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Abstract
The Kyoto Protocol entering into force on 16 February 2005 continues to spur interest in development of carbon trading mechanisms

internationally and domestically. Critical to the development of a carbon trading effort is verification that carbon has been sequestered, and

field level measurement of C change is likely cost prohibitive. Estimating C change based on agricultural management practices related to

carbon sequestration seems more realistic, and analysis of satellite imagery could be used to monitor and verify these practices over large

areas. We examined using Landsat imagery to verify crop rotations and quantify crop residue biomass in north central Montana. Field data

were collected using a survey of farms. Standard classification tree analysis (CTA) and boosted classification and regression tree analysis

(BCTA) were used to classify crop types. Linear regression (LM), regression tree analysis (RTA), and stochastic gradient boosting (SGB) were

used to estimate crop residue. Six crop types were classified with 97% accuracy (BCTA) with class accuracies of 88–99%. Paired t-tests were

used to compare the difference between known and predicted mean crop residue biomass. The difference between known and predicted mean

residues using SGB was not different than 0 ( p-value = 0.99); however root mean square error (RMSE) was large (1981 kg ha�1), implying

that SGB accurately predicted regional crop residue biomass but not local predictions (i.e., field or farm level). The results of this study, and

previous research classifying tillage practices and estimating soil disturbance, supports using satellite imagery as an effective tool for

monitoring and verifying agricultural management practices related to carbon sequestration over large areas.

Published by Elsevier B.V.
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1. Introduction

The Kyoto Protocol (KP) entered into force on 16

February 2005 (http://unfccc.int, 22 April 2005). This event

has continued interest in the development of carbon trading

mechanisms. The United States chose not to participate in

KP; however, the current administration has vowed to

address domestic carbon dioxide emissions, and carbon

trading will be a part of that effort (Pianin, 2002).

Agricultural soils have the potential to sequester C from

the atmosphere and help mitigate global climate change (Lal
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et al., 1998). Critical to the development of a carbon trading

effort is verification that carbon has been sequestered. Field

level measurement of C change is cost prohibitive with

currently available technologies. Thus, estimating C change

based on agricultural soil management practices is more

feasible at this time.

Previous efforts modeling agricultural C dynamics reveal

that several key agricultural practices are primarily

responsible for changes in agricultural soil C (Parton

et al., 1988, 1987). These practices include tillage systems,

levels of soil disturbance, crops grown, including crop

rotation practices, and amount of residual crop left after

harvest. Satellite remote sensing has the potential to monitor

and verify all of these practices over regional scales.

http://unfccc.int/
mailto:rsb@montana.edu
http://dx.doi.org/10.1016/j.agee.2006.05.017


R.S. Bricklemyer et al. / Agriculture, Ecosystems and Environment 118 (2007) 201–210202
Tillage disturbance has been shown to greatly influence

soil C dynamics due to increased erosion and microbial

decomposition (Paustian et al., 1997). The adoption of no-till

(NT) can reduce losses of soil and can increase soil organic C

(Lal et al., 1998). Previous studies have used remote sensing to

predict tillage systems using various classification methods.

Logistic regression (LR) of Landsat Enhanced Thematic

Mapper Plus (ETM+) imagery had >95% accuracy in

verifying NT fallow fields in a study in north central Montana

(Bricklemyer et al., 2002). LR had 93% map accuracy using

Landsat Thematic Mapper (TM) data in a corn/soybean

rotation in Ohio (vanDeventer et al., 1997). Landsat TM and

logistic regression have also been used to map tillage practices

in the lower Minnesota River watershed using logistic

equations developed by vanDeventer et al. (1997) and TM

band 5 or the difference between TM bands 3 and 5 with 70–

77% accuracy (Gowda et al., 2001). Logistic models applied

to IKONOS imagery principal component (PC) 2 and PC 4

had 80 and 77% overall accuracy for discriminating corn/

soybean residues and conventional/conservation tillage in

Nebraska, respectively (Vina et al., 2003). Finally, the Crop

Residue Index Multiband (CRIM) model using ETM+

imagery of the Minnesota River Basin, although not

specifically addressing the NT/tillage question, had 79–

80% accuracy classifying two categories, 0–30 and 31–100%

residue cover, which were equivalent to conventional and NT

management, respectively (Thoma et al., 2004). Additionally,

soil disturbance has been estimated using regression tree

analysis of Landsat ETM+ images (Bricklemyer et al.,

2006a).

