aerial photograph interpretation has traditionally

been used to monitor changes in wetland resources.

Identifying wetland sites on multiple years of photos

can require a significant time investment (Ramsey

and Laine 1997). The spatial resolution of aerial

photos can enable more precise change detection,

although replicating these interpretations is difficult

and can be inconsistent (Coppin et al. 2004). The

accuracy of change detection through photo in-

terpretation is vulnerable to human error and

variability between photographic images.

High temporal resolution, precise spectral band-

widths, repetitive flight paths, and accurate geo-

referencing procedures are factors that contribute to

the increasing use of satellite image data for change

detection analysis (Jensen 1996, Coppin et al. 2004).

Landsat-based classification procedures can provide

equal or greater overall accuracies than other

comparable space-borne sensors, such as Satellite

Probatoire d’Observation de la Terra (SPOT) or

Indian Remote Sensing Satellite (IRS), because of
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Landsat’s greater spectral resolution (Civco 1989,

Hewitt 1990, Bolstad and Lillesand 1992). Landsat

data have produced accurate maps for a variety of

wetlands in Australia, Canada, Botswana, and the

United States (Sader et al. 1995, Narumalani et al.

1997, Kindscher et al. 1998, Harvey and Hill 2001,

Townsend and Walsh 2001, Toyra et al. 2002,

Ramsey et al. 2005, Ringrose et al. 2005). The broad

dynamic range of multispectral sensors enables

accurate classification of narrow riparian systems

and isolated wetland patches, despite moderate

spatial resolutions (Ramsey 1995, Hosking et al.

2001, Masek et al. 2001).

The variety of image data sources and classifica-

tion techniques presently used has led to the

development of numerous change detection tech-

niques (Coppin et al. 2004). Post-classification

comparison has been applied to wetland studies to

determine the total area of wetland change and to

identify specific locations of such changes (Choung

and Ulliman 1992, Ramsey and Laine 1997,

Munyati 2000). Conducting independent classifica-

tions on multiple years, however, results in in-

dependent errors for each year that, when combined

in the change detection, results in compounding the

error. This is especially unfortunate in studies where

the vast majority of the study area is unchanged, as

is often the case in wetland change studies, because

these unchanged locations are classified twice with

the associated independent errors. Methods such as

landcover class stability weighting have been in-

troduced to reduce compound errors and improve

effectiveness of change detection analyses (Ramsey

et al. 2001). The compound error of simple

comparisons between individual classified images

has resulted in unreliable change detection with

notoriously low accuracy (Lu et al. 2003, Coppin et

al. 2004).

Simple differencing of spectral bands is a common

technique for quantifying spectral change. This

method may provide spurious results due to in-

fluence of data noise, inconsistencies between in-

dividual sensors, and limitations of detecting change

with a single spectral band (Nielsen et al. 1998,

Coppin et al. 2004). Simple differencing of vegeta-

tion indices (e.g., Normalized Difference Vegetation

Index) is less susceptible to noise interference (Hayes

and Sader 2001). Index differencing is more

spectrally dynamic than simple differencing, al-

though these techniques are also heavily dependent

on the radiometric resolution of only two spectral

bands (Johnson and Kasischke 1998, Stefanov et al.

2001, Dymond et al. 2002).

Change vector analysis (CVA), similar to pixel

vector modulus and cross correlation analysis, is

a change detection technique that can determine the

direction and magnitude of changes in multidimen-

sional spectral space (Collins and Woodcock 1994,

Johnson and Kasischke 1998, Allen and Kupfer

2000, Houhoulis and Michener 2000, Civco et al.

2002). CVA concurrently analyzes change in all data

layers, instead of a few selected spectral bands

(Coppin et al. 2004). CVA was first used to identify

changes in forest vegetation through measures of

change magnitude (Malila 1980, Coppin et al. 2004).

The CVA method identifies a change magnitude

threshold that is used to separate actual land cover

changes from subtle changes that do not result in

actual class changes and variability within landcover

classes, as well as radiometric changes associated

with instrument and atmospheric variations (Hame

et al. 1998, Johnson and Kasischke 1998). Defining

spectral threshold values to separate true landscape

changes from inherent spectral variation is particu-

larly beneficial for studies of broadly diverse

ecosystems, such as wetlands (Houhoulis and

Michener 2000). These thresholds are commonly

defined using the expert knowledge of the remote

sensing analyst with reference to known locations of

change and no change. Since only highly changed

pixels are reclassified with CVA, problems associat-

ed with within-class sensitivity to phenologic or

hydrologic differences between image dates are

reduced (Civco et al. 2002). Classifying only the

changed pixels on historical imagery reduces com-

pound error in this classification, although com-

pound error will exist for the pixels that are

identified as potentially changed and are reclassified.

