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Abstract

Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from
geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the
extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant
stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining
the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which
plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block
design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a
water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that
received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral
bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier
that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa
of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that
vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-
occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render
detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak
with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.
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Introduction

Geologic Carbon Sequestration
Post-industrial atmospheric carbon dioxide (CO2) concentration

has risen from 280 ppm to over 380 ppm [1–6]. Atmospheric

CO2 absorbs and reemits radiation energy from the Earth’s

surface causing a warming of the surface environment [7]. Global

warming could drastically reshape the Earth’s climate and

environment [8–12]. Geologic carbon sequestration (GCS) is a

potential climate change mitigation strategy that captures point

source CO2 emissions from industrial sources and stores them in

large sub-surface reservoirs. GCS, conceptually, has the potential

to store gigatonnes (Gt) of CO2, which would otherwise be

released into the atmosphere, into specialized geologic formations

for long-term storage [13–19].

There is a mandate to monitor GCS sites for CO2 leakage to

ensure the efficacy of this technology, given that it is on the brink

of commercial-scale deployment [14,19,20–22]. Remote sensing is

being investigated as a possible cost-effective, large-area monitor-

ing method to detect surface CO2 leaks at GCS sites [23–24]. A

leak from a GCS site would not only compromise the viability of

this technology as a climate mitigation strategy, but it could also

threaten the safety of the surrounding environment and inhabi-

tants at the surface. The 1986 eruption of CO2 at Lake Nyos,

Western Camaroon, killed over 1,700 people and demonstrated

that a large pneumatic CO2 explosion can have devastating

consequences [25]. Natural sources of CO2 leakage from the Long

Valley Caldera in California have caused extensive forest mortality

[26–28].

Elevated CO2 levels in soil are known to cause anoxic

conditions in plant roots [26,29], thereby interfering with plant

respiration and inducing a stress response that could possibly be

remotely sensed using aerial imagery [24]. Vegetated areas at

GCS sites, presumably, could act as bellwethers to signal

operational inefficiencies in hazardous CO2 leak scenarios.

Vegetation status and seasonality will determine when the remote

detection of vegetation stress caused by elevated soil CO2 would be

feasible. Soil water availability is highly spatially variable, and

water stressed vegetation could appear spectrally similar to

vegetation stressed by elevated soil CO2. Drought is another
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common environmental occurrence that can have lasting impacts

on whole land regions and can be short-lived or persist for years.

Regardless of duration and spatial extent, monitoring GCS sites

with remote sensing data would require discrimination between

water and CO2 stress to accurately identify CO2 leaks.

Remote Sensing as a Monitoring Technique for GCS Sites
A variety of monitoring techniques are being investigated for

efficiency and accuracy at detecting a CO2 leak from a subsurface

storage reservoir [30]. Most methods tend to be expensive and

resource intensive, while providing only limited spatial coverage.

Remote sensing, alternatively, has the potential to provide near

instantaneous monitoring over large swaths of land. Aerial

imaging over GCS sites would be relatively inexpensive and

might be performed with limited labor requirements. Regions of

elevated soil CO2, if accurately detected with remote sensing

equipment, could be further investigated with instruments on the

ground to properly diagnose the leak source. Early leak detection

would allow site managers to take immediate remediation

measures to prevent further CO2 leakage, while minimizing safety

risk and economic loss. GCS monitoring could tolerate false

positives, within reason, whereas, a false negative resulting in a

missed CO2 leak could have serious consequences.

Hyperspectral Remote Sensing for Plant Stress Detection
Hyperspectral sensors collect nearly continuous spectral data

across narrow channel widths throughout the visible and infrared

portion of the electromagnetic (EM) spectrum (400–2500 nm).

Spectral signatures or spectra can be used to detect subtle patterns

in vegetation reflectance to better understand the physiological

condition of plants. Plant pigment concentrations, leaf cellular

structure, and leaf moisture content can be discerned with

hyperspectral data to assess the overall health of vegetation and

characterize plant stress [31–32].

Hyperspectral remote sensing has been used to detect and

characterize numerous types of vegetation stressors within the

visible and infrared portion of the EM spectrum. Hyperspectral

data have been analyzed to model plant stress caused by elevated

soil CO2 [33], water stress [34–36], insect and pest invasion [37–

40], heavy metal contamination [22], salinity stress [41], nutrient

levels and crop status [42–43]; ozone exposure [44]; and natural

gas leaks [45]. Certain spectral regions are known to be especially

sensitive, because they relate to the specific chemical and physical

responses of plants to stress.

