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Abstract

Management of agricultural soils, most notably tillage, influences wind, and water erosion, which in turn has implications for non-point

source pollution of pesticides, fertilizer, and sediment in agro-ecosystems. No-till (NT) practices improve soil, water, and aquatic ecosystem

quality by reducing soil erosion and chemical runoff. The ability of cropland soils to sequester C from the atmosphere might help mitigate

global warming. Classification of Landsat ETM+ satellite images has the potential to identify tillage practices and soil disturbance over large

areas, enabling efficient monitoring of these agricultural practices. Previous studies predicting tillage management had relatively small study

areas (located in a single county), relatively low numbers of fields (6–51), and were temporally focused on non-planted fields to reduce the

potential effects of crop canopy interference and/or field patterning. Our objectives were to predict in the presence of crop canopy and over a

spatially large, management diverse study area (1) tillage systems (NT versus tilled) and (2) soil disturbance. A farm survey of the study area,

north central Montana, was used to as a means to obtain extensive field-level farm management data. We compared logistic regression (LR),

traditional classification tree analysis (CTA), and boosted classification tree analysis (BCTA) for identifying NT fields. Logistic regression

had an overall accuracy of 94%, BCTA 89%, and CTA 87%, but tillage was not well distinguished. Soil disturbance was estimated using linear

regression (LM), regression tree analysis (RTA), and stochastic gradient boosting (SGB), an RTA variant. Classification of soil disturbance

was best achieved using RTA (predicted mean soil disturbance not significantly different than known soil disturbance, p-value = 0.08).

Classification of Landsat ETM+ imagery showed promise for predicting tillage and agricultural soil disturbance over large, heterogeneous

areas.
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1. Introduction

Management of agricultural soils affects many facets of

both natural and agro-ecosystems. Agricultural practices,

most notably tillage, influence wind and water erosion,

which in turn has implications for non-point source pollution

of pesticides, fertilizer, and sediment. Tillage and soil

disturbance also affect soil organic matter (SOM) dynamics.

Reducing or eliminating tillage, managing crop residue,

increasing cropping intensity, diversifying crop rotations,
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and efficiently managing fertilizer are management prac-

tices that diminish the potential for environmental impacts

from agriculture and tend to increase SOM content in

cropland soils (Campbell et al., 2000; Lal, 1998; Liang et al.,

1999; Peterson et al., 1998; Potter et al., 1997; Mickelson

et al., 2001). National inventories of potential non-point

pollution source areas and regions with high carbon

sequestration potential related to tillage and soil disturbance

are needed in order to efficiently target pollution mitigation

strategies and carbon sequestration opportunities.

Mapping areas with substantial acreage managed with

tillage could help identify areas prone to soil erosion and

chemical runoff. These same areas might also have the
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potential to store C if management changed. Survey data

from the study area show a greater proportion of no-till

management compared to tillage management; however, it

has been estimated that 2 million acres or approximately

24% of cropland in Montana are in no-till (CTIC, 2004).

Reducing soil erosion and chemical runoff would improve

soil, water, and aquatic ecosystem quality (Mickelson et al.,

2001). The ability of cropland to sequester C from the

atmosphere, helping mitigate global warming, has the

potential to add value to farmland and agricultural farm

management (Lal et al., 1998).

Using remote sensing to determine tillage practices has

been limited, especially in dryland wheat (Triticum aestivum

L.) regions. Landsat Enhanced Thematic Mapper Plus

(ETM+) imagery and logistic regression (LR) had >95%

accuracy in verifying NT fallow fields in a limited study in

north central Montana (Bricklemyer et al., 2002). Classi-

fication of conservation tillage practices, including NT, has

been successful in climates moister than north central

Montana. Landsat Thematic Mapper (TM) data were used to

determine tillage practices in a corn (Zea mays ssp.)/soybean

(Glycine max L.) rotation in Ohio using six logistic

regression models with resulting map accuracy of 93%

(vanDeventer et al., 1997). Landsat TM and logistic

regression have also been used to map tillage practices in

the Lower Minnesota River watershed using the logistic

equations developed by vanDeventer et al. (1997) (Gowda

et al., 2001). Models using TM band 5 or the difference

between TM bands 3 and 5 had 70–77% accuracy. Ikonos

imagery has been used more recently to discriminate

conventional and conservation tillage practices in Nebraska

(Vina et al., 2003). Five Ikonos bands and four principal

components (PCs) were evaluated to determine which

band(s) best discriminated between corn and soybean

residues and conventional and conservation tillage. Logistic

models applied to PC 2 and PC 4 had 80 and 77% overall

accuracy for discriminating corn/soybean residues and

conventional/conservation tillage, respectively (Vina

et al., 2003). Finally, the Crop Residue Index Multiband

(CRIM) model, although not specifically addressing the NT/

tillage question, was used to classify residue cover into 2, 3,

and 5 categories using ETM+ imagery in the Minnesota

River Basin (Thoma et al., 2004). The highest accuracy (79–

80%) occurred when classifying two categories, 0–30 and

31–100% residue cover, which were equivalent to conven-

tional and NT management, respectively (Thoma et al.,

2004).