CVA also minimizes the difficult task of collecting

training and reference data for historical images,

since unchanged locations can be used as reference

data (Hame et al. 1998, Mas 1999, Lu et al. 2003).

Orthogonal spectral data transformations com-

press spectral data into linear combinations of

spectral components that can accurately detect

diverse ecosystems (Collins and Woodcock 1994,

Nielsen et al. 1998, Oetter et al. 2001, Dymond et al.

2002, Parmenter et al. 2003). Principle components

analysis (PCA) and Tasseled Cap (TC) are two

commonly applied orthogonal data transformations.

PCA maximizes the spectral variability detected by

decreasing the redundancy of information contained

in multiple spectral bands (Armenakis et al. 2003).

PCA components are based on statistical relation-

ships that are difficult to interpret, and are variable

between different landscapes and different dates for

a single landscape (Collins and Woodcock 1994).

TC components are based on the physical

characteristics present in an image and are therefore

ecologically interpretable and comparable between
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image dates (Collins and Woodcock 1994). TC

transformations rotate Landsat spectral data onto

brightness, greenness, and wetness axes that corre-

spond to the physical characteristics of vegetation

(Parmenter et al. 2003). TC component 1 is

a measure of image brightness derived from the

responses of all but the thermal (Band 6) Landsat

bands (Armenakis et al. 2003). TC component 2 is

a measure of greenness calculated primarily through

differencing near infrared with visible bands. TC

component 3 is a measure of wetness determined by

comparing visible and near infrared responses with

shortwave infrared response. The invariant nature of

TC transformations allows direct comparisons of

TC bands for multiple Landsat scenes (Crist and

Cicone 1984). The brightness, greenness, and

wetness components generally account for more

than 97% of spectral variability present in a given

scene. These components have been widely used for

change analysis because changes in land cover are

generally related to changes in brightness, greenness,

and wetness, while other sources of variability that

might be unrelated to landcover change are reduced

(Collins and Woodcock 1994, Allen and Kupfer

2000, Lawrence and Wright 2001, Huang et al.

2002a, Parmenter et al. 2003). TC transformations

have effectively isolated wet sites on a landscape

(Dymond et al. 2002) and improved distinctions

between moist and senescent vegetation (Crist et al.

1986). The CVA technique was developed using

Landsat-based TC brightness, greenness, and wet-

ness components to describe specific biophysical

differences (Allen and Kupfer 2000, Coppin et al.

2004).

We demonstrated in a previously reported study

(Baker et al. 2006) that stochastic gradient boosting

(SGB) could be an effective classification algorithm

for identifying wetland and riparian areas using

a 2001 Enhanced Thematic Mapper Plus (ETM+)

image of the Gallatin Valley of southwestern

Montana. We sought to examine in this study

whether the use of CVA would be effective in this

landscape with the advantages of 1) only needing

to reclassify potential locations of wetland area

changes and 2) not needing to collect separate

reference data for the earlier date. We used CVA

with the previously reported results from 2001

ETM+ imagery and a 1988 Landsat Thematic

Mapper (TM) image. CVA was performed for

wetlands and non-wetland areas using the first three

TC components derived from the Landsat images.

Locations identified by CVA as being potentially

changed were classified for 1988 using SGB, while

those locations identified as unchanged remained the

same as in the 2001 classification.

METHODS

Study Area

The 135,570-ha study site was the lower basin of

the Gallatin River watershed, located in the Gallatin

Valley of southwestern Montana, USA (Figure 1).

The project area boundary generally follows the

boundary of the Gallatin Local Water Quality

District. The Gallatin and East Gallatin rivers have

shaped the majority of landscape formations on the

valley floor (Willard 1935). The population of
Gallatin County increased from 50,000 in 1985 to

nearly 64,000 in 1999 (Census and Economic

Information Center 2004). Agricultural land

across the state of Montana is increasingly being

converted into residential and commercial develop-

ment as a result of population growth (Kendy 2001,

Census and Economic Information Center 2004). In

contrast to wetland losses from agriculture, in-
creasing construction of private ponds across the

Gallatin Valley could result in increased wetland

habitat.