Low reflectance in the visible portion of the EM spectrum (400–

700 nm) is determined primarily by chlorophyll a and b pigment

abundance and absorption, while high reflectance in the NIR

(750–2500 nm) is governed by the structural, spongy mesophyll

contained in plant leaves [31,46–49]. Chlorophyll absorption is

highest in the visible blue (400–500 nm) and middle red (near

680 nm), therefore these regions are not sensitive to subtle changes

in chlorophyll content, because the spectral signal is saturated

[46,50]. Absorption by chlorophyll pigments is weakest in the

visible green – orange (500–620 nm) and the far visible red

(700 nm), therefore, these wavelengths are sensitive to stress and

subtle changes in chlorophyll content [46,51]. Red edge indices

are frequently used to detect stress at the boundary of the far red

and NIR to detect changes in chlorophyll content. The red edge is

a reflectance spike caused by steep transition from low reflectance

in the far red to high reflectance in the NIR, which is used as

reference because it is determined by the physical structure of

plant leaves. Far red reflectance (near 700 nm) is known to

increase as a plant exhibits a physiological stress response of

reducing chlorophyll content to down regulate photosynthesis,

thereby reflecting proportionally more potentially damaging

photosynthetically active radiation compared to healthy vegeta-

tion, which can utilize all of that incoming energy. Vegetation

stress caused by depleted oxygen concentrations around the roots

from natural gas leaks and elevated soil CO2 has been detected in

the red edge region of the EM spectrum [23–24,33,45,52]. Water

stress has also been found to cause reflectance changes related to

chlorophyll pigment concentrations in the red edge [53–54].

Shifts of the red edge 5–10 nm towards shorter wavelengths,

termed the ‘‘blue shift’’, has also been associated with a decline in

chlorophyll absorption for stressed vegetation [32–33,45,52,55–

58]. This phenomenon has been associated with the early

detection of vegetation stress by hyperspectral remote sensing

instruments. The sensitivity of hyperspectral instruments to detect

vegetation stress early, and perhaps even before it is visible to the

human eye, has distinct advantages over conventional monitoring

methods, because land managers could then take quicker

ameliorative action to minimize losses to valuable resources [37].

Vegetation reflectance in the green portion of the EM spectrum

is associated with xanthophyll pigments in addition to chlorophyll.

Xanthophyll pigments contained within plants’ palisade mesophyll

perform photoprotective roles that also influence photosynthetic

radiation use efficiency and are sensitive to stress [42,59].

Vegetation reflectance within the green, therefore, will increase

in response to stress to down regulate photosynthetic activity

because of both xanthophyll pigment activity and decreases in

chlorophyll content. The Photochemical Reflectance Index (PRI)

is a narrow-band, hyperspectral index ratioing green reflectance

and is known to be sensitive to xanthophyll pigment activity. The

PRI has been used as an early indicator of water stress in plants

caused by drought conditions [34–36,43].

Water stress responses in vegetation have also been detected in

spectral water absorption features in the shortwave infrared

(SWIR) portion of the EM spectrum. Reflectance within the 1300–

2500 nm wavelengths has been associated with leaf water content

and has been observed to increase as a primary response of plants

to water stress [53]. Visible spectrum reflectance has also been

shown to increase, but only as a secondary plant response to water

stress, in which chlorophyll pigment concentration decreases as a

mechanism of down regulating photosynthesis during prolonged

dehydration in vegetation [53–54]. Spectral measurements of leaf

water content in the SWIR, therefore, directly monitors for plant

dehydration and would be a more immediate method of detecting

a plant’s response to water stress. The primary response of plants

to drought within the water absorption bands also could possibly

be spectrally distinct from other types of physiological stressors,

including stress caused by elevated soil CO2.

Our greenhouse experiment objectives were (1) to evaluate if

elevated soil CO2 stress can be detected in alfalfa plants using

hyperspectral data, and if so how quickly; (2) to determine if CO2

stress is spectrally distinguishable from water stress since water

availability is likely to be spatially variable at GCS sites and water

stressed vegetation will likely co-occur with CO2 stressed

vegetation during a CO2 leak scenario; and (3) to determine if

CO2 stress is distinguishable during drought conditions when all

vegetation is water stressed during a CO2 leak scenario. It is still

unknown whether the plant stress signal caused by elevated soil

CO2 is spectrally distinguishable from other forms of plant

physiological stress. Water stress or drought conditions in

particular, are common natural occurrences that might confound

a CO2 stress signal if both plant physiological stressors coincide.

Remote CO2 leak detection might therefore be problematic in the

context of GCS monitoring. Although this experiment does not

directly test the use of hyperspectral imaging for CO2 leak
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detection in a real-world aerial monitoring context, understanding

the spectral discernability between stress caused by elevated soil

CO2, water stress, and their interaction is important for

determining the appropriate times and conditions in which remote

sensing image acquisition should commence over GCS sites.

Methods

Data Collection
Alfalfa (Medicago sativa) seeds were planted on June 1, 2010, to

obtain 40 mature plants for this greenhouse experiment. Each

alfalfa seedling was transplanted into a 45 cm tall, 9.6-l tree pot

(Stuewe & Sons, Inc.). These tree pots were modified in several

ways prior to planting in order to facilitate CO2 injection into each

individual plant pot and to best emulate a CO2 leak scenario from

a GCS site. The drainage holes at the bottom of each pot were

sealed using plastic wrap, silicone, and Gorilla tape to minimize

injected CO2 from readily escaping through the bottom of the

pots. The pots were then filled with 1.0 l of pea-sized gravel placed

on top of a layer of gauze cotton cloth that covered drain holes at

the bottom of each pot. A 0.6-cm diameter tube was inserted into

each plant pot above the bottom 5-cm layer of gravel. The tube

terminated in a 5-cm long, ceramic air stone (Top Fin) intended to

disperse the CO2 gas radially, as opposed to being released from a

single point source. The embedded air stone plumbing was topped

with an additional l of gravel to assist in the dispersion of the CO2

gas throughout each pot and to allow for adequate water drainage

from the soil (Figure 1).