Application of the methods used in the previous studies is

limited due to temporal, spatial, and cultural reasons. All of

the previous tillage prediction studies temporally focused on

non-planted fields in the analysis to reduce the potential

effects of crop canopy interference and/or field patterning.

All of the studies had relatively small study areas (located in

a single county) and low numbers of fields (6–51), with one

exception (Thoma et al., 2004, which covered 13 counties

and 468 fields). The diversity in crops was limited to corn
and/or soybean, however. Restricting studies to non-cropped

fields, small study areas, and few number of farm fields

likely does not capture the potential variability in regional

farm management including crop types, seeding dates, and

equipment used.

Variability in farm management can be substantial locally

(i.e., within counties) and more so regionally (i.e., multiple

counties). Not all farmers employ the cultural practice of

fallow, row width and row spacing configurations vary

with farm managers, and timing of management operations

vary dependently on local weather conditions, for example.

There are also substantial variations in both NT and tillage

equipment that can influence the proportion of soil

disturbed.

Classification tree analysis (CTA) is becoming a popular

method of classifying remotely sensed data (Lawrence et al.,

2004), while regression trees are applied to continuous data

analyses. Boosted classification tree analysis (BCTA),

including stochastic gradient boosting, is a variant of

standard CTA that has the potential for greater prediction

accuracy, although the results are more difficult to interpret

(DeFries and Chan, 2000; Lawrence et al., 2004). Methods

of boosting CTAs are also commonly called voting or

ensemble methods and operate by generating multiple CTA

trees with each subsequent tree ‘‘boosted’’ based on

classification errors from the previous tree. Each new tree

thus focuses on the more difficult classifications in the

previous tree (Freund and Schapire, 1996; Lawrence et al.,

2004). The final classification is the result of a plurality

‘‘vote’’ of the multiple classification trees. Previous research

has shown that BCTA can achieve substantial improvements

in prediction accuracy over single classification trees

(Freund and Schapire, 1996; Lawrence et al., 2004),

although it can also lead to reduced accuracies depending

on the data (Lawrence et al., 2004).

The objectives of this research were to predict in the

presence of crop canopy in a spatially large, management

diverse study area (1) tillage system (NT versus tilled) and

(2) soil disturbance, calculated as the proportion of the soil

surface disturbed by seeding and fertilizer application. To

meet these objectives, we compared the accuracy of our

previous method of logistic regression (LR) for identifying

no-till fields to traditional CTA and BCTA. We also

compared linear regression (LM), regression tree analysis

(RTA), and stochastic gradient boosting (SGB) for estimat-

ing soil disturbance using Landsat ETM+ imagery.
2. Methods

2.1. Study area

The study area was located in the dryland wheat growing

region in north central Montana, roughly bound by Great

Falls to the south, Cut Bank to the northwest, and Havre to

the northeast (Fig. 1). Primary crops grown in the study area
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Fig. 1. 26 June 2002 Landsat ETM+ image of study area. White stars

represent location of fields included in the study.
are spring wheat, winter wheat, and barley (Hordeum

vulgare L.). Study area soils are dominated by deep, medium

to fine textured ustolls, orthents, and argids with a frigid

temperature regimes formed in nearly flat to strongly rolling

glacial till plains. Elevation of cropland area ranges from

600 to 1400 m, and average annual precipitation ranges from

250 to 375 mm, the majority of which occurs in spring and

early summer.

2.2. Data collection

A survey was used to obtain field-level farm management

data. Farmers in the region were initially contacted by phone

to determine if they would be interested in participating in

the study and, if agreed, supplied legal descriptions

(township, range, and section) of farm fields that were

currently (1) in crop, (2) in fallow, and (3) in the

Conservation Reserve Program (CRP). CRP fields were

not used in this analysis. Using legal descriptions to locate

fields on satellite imagery, true-color Landsat ETM+ subset

images from a 26 June 2002 image were created for each

participant. The 26 June image was chosen because it was

the earliest cloud free image. The farm field survey was built

such that farmers identified the field(s) of interest on the

subset image of their farm. The survey asked a series of farm

management questions that corresponded to the fields

identified on the subset satellite image. Field-level
information about fallow management and equipment,

seeding operations and equipment, pest control, fertilizer

management, crop types, seeding/harvest dates and meth-

ods, and crop yields was collected.