Monitoring cropping systems requires identification of

various crop types. Identifying crop types and estimating

yields using Landsat satellite imagery has been a focus of

remote sensing experiments beginning with the Large Area

Crop Inventory Experiment or LACIE in the middle 1970s

(MacDonald et al., 1975). Studies subsequently have

investigated improving classification methods for increasing

crop type discrimination accuracy by overcoming a primary

issue of separating crops. That primary issue was identified

as the variability in crop maturity that can occur within a

Landsat scene (Wheeler and Misra, 1980). Methods used to

improve classification accuracy include the use of maximum

likelihood classification (MLC) of single and multidate

Landsat imagery, principal component analysis, discrimi-

nant analysis, and using active microwave response. Using

an iterative MLC approach for classifying rice, maize,

sorghum, and soybean, accuracy increased from 89% using

single date imagery to>95% using 2 and 3 image dates (Van

Niel and McVicar, 2004). Using MLC of a single date and

including middle infrared bands and principal component

analysis, 97% accuracy was achieved for discriminating

oilseed crops from orchards, scrubs, and forest (Sharma

et al., 1995). Classification of maize, durum wheat, and

bread wheat using MLC and a single image date had an

overall accuracy of 72% for Landsat ETM+ imagery and

81% for Earth Observing-1 Advanced Land Imager imagery
(Lobell and Asner, 2003). Discriminant analysis of

combined visible, near infrared, and active microwave

response data had 92% accuracy for classifying corn, bare

soil, bare soil + weeds, pasture, millet, weeds, and wheat

stubble (Macelloni et al., 2002; Rosenthal and Blanchard,

1984). Dryland agriculture in the northern Great Plains,

particularly Montana, has been a void for agricultural remote

sensing research related to carbon sequestration and crop

types. The diversity in crop types and seeding dates in semi-

arid farming can be substantial.

Related to crop type is the amount of crop residue

remaining after harvest. The Century model for agricultural

C dynamics uses a crop production submodel to estimate

crop biomass, yield, and residue biomass using inputs of

crop type, fertilizer application, annual climatic data, and

harvest practices (Parton et al., 1987). Site-specific data

could be used instead of existing databases and would likely

enhance the predictive capabilities of the model (Brick-

lemyer, 2003). Studies specifically quantifying crop residue

biomass have not been documented. Previous studies,

however, have successfully estimated the proportion of crop

residue covering the soil using remote sensing techniques

such as radar satellite data (McNairn et al., 1998), laser

induced flouresence (Daughtry et al., 1996; McMurtrey

et al., 1993), and Landsat TM and ETM+ (McNarin and

Protz, 1993; Thoma et al., 2004; vanDeventer et al., 1997).

The overall objective of this research was to monitor and

verify agricultural practices that influence soil carbon

sequestration in farm fields, namely tillage systems, soil

disturbance, crop types, and crop residue biomass. Tillage

systems and soil disturbance have been previously addressed

(Bricklemyer et al., 2006a). The present study focused on

predicting crop types and estimating residue biomass. To

meet these objectives we compared using: (1) classification

tree analysis (CTA) and boosted classification tree analysis

(BCTA) for predicting crop types and (2) linear regression

(LM), regression tree analysis (RTA), and stochastic

gradient boosting (SGB) for estimating crop residue

biomass.
2. Methods

2.1. Study area

The study area was located in the north central Montana

region known as the ‘‘Golden Triangle’’. The Golden

Triangle is predominantly a dryland wheat (Triticum

aestivum L.) production region roughly bounded by Great

Falls to the south, Cut Bank to the northwest, and Havre to

the northeast (Fig. 1). Spring wheat (SW), winter wheat

(WW), and barley (Bly) (Hordeum vulgare L.) are the

primary crops grown in the region with smaller acreages of

lentils (Len) (Lens culinaris Medik). The area is semi-arid

with 250–375 mm of average annual precipitation, the

majority of which occurring May to mid-July.
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Fig. 1. 12 July 2002 Landsat ETM+ image of north central Montana. Small

white stars are locations of fields used in the analyses. Inset image is the state

of Montana with the large white star indicating the region of the study area.
2.2. Data collection

A farm survey of the study area was used to obtain field

level farm management data. Farmers in the region were

contacted by phone to determine if they would be interested in

participating in the study. Those who agreed supplied legal

descriptions (township, range, and section) of farm fields that

were currently: (1) in crop, (2) in fallow, and (3) in the

Conservation Reserve Program (CRP). True-color Landsat

ETM+ subset images from a 26 June 2002 image were created

for each participant using supplied legal descriptions. The 26

June image was chosen because it was the earliest cloud-free

image for the 2002 growing season. The farm survey was built

such that farmers identified the field(s) of interest on the subset

image of their farm. Field level information about fallow

management and equipment, seeding operations and equip-

ment, pest control, fertilizer management, crop types, seeding/

harvest dates and methods, and crop yields was collected

corresponding to the fields identified by each farmer. Data

collected in the survey effort provided the necessary infor-

mation for identifying crop types and estimating crop residue.