Soil was placed on top of another layer of gauze above the

gravel to keep the media separate. The soil used in the pots was a

mixture of equal parts loam, washed concrete sand, and Canadian

Sphagnum peat moss. Additionally, AquaGro 2000 wetting agent

was blended into the soil at a ratio of 0.5 kg/m3 soil mix. The soil

mix was pasteurized with aerated steam at 70uC for 60 minutes. A

10 cm long piece of 2.54 cm diameter PVC pipe was inserted

5 cm down into the surface of the soil of every plant to allow for

immediate access for soil CO2 concentration measurements with a

Vaisala GMP221 probe to verify injection. The alfalfa plants were

watered with approximately 300 ml of water at 0800 hours every

Monday, Wednesday, and Friday. They were fertilized twice a

week with a 1 gm/0.5 l dilution of NPK fertilizer (20-10-20) every

Wednesday and Friday until CO2 injection began. The green-

house temperature averaged 21.2561.60uC over the course of the

experiment. Sixteen hours a day of supplemental artificial lighting

was provided using 1000 watt metal halide growth bulbs (GE

Multi-Vapor MVR 1000/C/U) from 0500 to 2100 hours.

Greenhouse integral photosynthetic photon flux measured within

each of the treatment blocks ranged from 9.41 to 15.79 mol/m2/

day on peak sunny days and 0.09 to 0.11 mol/m2/day on cloudy

days (Apogee Instruments Line quantum sensors).

Five treatment blocks were developed, containing eight plants

each (two replicates of each of four treatment groups per block).

The four treatment groups included: (1) CO2 injection (I); (2) water

stress (WS); (3) an interaction group that was subjected to both

water stress and CO2 injection (WSI); and (4) adequate water and

no CO2 injection (C). Each treatment block contained two plants

from each treatment group. CO2 gas was delivered to the plant

pots through a plumbing manifold that used equal lengths of

tubing between each of the injected plants and a 2-stage pressure

reducing regulator (Smith) at the CO2 tank, which maintained

constant pressure and did not require adjustment as the pressure

within the CO2 storage cylinder decreased over time. The gas was

delivered from cylinders containing 50 lbs. liquid CO2 at a

constant pressure of 15 psig.

Alfalfa plants were randomly assigned to treatment blocks and

to discrete positions within each block using a random number

generator. Treatments within the blocks were randomly assigned

using a stratified randomization developed to maintain equal

lengths tubing between the injected plants (Figure 2). The plants

that received water continued on the same watering regiment of

300 ml/day, while the water-stressed plants were not given any

water in order to mimic drought conditions once CO2 injection

began.

Each alfalfa plant was scanned three times a week for three

weeks, and all 40 alfalfa plants were sampled twice to obtain two

spectral measurements per plant on each scanning date using an

ASD Field Spec Pro 350. The ASD is a 16-bit spectrometer that

has a spectral range of 350–2500 nm. The spectral resolution is

3 nm at 700 nm, 8.5 nm at 1400 nm, and 6.5 nm at 2100 nm.

The sampling interval for the instrument is 1.4 nm at 350–

1000 nm and 2 nm at 1000–2500 nm. Prior to interpolation there

are a total of 1512 channels that are used in scan acquisition. The

instrument takes a scan every 100 ms (ASD Inc.). A single sample

consisted of two clipped alfalfa leaves, each containing three

leaflets, from a randomly selected stem, determined by the roll of a

4-sided die. Each selected stem was clipped off at the bottom of the

sixth node and spectral scans were taken from the four largest

leaves on the cut stem. This sampling design intended to measure

leaves from both the lower and upper canopy of each alfalfa plant

to ensure that stress was not exhibited in one more than the other.

The first sample consisted of the upper two biggest leaves and the

second was taken from the lower two largest leaves of each cut

stem. The leaves were dissected, meaning each leaflet was clipped

from each sampled leaf (the leaves were left entire for ease and

maximum coverage of the viewing spot later in the experiment,

Figure 1. Diagram of a plant pot for the greenhouse
experiment.
doi:10.1371/journal.pone.0108299.g001
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when samples had leaves that were too desiccated and brittle to

dissect). The three leaflets from the bottom leaf of the top sample

were placed in parallel on a spectralon target overlapped by the

three leaflets of the upper leaf from the same sample to achieve

total leaf surface coverage of the ASD fiber optic sensor viewing

spot, the region from which spectral information is collected. The

process was repeated for the lower set of leaves from the same

plant for the second sample. These protocols were implemented

both to preserve the spatial relationship among the leaf samples, as

well as to keep the orientation of the leaves relative to the plant

consistent to best simulate what a remote sensing instrument from

an airborne platform would view (Figure 3).