Two general management classes (NT and tilled) and soil

disturbance were defined using the survey responses. The

NT class was defined as fields where crops were directly

seeded into the previous crop’s standing stubble and weeds

were managed strictly with herbicide. The tilled class was

defined as fields that were managed using any type of

equipment that employs soil inversion to manage weeds

prior to seeding the crop. Soil disturbance was calculated as

the proportion of soil disturbed as a function of row width,

row spacing and broad-field tillage. Row widths ranged from

2.5 to 15 cm and row spacing ranged from 18 to 30 cm:

SD ¼ rw

rs
(1)

where SD is the soil disturbance, rw the row width, and rs is

the row spacing.

Fields with 2.5 cm row width and 25 cm row spacing, for

example, had a soil disturbance factor of 0.10. At the

extremes were broad-field tillage with a soil disturbance

factor: 1.0, and NT fallow fields having soil disturbance: 0.0.

Digital brightness values (DNs) for all seven Landsat

ETM+ spectral bands for each pixel within surveyed fields

were extracted from a mosaic of two contiguous,

georeferenced 26 June 2002 Landsat ETM+ images. The

thermal band of Landsat was resampled using the nearest

neighbor method to account for differences in spatial

resolutions between bands. Pixels from the center portions

of fields were selected by field corresponding to the 116

fields delineated by the farmers in the survey responses.

Pixels, grouped by field, were randomly separated into

training and validation datasets by management and soil

disturbance in order to capture representative variability

associated with seeding dates and soil properties, which

varied widely across the surveyed fields.

2.3. NT versus tillage analysis

LR, CTA, and BCTA models were used to classify NT

and tilled management. LR analysis was performed using

the S-Plus statistical software (Insightful Corp., 2001) and

methods described in Bricklemyer et al., 2002. LR is an

appropriate method for binomial (0–1) questions, thus when

using non-cropped fields, discerning NT and tilled fields is a

binomial question. Once cropped fields are included in the

analysis the question might be no longer binomial due to the

influence of crop canopy. CTA and BCTA can be used for

both binomial and multiple class questions. CTA and BCTA

models were built using the See-5 data mining statistical

software (Quinlan, 1992). Accuracy was determined on a

pixel basis, but all accuracy assessment pixels came from

different fields than were used for training to ensure

independence of the accuracy assessment. Producer’s
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Table 1

Logistic regression confusion matrix and accuracy assessment for no-till

and tillage classes

Reference

No-till Tillage Total

Class

No-till 36984 2109 39093

Tillage 217 871 1088

Total 37201 2980 40181

Producer’s accuracy (%) 99 29

User’s accuracy (%) 95 80

Overall accuracy (%) 94

Khat 0.4

Z 42

p-Value <0.0001

Khat is estimated Kappa statistic and Z is the Khat Z-score used to test for

significance.
accuracy, user’s accuracy, overall accuracy, and Kappa

analysis assessed classification results (Congalton and

Green, 1999). A Z-test of the Kappa statistics for each

classification method determined if (1) the classification

method was significantly better than random chance and (2)

the classification methods were significantly different from

one another.

2.4. Soil disturbance analysis

Soil disturbance was estimated using LM, RTA, and SGB.

All analyses were performed using the R 2.0.1 statistical

software (R, 2004). All models were built using 90% of

fields with 10% of fields held out for independent validation.