CVA Change Detection Overview

The 2001 ETM+ images and ancillary data were

used with a stochastic gradient boosting (SGB)

decision tree classification algorithm (Lawrence et

Figure 1. Location map for the Gallatin Local Water

Quality District.
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al. 2004) to develop a 2001 image classification of

wetland and non-wetland landcover types (this

classification is described in detail in Baker et al.

2006). The CVA equation was then used to calculate

the magnitude of spectral change among the three

TC components between September 1988 and

September 2001. The objective of this CVA analysis

was to identify areas of substantial change with

respect to TC response regardless of what wetland

areas changed from or to; therefore, we considered

only the magnitude of the change vector and not its

direction. A change threshold value was established

using areas of known wetland change as a guide.

Only the potentially changed locations (i.e., high

change threshold values) were classified with the

SGB algorithm utilizing 1988 spectral and ancillary

data. The potentially changed pixels that were

classified differently in 1988 than in 2001 were then

merged with the unchanged pixels from the 2001

classification. Each procedural step is described in

more detail below.

Image Pre-Processing

Landsat images acquired May 22, 2001 and

September 11, 2001 were used to create the wetland

classification for 2001 (for details see Baker et al.

2006). A Landsat TM image from September 15,

1988 was selected as the historical image and used

for change detection against the September 2001

image. The 1988 image was selected to closely match

the 2001 image based on seasonal and daily weather

station data for the years 1988 and 2001, and each

was compared to 100-year average data to avoid

false changes due to anomalous precipitation

patterns. This climate analysis was designed to

minimize false change results from differences

between the dates due to soil moisture, temporary

surface water from recent rainfall events, or leaf

water content. The Landsat image from 1988 was

selected based on these identified similarities in

hydrologic and temperature regimes from 1988–

2001 as well as the availability of a cloud-free,

anniversary date image.

Color infrared aerial photos acquired July 1985

and September 2001 were used as the reference data

to evaluate the accuracy of the classifications.

Geometric errors were reduced through geo-regis-

tering the 1988 Landsat image to the 2001 Landsat

image (Root Mean Square Error (RMSE) 5 8.2 m).

The 2001 Landsat image had previously been

georeferenced to the 2001 aerial photos (RMSE 5

5.2 m). In all image processing steps, nearest

neighbor resampling was used to preserve radiomet-

ric integrity.

When comparing two image scenes, steps must be
taken to reduce exogenous errors such as atmospheric

differences, sensor calibrations, and illumination

angle differences that might cause inaccurate de-

tection of spectral change (Collins and Woodcock

1994). Differences between Landsat TM and ETM+
sensors were standardized through established radio-

metric correction procedures prior to change de-

tection analysis (Ramsey and Laine 1997, Masek et
al. 2001). Both Landsat scenes were corrected to at-

sensor reflectance using the United States Geologic

Survey (USGS) equation. Sensor corrections were

made using gain/bias header file data for ETM+ and

the USGS Multi-Resolution Land Characteristics

(MRLC) gain/bias values for TM (Huang et al. 2001,

Huang et al. 2002b, Chander and Markham 2003).

Conversion to reflectance is a method of radiometric
calibration that incorporates solar illumination dis-

tance, solar illumination angles, and the differences in

sensor characteristics (i.e., gain and bias) for each

spectral band. Atmospheric variability is difficult to

correct without comprehensive data acquired at the

time of image acquisition. Reasonable assumptions

regarding similarities in atmospheric conditions were

made based on visual inspection of the image
characteristics and analysis of the image histograms.

We further assumed that atmospheric effects were

constant across the study area so that the effect of

atmospheric differences would only change the

magnitude of the change vector threshold.

TC transformations were performed using the at-

sensor reflectance values and USGS TC coefficients

(Huang et al. 2002a). Ancillary data used in this

project included a 30-m USGS digital elevation

model (DEM), slope gradient map (calculated from

30-m DEM), and digital hydric soils data from the

1985 Natural Resource Conservation Service
(NRCS) soil survey for Gallatin County.

Change Detection Procedure

The CVA equation is a variation of the Pythag-

orean theorem that calculates the Euclidean distance

of spectral change among the three vertices of
brightness, greenness, and wetness (Equation 1, as

applied to TC) (Parmenter et al. 2003).