The fiber optic cable of the ASD was equipped with a plant

probe accessory for leaf-level spectral measurements. The plant

probe was 10 in. long and contained an internal, low-intensity

halogen bulb, which produces little heat, for collecting spectral

scans from vegetation. The viewing geometry of the mounted fiber

optic cable created a 10 mm by 13 mm oval viewing spot from

which spectral information was collected.

Initial spectral readings were taken for all 40 plants at 1000

hours on February 7, 2011, as a baseline before treatments were

applied. CO2 injection began at 1400 hours on February 7, 2011.

A Vaisala soil probe was used to monitor CO2 concentrations over

time and to confirm successful injection into the individual plant

pots. A Swagelok G2 model variable area flowmeter also was used

Figure 2. Treatment block design. Single treatment block shown with plumbing and labeled treatments shown in white for each plant (left). Four
of five treatment blocks are shown within the greenhouse (right).
doi:10.1371/journal.pone.0108299.g002

Figure 3. Sampling method. Two dissected alfalfa leaves on the spectralon target (left). The ASD fiber optic and plant probe assembly (right).
doi:10.1371/journal.pone.0108299.g003
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to measure CO2 flux at the quick-connect union for each plant.

Injection rates ranged from 0.25 to .5 l/hr for all injected plants.

All 40 plants were spectrally scanned on Monday, Wednesday,

and Friday for three weeks. Each plant was sampled and scanned

on nine dates, except one plant, which was only scanned on eight

dates because it was discovered on February 9 that a plant was not

receiving CO2 injection for some unknown reason. The plant

therefore, was swapped out. A total of 18 scans were acquired for

all plants, except for the exchanged plant, which had 16 scans.

The injection was terminated on February 25, 2011, upon the

completion of scanning all the plants earlier that day.

All spectral measurements were in reflectance and were a

derived average of 25 individual scans. The instrument was

calibrated to set gains and off-sets by an optimization process in

the RS3 software (ASD Inc.). A dark current was collected

subsequently and the sensor was white referenced using a

spectralon target. The ASD instrument was periodically recali-

brated on each scanning date to ensure accurate and repeatable

spectral measurements. A new white reference and dark current

reading was made after the acquisition of both spectral scans for a

single plant. The ASD was re-optimized upon the completion of

acquiring data for an entire treatment block–eight plants.

Data Analysis
We developed a classification tree model for each individual

scanning date to determine the timing and extent to which the

different treatment groups were spectrally distinguishable. Classi-

fication tree analysis is a non-parametric statistical modeling

method that has been successfully used to discriminate vegetation

stress classes using hyperspectral data because it can utilize

different band combinations to distinguish each class [37].

Classification trees use recursive, decision-based rules that can

be interpreted by an analyst. This is important when trying to

ascertain how and where the different plant physiological stressors

are spectrally distinguished.

Although the ASD contained spectral data within the ultraviolet

portion (350–400 nm) of the EM spectrum, these data were

removed from further analysis because they were noisy and

airborne hyperspectral sensors generally do not collect data at

these wavelengths. The ASD measurements for the 400–2500 nm

spectral range were output in an ascii format and exported into an

Excel spreadsheet. TIBCO Spotfire S+ statistical software package

was used to fit classification tree models to each scanning date’s

data using treatment group as the response variable and the ASD

bands as explanatory (predictor) variables. Additionally, a factor

variable indicating the relative position (upper or lower) of each

leaf sample was included as a possible predictor variable in case

sample location had an influence on treatment response. Cross-

validation trees within S+ were used to prune the classification tree

models for each date, so that they were unbiased and not over fit

[60]. A standard 10-fold cross-validation was performed to

determine the appropriate number of terminal nodes to lower

deviance among samples, except that, given the small sample size,

a script was written in S+ to take a random sample of scans

stratified on treatment type (I, WS, WSI, or C) for each cross-

validation tree to ensure that a balanced sample for each treatment

group was withheld for validation purposes. This process was

repeated five times, taking a different stratified random sample for

each successive cross-validation tree and the plurality determined

the appropriate size for pruning each classification tree. The

spectral locations (wavelengths) used to distinguish between

treatment groups for each of the binary nodes within each pruned

classification tree model were examined to elucidate the spectral

regions that best discerned between water stress and stress caused

by elevated soil CO2 in plants.

A random forest classification [61] also was performed on the

individual scanning dates to evaluate the levels of prediction

accuracy that could be achieved in discerning water and CO2

stress agents. The algorithm is a ‘‘bagging’’ method that takes a

bootstrap sample from the data observations to develop a

classification tree by using a random subset of all possible

explanatory variables (spectral bands) at each binary split [61].

This is done iteratively to form hundreds of classification trees (the

forest) and then each observation is classified on the resultant

plurality vote of the forest. Random forest models were derived

with an ensemble of 500 classification trees with 45 randomly

selected explanatory variables (of the possible 2100 spectral bands

or the categorical variable indicating relative leaf position in the

canopy) to be tried at each binary split within each tree. Variable

importance plots from the random forest models were used to

highlight the spectral regions used in distinguishing between the

different treatment classes. Hyperspectral data have been modeled

using random forest to greatly increase classification accuracies, as

compared to other methods, as well as provide an unbiased,

reliable internal estimate of accuracy for mapping land cover [62]

and invasive plants [63]. A disadvantage of random forest is the

inability to ascertain the relevance of individual explanatory

variables and make meaningful interpretations of the model. Since

hundreds of individual trees contribute to a random forest model,

the classification results are essentially determined inside a ‘‘black

box’’ that is effective for the purpose of prediction, but not for

interpreting the decision-based rules that determine those predic-

tions [64].