The regsubset, an all subsets regression model building

procedure in the leaps package (Lumley, no date), was used

to determine the best linear models using combinations of all

seven ETM+ bands and their squares. The best model was

chosen to have the highest adjusted coefficient of

determination (adjusted R2) value with all of the predictors

in the model being significant (alpha = 0.05). The rpart

package (Therneau and Atkinson, 2005) built our regression

trees and the gbm package (Ridgeway, 2004) performed the

SGB analysis. Values predicted by each method were

compared to known values from the independent validation

dataset using a paired t-test comparison of means to

determine if the difference was significantly different than

zero and produce 95% confidence intervals (CIs). A

significant difference suggested that the model was not

accurately predicting the mean of known values; however,

statistical differences are a function n, and n was large in this

analysis, thus statistical significance might be less important

in this instance.
Table 2

Non-boosted classification tree analysis confusion matrix and accuracy

assessment for no-till and tillage classes

Reference

No-till Tillage Total

Class

No-till 34157 2156 36313

Tillage 3044 824 3868

Total 37201 2980 40181

Producer’s accuracy (%) 92 28

User’s accuracy (%) 94 21

Overall accuracy (%) 87

Khat 0.2

Z 24

p-Value <0.0001

Khat is estimated Kappa statistic and Z is the Khat Z-score used to test for

significance.
3. Results

3.1. NT versus tilled analysis

Overall accuracy and NT class accuracy of the three

methods used to predict tillage were encouraging; however

tilled class accuracy was substantially lower. LR had 94%,

CTA 87%, and BCTA 89% overall accuracy (Tables 1–3).

The final logistic model was:

logitðpÞ ¼ �46:9þ 0:215ðband 4Þ þ 0:275ðband 6Þ

þ 0:651ðband 3Þ � 0:559ðband 2Þ

� 0:028ðband 5Þ � 0:228ðband 1Þ

� 0:150ðband 7Þ

NT class producer’s and user’s accuracies were con-

sistently>90%, however tilled class accuracies ranged from

18 to 80% with LR user’s accuracy performing best. Logistic

regression unexpectedly outperformed CTA and BCTA,
however BCTA out performed CTA as expected. LR for

classifying tillage systems using remote sensing works by

first choosing the best predictor variables (i.e., ETM+ bands)

to predict the probability of tillage, then by applying a cutoff

value to find the best single split in the data to optimize

classification accuracy. CTA and BCTA start with the best

single split for classifying the data, and then use the next best

predictors to find multiple paths to the same classification.

We expected that multiple paths to the same correct response

would be a more accurate method than using a single split in

the data given the diversity present in our data. Crop types

included winter wheat (WW) seeded in the fall of 2001 and

spring wheat (SW), barley Bly), lentils (Lens culinaris

Medik), and peas (Pisum sativum) planted between 7 April

and 28 May, which consequently caused canopy cover to

range from 0% in fallow fields to canopy closure (100%) in

winter wheat fields. The majority of fields were in cereal

crops (37 SW, 19 WW, and 19 Bly) with two lentil and pea

fields included.

Khat values were 0.4 for LR and 0.2 for both CTA and

BCTA. Z-test of significance found Khat values were highly

significant ( p-value < 0.0001) (Tables 1–3). Significant
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Table 3

Boosted classification tree analysis confusion matrix and accuracy assess-

ment for no-till and tillage classes (99 boosts)

Reference

No-till Tillage Total

Class

No-till 35367 2448 37815

Tillage 1834 532 2366

Total 37201 2980 40181

Producer’s accuracy (%) 95 18

User’s accuracy (%) 94 23

Overall accuracy (%) 89

Khat 0.2

Z 19

p-Value <0.0001

Khat is estimated Kappa statistic and Z is the Khat Z-score used to test for

significance.
differences occurred between all possible combinations of

the three methods in pairwise Z-test comparisons (Table 4).

3.2. Soil disturbance analysis

LM, RTA, and SGB over-estimated known soil dis-

turbance. The best LM equation for predicting soil

disturbance was:

Soil disturbance

¼ �6:7þ 0:005ðB4Þ � 0:018ðB5Þ þ 0:087ðB6Þ

þ 0:089ðB7Þ þ 0:00011ðB4� B7Þ � 0:000023ðB42Þ

� 0:00027ðB62Þ � 0:000025ðB72Þ

The intercept and all predictor variables were significant

( p-value < 0.05), and the model had an adjusted R2 = 0.16.

Bands 4, 6, and 7 were important bands in RTA and were

used in six of the eight regression tree nodes. Bands 4 (53%)

and 6 (32%) contributed to 85% of the relative influence for

predicting soil disturbance in the SGB analysis. The

remaining bands contributed to 15% combined.

A paired t-test determined if the there was a statistically

significant difference between the predicted and known

means for soil disturbance. A p-value > 0.05 meant that we

were not able to detect a significant difference between the

means, thus we could conclude on average accurate

predictions. Soil disturbance predicted using LM and
Table 4

Pairwise comparison of logistic regression, classification tree analysis, and

boosted classification tree analysis for classifying no-till and tilled manage-

ment

Pairwise comparison (Z-test) Z-score p-Value

LR vs. CTA 21 <0.0001

LR vs. BCTA 19 <0.0001

CTA vs. BCTA 3 0.003

LR: logistic regression; CTA: classification tree analysis; BCTA: boosted

classification tree analysis; alpha: 0.05.
SGB were significantly greater than the known mean soil

disturbance ( p-value < 0.001). LM and SGB overestimated

mean soil disturbance by 36 and 13%, respectively (Table 5).