Fields surveyed were not visited to verify survey responses; all

responses were assumed to be correct in ‘good faith’.

2.3. Imagery

Three Landsat ETM+ images were used in this study. 26

June 2002 and 12 July 2002 images were used in predicting
crop types and a 14 September 2002 image was used to

estimate crop residue biomass. The June and July images

were chosen because they were the highest quality (i.e.,

cloud-free) growing season images available. 14 September

was chosen because it was necessary to use an image

acquired post-harvest to estimate crop residue biomass.

2.4. Data preparation

2.4.1. Crop type

Currently cropped fields were chosen from survey

responses for crop type analysis. Spectral digital numbers

(DNs) of 42 cropped fields were extracted from center

portions of selected fields and grouped by field. Pixel data

from 21 of the fields, stratified by crop type, were randomly

chosen for training, and the remaining fields were used for

independent validation datasets. The crop types included in

this study were SW, WW, Bly, Alfalfa, and Len. The

majority of fields were evenly distributed between cereal

crops; however two lentil fields were present.

Crop types mature at different times depending on

seeding date and different grow habits. Those phenological

differences should allow better discrimination of crop types.

Two image dates, 26 June and 12 July, therefore were

included in the analysis in order to take advantage of crop

growth differences. All seven bands from each image date

along with band difference values (July–June) and 14

principal components from a combined June + July image

were used in the analysis.

2.4.2. Crop residue biomass

Spectral data for 39 cropped fields were used to estimate

crop residue biomass. Three of the 42 fields included in the

crop type analysis were excluded from the residue analysis

because they were either not harvested by 14 September or

were obstructed by partial cloud cover in the 14 September

image. Spectral data from 20 of the 39 fields, randomly

selected within crop types, were used as training data, and

the 19 remaining fields were used for independent

validation.

The crops included in this portion of the study were SW,

Bly, Len, and WW. Grain yields reported in the survey

results were used to calculate crop residue biomass. Grain

yield data and harvest indices (HI) were representative of the

conditions in the study area. Yield values were well

distributed and were consistent for dryland and irrigated

fields (i.e., dryland yields lower than irrigated yields). HI

varies temporally (year to year at the same location) and

spatially (between locations in the same year) for each crop.

The HI values used to convert SW, Bly, and WW grain yield

to residue biomass were averages calculated from a study

with data from five locations across Montana (Bozeman,

Amsterdam, Denton, Havre, and Dutton) (Miller and

Holmes, 2005). That study experienced high, average,

and low growing season precipitation, creating robust

average harvest indices for each crop included in the present
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Table 1

Non-boosted classification tree analysis confusion matrix and accuracy

assessment for crop types using independent validation dataset pixels

Reference

SW WW Bly CRP Len Alf Total

Class

SW 20165 348 554 45 180 122 21414

WW 254 6094 77 37 19 12 6493

Bly 496 99 3239 7 6 14 3861

CRP 19 24 2 1218 3 0 1266

Len 158 14 10 4 951 55 1192

Alf 97 5 8 1 70 1537 1718

Total 21189 6584 3890 1312 1229 1740 35944

Producer’s

accuracy (%)

95 93 83 93 77 88

User’s

accuracy (%)

94 94 84 96 80 89

Overall

accuracy (%)

92

Khat 0.87

Z 374

p-Value <0.0001

SW, spring wheat; WW, winter wheat; Bly, barley; Len, lentils; Alf, alfalfa;

Khat, Kappa; Z, z-score for significance testing.
study. The HI value for Len was calculated from a multiyear

study in southwestern Saskatchewan (Miller et al., 2003).