The lack of replicates in this study forced us to rely on internal

measurements of predictive accuracy to evaluate spectral distin-

guishability. No data were withheld in the construction of the

individual classification trees and the random forest classifier

withheld approximately one third of each date’s data as a

bootstrap (out-of-bag) sample for internal validation within each

of the 500 constructed trees. The random forest classifier has

proved itself as a robust classification tool that contains an

unbiased internal accuracy assessment that does not require a

separately withheld dataset for validation [63]. Overall classifica-

tion accuracies, Kappa statistics (a more robust estimate of

classification accuracy because it takes into account chance

agreement by differencing the observed accuracy from that of a

total random assignment), and individual user’s (mapping errors of

commission) and producer’s accuracies (mapping errors of

omission) were used to assess predictive capabilities for the class

distinctions through time [65].

Results

Examination of the individual sample spectral signatures for the

different treatment groups illustrated the spectral regions that were

critical in their distinction and accurate classification (Figure 4).

Sample spectra for each of the treatment groups appeared to

exhibit similar reflectance properties in the visible wavelengths,

while subtle spectral deviations occurred in the near and SWIR

peak reflectance features before treatments were applied, on

February 07. The stressed sample spectra, in contrast, appeared to

exhibit increased reflectance in the visible spectrum, especially

within the visible green, as compared to the C class on February

21, at the height of spectral distinction among treatment groups.

Water stressed samples exhibited increased reflectance in the

SWIR as compared to the C and I classes. The WSI class

predominantly exhibited higher reflectance in the visible and

Hyperspectral Detection of a Subsurface CO2 Leak
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SWIR regions compared to all other samples. The red edge

spectral boundary shifted towards shorter wavelengths (the ‘‘blue

shift’’) for stressed samples after four days of treatment application,

however, visual symptoms of stress were also observed on this day.

The blue shift was not uniquely expressed among stressed

treatment groups.

Figure 4. Sample reference spectra for each of the four treatment groups. Spectral signatures for February 07 (before treatment
application) and February 21 (when spectral distinction was greatest between treatment groups).
doi:10.1371/journal.pone.0108299.g004
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Classification Tree Analysis
Cross-validation results determined that four terminal nodes

were appropriate for February 21 and 23, otherwise the

classification trees were pruned smaller to ensure they were not

over fit (Table 1). Only the February 21 and 23 classification tree

models, therefore, distinguished among all four treatment groups.

A decision split or node was not justified for the classification tree

models during the first week of the experiment. Not until February

14 were two or more terminal nodes warranted (Figure 5). The

categorical variable indicating relative leaf sample position within

each alfalfa canopy was never used as a splitting rule for any of the

classification trees.

WS and WSI classes exhibited greater reflectance than the C

and I classes within the water absorption bands near the 1400,

1900, and 2500 nm wavelengths. These distinctions in the SWIR

infrared regions began on February 14 and persisted until the end

of the experiment. Second level distinctions (decisions in trees with

three or more terminal nodes) were made within the red edge at

the 717 nm wavelength, where greater reflectance was exhibited

by leaf samples from the I class as compared to the C class. The I

class also exhibited greater reflectance in the visible green-visible

orange at the 545, 621, and 541 nm wavelengths as compared to

the C class. The WSI interaction group exhibited compound stress

effects with greater reflectance as compared to the WS class in the

water absorption bands at 1429 nm and 1901 nm.

Confusion early in the experiment, from February 14–18,

occurred almost exclusively between (1) I and C classes, and (2)

WSI and WS classes (Table 2). The C class was accurately

distinguished by the second week of stress treatment application

(user’s and producer’s accuracies $91%). Spectral differentiation

between treatment groups was greatest on February 21 and

February 23 (after two weeks of treatment application) with overall

classification accuracies of 90% (Kappa of 0.87) and 81% (Kappa

0.75), respectively. Confusion during maximum spectral distinc-

tion primarily occurred (1) with I samples being classified as WS,

and (2) WS being classified as WSI. Producer’s accuracies for the I

class were 80% and 55%, while the WSI class had perfect

producer’s accuracies (100%) on both February 21 and 23.

Overall classification accuracy dropped to 66% (Kappa of 0.55) on

the last scanning date, February 25.

Random Forest Analysis
The trend in accuracy of the random forest models throughout

the time series was similar to that of the classification tree models

(Figure 6). Out-of-bag accuracy predominantly exhibited a curvi-

linear trend with increasing out-of-bag accuracy from 25% (Kappa

of 0) on February 7 (before treatments were applied) to peak

classification accuracy of 83%, (Kappa of 0.77) on February 21.