Cm~ ((Brightness1 � Brightness2)2

z (Greenness1 � Greenness2)2

z (Wetness1 �Wetness2)2)0:5

where Cm 5 Change magnitude (Euclidean TC

component distance)
1,2 refer to respective TC component value for

separate imagery dates
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The CVA detection technique required consider-

ation of some ecological and spectral conditions in

regard to threshold selection and overall change

sensitivity. A lower change threshold value would

allow inclusion of slightly changed wetlands into the

change analyses, while a high threshold value would

only include the locations of significantly changed

areas. The change magnitude values ranged from 0–

0.944, and the change threshold was established at

0.130. Pixels with change values less than 0.130 were

assumed to have remained unchanged between the

image dates and were thus excluded from the change

analysis.

The change threshold value was established in

an iterative process using documented sites of

wetland increase and decrease from 1988–2001.

The change detection threshold, therefore, was

determined using the remote sensing analyst’s

expert knowledge of the study area, similarly to

many remote sensing techniques such as an

unsupervised classification where expert knowl-

edge of landcover classes within the study area is

required to relate spectral clusters to landcover

types (Jano et al. 1998). During research planning,

we selected a variety of known wetland change

sites as detection goals for the CVA procedure.

Change magnitude training sites included subtle

natural wetland changes occurring on agricultural

land and more obvious wetland destruction

and mitigation sites resulting from land develop-

ment. A more sensitive (i.e., lower value) change

magnitude was selected for this project to improve

detection of relatively minor wetland changes.

The potentially changed pixels (pixels with

a change magnitude greater than 0.130) were used

to identify sites of possible landcover change. At this

point, the sites were only considered potential

change sites, since changes in magnitude greater

than 0.130 could result from areas with changes in

spectral response that were not related to wetland

changes (i.e., agricultural land that had been fallow

in 1988 but not in 2001). The potentially changed

sites were used to create a mask for the 1988 Landsat

image that removed all areas except the highly

changed areas. Extracting the 1988 spectral data for

only the changed pixels reduced the number of pixels

classified for the historical wetland image. Only

22.0% (331,038 pixels) of the study area was

classified for 1988 using the CVA threshold mask,

thus theoretically reducing compound errors result-

ing from two independent full-image classifications.

The remaining 78.0% of the study area was

considered ‘‘unchanged,’’ and thus these pixels were

inserted into the 1988 wetland classification using

the 2001 classified results.

Training locations for wetland and non-wetland

classes were identified using the unchanged locations

from the 2001 classification and verified using 1985

color infrared (CIR) photographs. The data sources

for the historical wetland classification were 1988

Landsat spectral data combined with topographic

and hydric soils ancillary data. The potentially

changed pixels in the 1988 image were classified

using SGB to identify wetland and non-wetland

landcover classes. These classes were then compared

to the same classes identified in the 2001 wetland

classification to determine if landcover had changed

in regards to wetland areas between the two image

dates (Table 1).

Accuracy Assessment

Accuracy assessment locations were randomly

generated in a stratified random format to define

a minimum of 75 points for both wetland increase

and wetland decrease classes. For the 1988 and 2001

classifications, approximately 100 points for the

wetland class and 150 points for the more pre-

dominate non-wetland class were generated in

a stratified random format. On-site evaluations

and CIR photographs from 1985 and 2001 were

used as reference data for classification accuracy

assessments.

Land cover determinations, which were based on

vegetation and hydrology characteristics, used a var-

iation of the 50% rule (Tiner 1999). In this study,

20% was the confidence level above which wetland

areas could reliably be detected (i.e., a pixel was

classified as wetland only if at least 20% of the

location was wetland), based on comparisons of

classified images and reference data. This level of

sensitivity to wetland features was established during

project design to match on-going water quality

mapping and monitoring projects associated with

this research.

The change detection error matrix for this analysis

was comprised of two change classes and two non-

change classes (Table 2). Error matrices were also

compiled for the 1988 and 2001 SGB wetland

Table 1. Designations for land cover change classes.

Class

in 1988

Class

in 2001

Change Class

Designation

Non-wetland Non-wetland No change –

non-wetland

Non-wetland Wetland Wetland Increase

Wetland Non-wetland Wetland Decrease

Wetland Wetland No change – wetland
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classifications for accuracy comparisons between

image classifications resulting from this change

detection and classification procedure (Table 3).