We were not able to detect significant differences between

soil disturbance predicted using RTA and the known soil

disturbance at a = 0.05 ( p-value = 0.08), although the 95%

CI was narrow and included 0 (Table 5). This suggested that

RTA was the best method for predicting for soil disturbance

in this study.
4. Discussion

4.1. NT versus tilled analysis

LR was the better method of differentiating NT fields

from tilled fields for our data as compared to CTA and

BCTA. Ninety-four percent accuracy is very encouraging

and is comparable to the previous study in the same region

(Bricklemyer et al., 2002), however, the tilled class

accuracies were unacceptable. A study area of this

magnitude has tremendous variability in soils, seeding

dates, fallow management, farming equipment, and timing

of operations that could lead to low accuracy values. The LR

equation included bands 3 and 4. These bands are sensitive

to green leaf biomass, suggesting that vegetation was

impacting the model’s predictions. NDVI calculated for all

fields used in the study area averaged 0.35 with a standard

deviation of 0.18. Variability in crop canopy cover was the

most likely reason for low tilled class accuracy in all

methods used, because many of the tilled fields in the

analysis were currently being cropped. Crop canopy

coverage ranged from 0% in fallow fields to 100% in

winter wheat fields. Classification of the NT class was likely

affected by crop canopy cover as well, however accuracy

was less affected because of the substantially greater number

of NT pixels in the analysis. Tables 1–3 show that there were

a large number of NT pixels misclassified. LR was better

able to take into account this variability and produce highly

accurate classifications overall and for the NT class.

We expected the CTA and BCTA to outperform LR. LR is

appropriate for strictly binary responses, and the variability

in our data, including, for example, fallow and cropped

fields, was expected to result in a response that was not truly

binary. Using a combination of NT and tilled fields in fallow

and cropped states, for example, might have resulted in four

levels of response. Our results, however, indicated that LR

was able to account for these distinctions. BCTA had a

higher overall accuracy compared to CTA; however, tilled

class accuracies were lower than CTA. Our data were

heavily skewed in favor of NT, which was evident in pixel

totals and the low tilled class accuracies in all three methods

(Tables 1–3). Unbalanced datasets are known to cause

problems with CTA methods, including BCTA (Lawrence

and Wright, 2001). We also analyzed our data with a reduced

NT dataset, and the results were not improved. Although the
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Table 5

Two sample t-test comparisons of known validation data and linear regression (LM), regression tree analysis (RTA), and stochastic gradient boosting (SGB)

Method d.f. Known mean Predicted mean p-Value 95% CI Over-prediction (%)

LM 11582 0.135 0.183 0 �0.05, �0.04 36

RTA 11582 0.135 0.142 0.08 �0.01, 0.001 5

SGB 11582 0.135 0.153 0 �0.02, �0.01 13
reduced dataset was balanced, it likely did a poorer job of

representing NT variability as a result. BCTA can achieve

substantial improvements in prediction accuracy over single

classification trees (Freund and Schapire, 1996; Lawrence

et al., 2004), however it can also lead to reduced accuracies

depending on the data, as seen in this study. LR nonetheless

was the better predictor than both CTA and BCTA, shown by

higher overall accuracy and class accuracies.

4.2. Soil disturbance analysis

Classification of soil disturbance was best achieved using

RTA. LM and SGB were not useful methods for predicting

soil disturbance. Data suggest that the boosting algorithm in

SGB better dealt with the variability and unbalanced nature

of the dataset than LM. The training data included soil

disturbance values from 0 to 1.0 with the majority of data

being skewed closer to 0, which is evident in the mean soil

disturbance value of 0.135, calculated across all fields in the

survey. We used this known mean soil disturbance value as a

means to estimate regional soil disturbance, which is more

useful information for land managers and for use as inputs

into biophysical carbon models. RTA had the ability to more

accurately estimate soil disturbance on a regional scale even

though the data, as discussed previously, were complex and

highly variable in this study.