Subsequently, classification accuracy decreased. By February 25

out-of-bag accuracy had dropped to 65% (Kappa of 0.53). The C

treatment group was best distinguished with user’s and producer’s

accuracy $80% after one week of treatment application (Table 3).

Most class confusion existed between WSI and WS treatment

groups, once overall out-of-bag accuracy was $65% (February

14–25). I class producer’s accuracy was $65% from February 14

onward. WSI class producer’s accuracy was 90% for February 21

and 23, but was much lower on other dates.

The variable importance plots provided a visual display of the

spectral regions that were the most influential in single date

random forest model prediction (Figure 7). The variable impor-

tance plots were very noisy before there was spectral discernability

among treatment groups. Spectral regions became more clearly

defined as classification accuracies increased. The red edge region

(700–750 nm) was shown to be the most important on February

14 and 16. On February 18, variable importance was predom-

inantly placed on the spectral wavelengths centered on approx-

imately 1400 nm. During maximum spectral distinction among

treatment groups, variable importance was placed (1) in the visible

green-yellow portion of the EM spectrum centered at approxi-

mately 550 nm; (2) the red edge (700–750 nm); and (3) the three

water absorption features centered at approximately 1400, 1900,

and 2500 nm. On February 25, the last scanning date, more

emphasis was placed on the visible and NIR spectral regions rather

than the water absorption features. The categorical variable

indicating relative leaf sample position within each alfalfa canopy

was never deemed important in any of the random forest

classification models (variable importance,0.01).

Discussion

Our analyses demonstrated that hyperspectral spectrometry

could distinguish between CO2 stressed and healthy alfalfa leaves

(I v. C). Furthermore, the spectral distinction of plant stress caused

by elevated soil CO2, water stress conditions, and their interaction

was possible at certain times during the greenhouse experiment.

Table 1. Number of terminal nodes determined by the cross-validation results for the single date classification tree models.

Cross-Validation Tree Results

Date x1 x2 x3 x4 x5 Plurality

2/7 1 1 1 1 1 1

2/9 1 1 1 1 1 1

2/11 1 1 2 2 1 1

2/14 2 1 2 2 1 2

2/16 3 3 3 3 2 3

2/18 2 2 5 2 2 2

2/21 4 4 4 4 4 4

2/23 4 4 4 4 4 4

2/25 3 2 2 3 3 3

The plurality of the five cross-validation trials determined the appropriate size of the final trees.
doi:10.1371/journal.pone.0108299.t001
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Those findings have significant implications for the use of

hyperspectral imaging to monitor GCS sites for CO2 leaks given

that water stress is a prevalent environmental condition and could

be a confounding factor. Remote sensing monitoring of CO2 leaks

amid a landscape of patchy, water stressed vegetation would most

likely require differentiation of CO2 and water stress (I v. WS),

whereas during widespread drought, vegetation stressed by both

CO2 and water stress would need to be spectrally distinct from

surrounding vegetation (WSI v. WS).

Confusion predominantly occurred between (1) I and C classes,

(2) I and WS classes, and (3) WSI and WS classes, which could be

problematic for CO2 leak detection in a GCS monitoring context.

Mapping errors of omission (low producer’s accuracy) for CO2

stressed vegetation (I and WSI) would be less acceptable from a

hyperspectral monitoring standpoint, while mapping errors of

commission (low user’s accuracy) would be more tolerable, since a

CO2 leak would be less likely to go unidentified. High commission

error and low omission error would result in the overestimation of

CO2 leaks, perhaps wasting labor resources for ground verifica-

tion, however, CO2 leaks would less likely be missed.

CO2 Leak Detection When Water Is Not Limiting
Hyperspectral monitoring of GCS sites when water stressed

vegetation is not present would consider the spectral discrimina-

tion between I and C classes. Spectral distinctions in the red edge,

visible green, and visible orange regions were used to distinguish I

from C classes. Rules discerned increased green reflectance within

the I class multiple times near 550 nm, a spectral region sensitive

to xanthophyll pigment activities associated with photosynthetic

efficiency [42,59] and changes to chlorophyll content [46].

Additionally, increased reflectance at the 620 nm and 717 nm

wavelengths distinguished I from C classes. These are also spectral

regions that are known to be highly sensitive to chlorophyll a
content and absorption [32]. The primary spectral response of the

I class to elevated soil CO2 was increased reflectance within the

visible green–orange spectrum.

The I class was distinguished from all treatment groups with

user’s and producer’s accuracies $70% beginning February 16,

after ten days of CO2 injection. Classification accuracies of the I

class remained high until the end of the experiment, suggesting

that a detectable stress signal caused by a CO2 leak could persist

for a substantial period of time. I and C classes were likely

confounded in the experiment because some alfalfa plants received

comparatively higher CO2 injection rates due to minor differences

in gas flow dynamics influenced by plant pot plumbing geometry

and soil compaction. Severity and timing of stress caused by CO2

injection therefore, varied. Healthy plants also appeared to be

disproportionately targeted by a two-spotted spider mite infesta-

tion, which possibly caused a stress response that was most

spectrally similar to stress caused by elevated soil CO2 given that

the insects caused a discoloration in the leaves most similar to the

chlorosis observed in the alfalfa plants receiving CO2 injection.