Wetland and riparian classes were segregated for

this purpose.

RESULTS

Overall accuracy of the change detection analysis

was 75.8% (Table 2). The high user (97.2%) and

producer (88.3%) accuracies for the unchanged

wetland class showed that we were able to effectively

distinguish stable wetland sites on both image dates.

The unchanged non-wetland class had markedly

lower user (50.0%) and producer (76.0%) accuracies.

The low user accuracy for this unchanged non-

wetland class provides evidence that the CVA

threshold value was too high, thus excluding

a variety of wetland changes from the analysis

(Table 2). Compound errors in the wetland class for

the 1988 and 2001 classifications (Table 3) were

inherent in the post-classification comparison of the

classified images and likely contributed to change

detection errors.

Using the change threshold mask, we determined

a total of 331,038 pixels (22.0% of the study area)

had change magnitude values greater than the 0.130

change threshold and were considered potentially

changed sites (Table 4). Only 50,651 pixels (3.4% of

the study area) of these potential change pixels were

classified differently in 1988 than in 2001 and thus

represented estimated ecological change. The land-

scape area classified as wetland was somewhat

inflated since each pixel could be comprised of as

little as 20% wetland vegetation. As a result, the size

of most wetlands was notably larger in these

classifications than previous ecosystem inventories

of this region.

The results of this change detection analysis

(Table 4) showed that wetlands have generally

Table 2. Error matrix for 1988 –2001 change detection analysis.

No-change

(non-wetland)

Reference Data

No-change (wetland) Users Accuracy

Wetland

Increase

Wetland

Decrease

Classified Data

No-change (non-wetland) 38 14 24 0 50.0%

Wetland Increase 4 55 6 9 74.3%

Wetland Decrease 8 3 39 5 70.9%

No-change (wetland) 0 3 0 106 97.2%

Producers Accuracy 76.0% 73.3% 56.5% 88.3%

Overall Accuracy 75.8%

Table 3. Error matrices of 1988 and 2001 wetland/riparian classifications.

1988 Classification

Overall Accuracy 81.0%

Reference Data

Classified Data

Non-wetland Wetland Riparian Users Accuracy

Non-wetland 119 6 8 89.5%

Wetland 19 71 8 98.0%

Riparian 8 8 53 76.8%

Producers Accuracy 81.5% 83.5% 76.8%

2001 Classification

Overall Accuracy 86.0%

Reference Data

Classified Data

Non-wet Wetland Riparian Users Accuracy

Non-wetland 122 3 4 94.5%

Wetland 23 96 7 76.2%

Riparian 8 4 83 87.4%

Producers Accuracy 79.7% 93.2% 88.3%
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decreased within the Gallatin Valley. Wetland

change locations occurred in the interior of existing

wetland clusters and around the peripheral areas of

unchanged wetland sites (Figure 2). Many relatively

large, contiguous change clusters were visible for

both positive and negative change classes. CVA

accurately detected shifts of large areas, such as sub-

irrigated wet meadows converted to residential

development.

The majority of land cover changes occurred in

the northern and the southeastern sections of the

study area. The East Gallatin and West Gallatin

rivers converge in the northern end of the valley and

produce a matrix of surface and sub-irrigated

wetland ecosystems. Decreasing wetland area ac-

counted for the majority of landcover change in this

region. The southeastern portion of the valley

contained the rapidly growing urban and suburban

communities that surround the city of Bozeman.

This section of the Gallatin Valley was also

dominated by decreasing wetland area, although

some new wetland areas were detected in this

increasingly fragmented landscape.

The 2001 classified image had 86.0% overall

accuracy, and the 1988 classified image had 81%

overall accuracy (Table 3). The decrease in the 1988

classification accuracy was partially the result of

intensive sampling of underrepresented land cover

types (wetland) during the accuracy assessment.

Both of these accuracy values showed that the

classification algorithm distinguished the majority of

wetland sites from other land cover. In both the

1988 and 2001 classifications, the majority of error

resulted from non-wetland locations being incor-

rectly classified as wetlands. The majority of these

inclusion errors occurred along the periphery of

wetland boundaries and in areas of smaller upland

inclusions. Similar errors have been observed in

other wetland classifications and are likely the result

of the coarse spatial resolution of the Landsat sensor

(Ramsey 1995). This over-classification of wetlands,

as opposed to under-classification, is advantageous

for inventories designed to locate all possible wet-

lands. These errors, however, also likely contributed

to errors in the change detection analysis.