RTA should theoretically predict local soil disturbance

(pixel/field-level) based on the narrow 95% CI. Visual

inspection of known versus predicted values, however,

showed that although mean values were similar, pixel

estimates of soil disturbance ranged greatly. This could be a

function of a number of factors. The effect of crop canopy

and time since disturbance cannot be ignored. Fields with

crops or that were disturbed many months prior to the image

acquisition date would be less likely to be accurately

estimated. NT fields planted with winter wheat, for example,

would have been disturbed as long as eight months before

the image date. Conversely, a tilled field planted with spring

wheat on 25 May would be expected to be more accurately

estimated. Fields managed with broad-field tillage (soil

disturbance = 1.0) were not well estimated in this study,

nor were NT fallow fields (soil disturbance = 0.0). This

could be a function of the regression analyses that was a

part of all methods and did not produce a 0 outcome given

any combination of predictors, although some values

approached 1.0.

Soil disturbance is an important input for the Century

biogeochemical carbon model, which is used to predict
carbon sequestration in agricultural soils, grasslands, forests,

and savannas (Parton et al., 1988). Century more recently has

become the process model behind the Natural Resources

Conservation Service’s (NRCS) Voluntary Reporting Carbon

Management Online Tool (COMET-VR) (http://www.co-

metvr.colostate.edu/, last visited 6 April 2005). Monitoring/

verification of management practices that store carbon will

likely be a part of any domestic carbon credit program,

whether market-based or a national effort. Classification of

remotely sensed images has the potential for highly accurate

and rapid monitoring/verification of soil disturbance and

changes in agricultural management practices.
5. Conclusion

The models developed in this study are scene specific

empirical models that would not be transferable to different

regions or acquisition dates. The methods employed are

relatively easily accomplished, however, given reference

data (i.e., survey data). Reference data could be difficult to

obtain directly from farmers as in this study, however local

governmental offices may be able to supply large amounts of

farm/field specific data.

Predicting NT and tillage management in the presence of

a crop canopy and in a spatially large, management diverse

study area proved to be challenging. Logistic regression

(94% accurate) outperformed both CTA (87% accurate) and

BCTA (89% accurate) for discriminating NT and tilled

fields. Tilled class accuracy was unacceptable and unusable

in all three methods, however and was likely a result of the

variability in management operations and, most notably, due

to crop canopy interference. Using LR and Landsat ETM+

imagery has potential for mapping the extent of NTand tilled

management practices across large areas, but with some

considerations. Studies now suggest that LR is applicable in

both semi-arid, lower production regions such as Montana

(present study; Bricklemyer et al., 2002) and moister, more

productive regions such as the mid-west (vanDeventer et al.,

1997; Gowda et al., 2001; Vina et al., 2003). Previous studies

predicting tillage practices used non-cropped fields in

relatively small study areas, which could have been

relatively homogenous with respect to farm management

operations. Timely image acquisition will remain critical for

useful classification. Selecting images when fields have

minimal green biomass and without crop canopy, such as in

previous studies, resulted in higher accuracy compared to

including cropped fields in this study. Intrinsically, this

http://www.cometvr.colostate.edu/
http://www.cometvr.colostate.edu/
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makes sense because a crop canopy could mask the tillage

signature.

The problem remains of monitoring and verifying

management practices in fields that are continuously

cropped. CTA and BCTA did not perform as well as LR

in this study, however the results using these methods are

encouraging and warrants continued exploration. The ability

to map management practices has applications for resource

managers looking to focus mitigation activities in areas with

high non-point source pollution potential and/or high carbon

sequestration potential. Determining the best method for

predicting agricultural land management practices needs

further investigation.

Estimation of soil disturbance was best accomplished

using RTA (5% over prediction of the mean). Using SGB

(13% over prediction of the mean) also shows promise for

estimating a continuous variable using Landsat ETM+

spectral bands. The ability to estimate soil disturbance has

potential applications to farm program eligibility, carbon

sequestration modeling, and monitoring/verification of

practices for carbon credit reporting. Some of the new

farm programs, such as the Environmental Quality Incentive

Program (EQUIP) and the Conservation Security Program

(CSP), have specific eligibility criteria related to historic and

present land management. Landsat ETM+ and TM images

are nationally archived and available for analysis of past

practices.

The effects of agricultural management on non-point

source pollution can be reduced by targeting mitigation

efforts in high risk areas. Carbon sequestration efforts must

be monitored and verified by documenting management

practices and/or modeling soil carbon change using

biophysical models. Accurate classification of Landsat-

based images for documenting tillage practices and soil

disturbance has the potential to detect high risk non-point

pollution areas, monitor management practices, and

estimate inputs for carbon models.
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