The two-spotted spider mites were treated with numerous

pesticides and biological controls, however, they probably

remained an influential stress factor for healthier alfalfa plants.

The results of the random forest classification demonstrated that

stressed and non-stressed vegetation were accurately distinguished

after one week of treatment application (C class accuracies $80%).

Spectral differentiation among the stress classes was more difficult

and time dependent, however.

Figure 5. Pruned single date classification trees. Each tree shows the utilized spectral bands (by central band wavelength) and reflectance
levels for each splitting rule. Splitting rules apply to the left branches of the tree. C = control class; I = CO2 injection class; WS = water stress class; and
WSI = water stress and CO2 injection interaction class.
doi:10.1371/journal.pone.0108299.g005
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CO2 Leak Detection When Soil Moisture Is Spatially
Variable

Identification of a CO2 leak would likely require water stress to

be spectrally distinguished from stress caused by elevated soil CO2

because soil moisture availability is highly variable across most

landscapes [66–67]. Increased reflectance within the water

absorption regions near 1400 and 2500 nm was the most

important characteristic that distinguished water stressed classes

(WSI and WS) from C and I classes. The primary spectral

response of leaf dehydration occurs within the water absorption

regions (near 1400, 1900, and 2500 nm) that are sensitive to leaf

water content [53].

Patterns of variable importance for each of the random forest

models identified discrete spectral regions that were particularly

useful in discriminating among treatment groups. The red edge

and the visible green-visible orange spectral regions were at least as

important as the water absorption bands for distinguishing among

the different classes. However, the ‘‘black box’’ nature of the

random forest classifier did not allow for specific interpretation of

the spectral distinctions made by the model [64]. It is possible that

the variable importance within the visible and NIR wavelengths

was related to distinguishing between the I and C classes given that

these two treatment groups appeared to be spectrally similar in the

SWIR region, while the water stress classes were likely separated

by distinctions in the water absorption regions. Eventually

increased reflectance in the visible, NIR, and SWIR regions can

be exhibited by all stressed plants regardless of the cause, however

[53].

Alfalfa plants of the I treatment group exhibited visual stress

predominantly as chlorosis (yellowing of plant leaves due to lack of

chlorophyll production), although some CO2 injected plants’

leaves did become desiccated by the end of the experiment,

suggesting leaf water loss. Leaves of the WS treatment group

generally exhibited a lack of vigor (leaves were droopy) early in the

experiment, and eventually, they became dessicated and brittle as

the water stress severity increased. Overall these classes were

distinguished reasonably well. Only minor confusion occurred

probably because of similar reflectance properties in the visible

wavelengths due to eventual chlorophyll loss to water stressed

samples and due to eventual leaf moisture loss, expressed as

increased reflectance in the water absorption bands of I class

samples [53].

CO2 Leak Detection During Widespread Drought
Remote monitoring of GCS sites could require CO2 leaks to be

spectrally distinguished during drought conditions when all

vegetation is subjected to water stress. Elevated soil CO2 would

thereby have to interact with water stress to cause a compound

stress response in vegetation that was spectrally discernable.

Greater reflectance in the water absorption bands near 1400 nm

was used to distinguish WSI from WS classes, perhaps in response

to diminished water-use-efficiency caused by comparatively faster

leaf moisture loss or reduced water uptake at the root level. This

was consistent with a compound stress interaction being exhibited

by the WSI class. Treatment class accuracies indicated that alfalfa

plants that went without water for one week exhibited water stress

that became spectrally discernable on February 14. The confusion

existed primarily between them and not with the other classes.

Individual WS and WSI class accuracies, therefore, were low. This

was consistent with a water stress signal that was more easily

discerned because of the discrete water absorption features where

leaf reflectance is directly related to leaf moisture content. Spectral

distinction of the WSI class remained relatively convoluted with

the WS class throughout the experiment. The WSI class was

distinguished with high producer’s accuracies (low omission error)

on February 21 and 23, perhaps suggesting that vegetation could

exhibit stress in response to a CO2 leak that could be distinguished

during drought conditions, albeit a narrow time window.

The plant leaves of the water stressed treatment groups became

desiccated and brittle as the experiment progressed. These plants

Figure 6. Overall internal accuracies for each random forest and classification tree model over the course of the experiment. Note
that the February 7–11 classification trees did not contain $ two terminal nodes.
doi:10.1371/journal.pone.0108299.g006
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eventually began to die. Spectral distinction within the water

absorption bands was probably difficult due to the extreme leaf

moisture loss caused by severe drought by the end of the

experiment. Little variable importance was placed on the water

absorption features in the last classification date (February 25),

where the water stressed treatment groups were poorly distin-

guished (accuracies#50%), while the I and C treatment groups

were classified with reasonable accuracy (accuracies $75%). This

was evidence that the alfalfa plants’ response to severe drought

surpassed a stress threshold that rendered the CO2 stress signal

spectrally indistinguishable.