DISCUSSION

Overall change detection accuracy of nearly 76%

indicated that CVA was an effective method for

identifying changing ecosystems across a landscape.

This accuracy was comparable to a forest monitor-

ing project that used CVA to perform change

detection with 72% accuracy (Allen and Kupfer

2000), and was much improved over 58.8% accurate

wetland change detection using image differencing

(Choung and Ulliman 1992). The dynamic nature of

wetland ecosystems requires an equally dynamic

change detection procedure. These ecosystems can

exhibit a variety of vegetative or hydrologic changes

(Whigham 1999, Mitsch and Gosselink 2000) that

might not be detected when using one or two

spectral bands. The ability of CVA to measure

change using several spectral components is advan-

tageous when mapping rapidly changing and highly

diverse landscapes (Coppin et al. 2004).

The individual 2001 and 1998 image classification

accuracies (86.0% and 81.0%, respectively) indicated

that we effectively distinguished wetland sites from

other land cover types. Analysis of the change

Figure 2. Map of wetland/riparian change sites (1988–

2001) in the Gallatin Valley, as identified by CVA.

Table 4. Histogram values of change classes and

quantity of pixels included in study area.

# of pixels

% of

study

area hectares

Change Classes

No-change (non-wet) 1,194,843 79.3% 107,536

Wet/Rip Increase 13,395 0.9% 1,206

Wet/Rip Decrease 37,256 2.5% 3.353

No-change (wet) 261,935 17.4% 23.574

Total # of pixels 5 1,507,429 135.669

potential change pixels 5 331,038 22.0% 29.793
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detection error matrix also showed a lack of

confusion between the unchanged classes. These

results supported the theory that reducing the

number of reclassified pixels using CVA thres-

holding helps to maintain the integrity of classifi-

cation accuracies between multiple images, one of

our primary objectives for this study. This

approach achieved our goal of maintaining accu-

racies without the need for separate reference data

for the second classification and was, therefore, an

efficient method for locating historical wetland

communities.

Thresholding can also be a source of change

detection error that must be considered against the

benefits this technique provides. The use of thres-

holding has been debated in regards to statistical

analysis, although many studies have opted for the

higher accuracies thresholding can provide (Allen

and Kupfer 2000, Coppin et al. 2004). It was

difficult in this complex landscape to establish

a threshold value that was sensitive to the ecological

change of interest without including extraneous land

use changes, such as differences in agricultural

practices. This method is also subject to variable

results based on the ability of the analyst to set an

accurate threshold, as are all methods dependent on

expert knowledge. The thresholding sensitivity

might be more readily identified if a specific type

of landcover change (e.g., conifer mortality) was the

subject of analysis. More recent studies suggest that

statistically based determinations of threshold values

might improve change detection accuracy and

reproducibility (Warner 2005).

The results of this study showed that under-

estimating the threshold value might be advanta-

geous when detecting changes in highly diverse

ecosystems. A lower threshold would identify more

locations as potential change sites and include these

locations in the change detection analysis. The

overall accuracy should not be substantially jeopar-

dized by a lower threshold value since most of these

potential change sites (locations above the change

threshold) were classified the same in 1988 and 2001,

although the potential for compound error is

increased as more pixels are independently classified.

A lower change threshold would likely increase

overall change detection accuracy by identifying

more change locations to be incorporated into the

1988 classification.

The two change classes and the non-change

wetland class were heavily sampled in the stratifica-

tion of the accuracy assessment. This sampling

method thoroughly tested the accuracy of the areas

associated with wetland areas. Overall accuracies

would be substantially higher if a proportionate

number of the more prevalent unchanged non-

wetland pixels had been sampled, instead of in-

tensively sampling the changed locations. This
study, however, was conducted specifically to

identify changes regarding wetland ecosystems and

thus the accuracy assessment was a reflection of that

focus.

Capturing the nature of rapidly changing ecosys-

tems such as wetlands is a difficult proposition.

These ecosystems occupy a wide variety of habitats

and display an equally expansive range of vegetation

and hydrology. Using the CVA technique, future
research should help establish procedures for

empirical determination of change threshold values.

Using CVA with TC spectral information and

established change thresholds holds potential for

effective monitoring of specific biophysical charac-

teristics within a landscape.
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