Pre-visual Plant Stress Detection
Pre-visual stress detection would be a critical attribute and an

advantage to using hyperspectral remote sensing for early CO2

leak detection at a GCS site. February 11 was the first day that

subtle visual evidence of stress to some of the WSI and I

treatment group plants was evident. Early visual symptoms of

stress (i.e., chlorosis and languid leaves) were confined to older

leaves located lower on the stems within the alfalfa plant

canopies. Visible stress was most prominent within the WSI

treatment group, which exhibited the compound effects of both

CO2 injection and lack of water. The accurate classification of the

WSI samples did not occur until February 14, one week into the

experiment, even though stress was noted visually three days

before that time. The blue shift of the red edge towards shorter

wavelengths has been associated with the pre-visual detection of

plant stress [32,55,57], and was observed for some sample spectra

by February 11. Blue shift spectral characteristics were similar in

depth and slope for all of the stressed classes and, therefore, could

not be used to distinguish among stress agents. This experiment

provided no evidence that the pre-visual detection of plant stress

was possible with hyperspectral data.

Summary
The primary conclusions that can be drawn from this

greenhouse experiment are (1) that plant stress caused by elevated

soil CO2 was spectrally detected, probably in the visible

spectrum, after approximately one week of CO2 injection

through the end of the experiment (random forest I class

accuracies $65%). This is potentially, evidence that a spectral

stress signal caused by elevated soil CO2 could persist for a

substantial period of time; (2) CO2 and water stress were

spectrally distinguishable; and (3) Elevated soil CO2 appeared to

cause a compound stress response detected in plants that were

already water stressed, however, there was a relatively narrow

time window when the WSI class was spectrally distinguished

from the WS class. This was indicative of a time-dependent

compound stress response caused by the interaction of elevated

soil CO2 and drought.

Although the results were variable between the individual

classification tree and random forest classifier results, they both

illustrated the same pattern of predictive success for plant stress

detection. Differences between the two modeling strategies were

likely due to the small sample size relative to the high

dimensionality of the hyperspectral data. There were a total of

40 plants, 10 plants per class, as compared to the 1512 possible

predictor variables. Depending on which samples were withheld

for validation purposes during model development, variability did

occur between outputs. Additionally, the random forest classifier

uses a randomized node optimization which would introduce

additional variability. Therefore, these differences were expected

especially when using two distinctly different classification

methods.
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These results suggest that remote sensing may be used to

monitor GCS sites for CO2 leaks. Detection of a CO2 leak when

the availability of soil water is highly variable across space might

be possible even if there are co-occurring patches of water stressed

vegetation. Plants appear to hit a stress threshold, however, that

renders spectral detection of a CO2 leak unlikely during severe

drought conditions. Regardless, this research demonstrated the

necessity for remote sensing instruments to be spectrally sensitive

to SWIR reflectance in order to accurately distinguish CO2 and

water stress.

Even though pre-visual stress detection was not possible at the

leaf-scale, the early detection of stress caused by elevated soil CO2

was achieved. Aerial hyperspectral imaging has been demonstrat-

ed to be effective for early stress detection at broader spatial scales

[37] and the random forest classifier has been used to successfully

map invasive plants in a natural setting [63]. Monitoring for CO2

leaks at GCS sites will possibly require large area coverage, which

will only be possible from an airborne platform. Hyperspectral

instruments with high spatial resolution optics for canopy-level

monitoring at altitude, therefore, might be important for the early

detection of CO2 leaks. The high dimensional nature of

hyperspectral data will require robust data analysis methods that

can detect a plant stress signature or signal within large datasets.

Different data mining tools exist that could both reduce the

dimensionality of hyperspectral data and discern the targeted CO2

stress signature in an aerial monitoring context. For example, an

orthogonal operator has been used to reduce the dimensionality of

hyperspectral data while retaining the meaningful signature of

interest [68–69]. Additionally, a hypergraph method that jointly

relates the spatial context of image pixels to their associated

spectral characteristics has been demonstrated to be effective in

hyperspectral image classification and may be useful in detecting

pockets of plant stress caused by elevated soil CO2 [70]. Further

exploration of different data analysis methods will be essential to

optimize a workflow that would enable an analyst to efficiently

assimilate large datasets and effectively detect a CO2 leak in a

GCS monitoring context.

Additional research is warranted to understand the extent to

which elevated soil CO2 stress could be detected at the canopy-

level using airborne remote sensing, especially when water stress

conditions exist. Spectral differentiation between CO2 and water

stressed vegetation would likely include spectral distinctions within

the water absorption features. Spectral data acquired within the

water absorption regions from an airborne remote sensing

platform would likely be attenuated by atmospheric water vapor,

perhaps further confounding CO2 leak detection [47,54]. Snow

cover and drought are going to limit the applicability of remote

sensing data in temperate climates, therefore hyperspectral

monitoring will need to be used in conjunction with other

monitoring methods to obtain adequate temporal coverage of

GCS sites. Improved understanding of vegetation spectral

responses to stress caused by plant senescence will also be critical

in determining the seasonal timing in which remote sensing data

are appropriate for the detection of plant stress caused by an

underground CO2 leak.

Figure 7. Variable importance plots for the single date random forest models. Note that the leaf position categorical variable is not
included.
doi:10.1371/journal.pone.0108299.g007
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