Southwestern Saskatchewan is in the same agroecoregion as

the present study area (Padbury et al., 2002), thus the use of

this data is appropriate. The HI value used for SW, Bly, and

Len was 0.365 (S.E. = 0.04 for SW and Bly and S.E. = 0.02

for Len), and for WW was 0.33 (S.E. = 0.03). The equations

used to calculate crop residue biomass were:

HI ¼ grain

agbio

agbio ¼ grain

HI
crop residue biomass ¼ agbio� grain

(1)

where HI is the harvest index, grain the dry mass of grain

estimated from survey yield (kg ha�1) and agbio is the

aboveground biomass (kg ha�1). Eq. (1) assumes that only

grain was removed from the fields during harvest or post-

harvest. Farm survey responses supported this assumption.

The farm survey asked questions specifically regarding

harvest and post-harvest residue management (i.e., harrow-

ing and baling of residues). None of the fields in this study

were harrowed or baled.

2.5. Data analysis

2.5.1. Crop type

Classification tree analysis is becoming more common

for classification of remotely sensed data due, among other

things, to higher accuracies than previously used methods

(Freund and Schapire, 1996; Lawrence et al., 2004).

Boosted classification tree analysis, a variant of CTA, has

shown promising results for increasing accuracy over

standard CTA (Lawrence et al., 2004) because of the

multiple recursive partitioning trees developed using

training data. BCTA works by developing multiple CTA

trees. Each new tree developed is based on misclassifica-

tions of the previous tree. The ‘‘boosting’’ algorithm

essentially focuses on the more difficult classifications in

the previous trees (Freund and Schapire, 1996; Lawrence

et al., 2004). Final classification is ultimately the result of a

plurality ‘‘vote’’ of the multiple classification trees. CTA

and BCTA models were built using the See-5 data mining

statistical software (Quinlan, 2005).

2.5.2. Crop residue biomass

Crop residue biomass, a continuous variable, was

estimated using linear regression, regression tree analysis

(a regression version of CTA), and stochastic gradient

boosting (SGB). SGB is a variant of RTA and can

substantially increase classification accuracy over standard

RTA (Lawrence et al., 2004). LM, RTA, and SGB analyses

were performed using the R 2.0.1 statistical software (R,

2004). Regsubset, an all subsets regression model building

procedure in the R leaps package (Lumley, 2004), was

used to determine the best linear models using combinations
of all seven ETM+ bands and their squares. The best model

was chosen to have the highest adjusted coefficient of

determination (adjusted r2) value with all of the predictors in

the model being significant (a = 0.05). Regression trees

were built using the rpart package (Therneau and Atkinson,

2004) and SGB was performed using the gbm package

(Ridgeway, 2005). Mean values predicted by each method

were compared to known mean values from an independent

validation dataset using a two-sample t-test comparison of

means. The t-test determined if the difference of the two

means was significantly different than zero. A significant

difference implies that the model is not accurately predicting

the known mean value. Statistical differences are a function

the number of observations (n), however, and n was large in

this analysis, thus statistical significance might be more

related to n than a meaningful difference in means.

Additionally, root mean square error (RMSE) and 95%

prediction intervals were calculated for each method.
3. Results

3.1. Crop type

Both CTA and BCTA performed well for classifying crop

types. CTA had overall accuracy of 92% with class

accuracies ranging from 77 to 95% (Table 1). Kappa (Khat)

was 0.87 suggesting that CTA was significantly better for

classifying crop types than random chance ( p-

value < 0.0001). The majority of WW, Bly, Len, and Alf

confusion occurred with SW. SW was most confused with

Bly, then with WW and Len. CRP was best discriminated
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Table 2

Boosted classification tree analysis confusion matrix and accuracy assess-

ment for crop types (99 boosts) using independent validation dataset pixels

Reference

SW WW Bly CRP Len Alf Total

Class

SW 20906 117 291 21 106 57 21498

WW 57 6452 14 22 5 0 6550

Bly 136 13 3581 4 1 0 3735

CRP 2 0 2 1265 0 0 1269

Len 71 2 1 0 1077 32 1183

Alf 17 0 1 0 40 1651 1709

Total 21189 6584 3890 1312 1229 1740 35944

Producer’s

accuracy (%)

99 98 92 96 88 95

User’s

accuracy (%)

97 99 96 99 91 97

Overall

accuracy (%)

97

Khat 0.95

Z 653

p-Value <0.0001

SW, spring wheat; WW, winter wheat; Bly, barley; Len, lentils; Alf, alfalfa;

Khat, Kappa; Z, z-score for significance testing.
(Table 1). BCTA out performed CTA and had overall

accuracy of 97% with class accuracies ranging from 88 to

99% (Table 2). Khat was 0.95, again suggesting that BCTA

was significantly better at predicting crop type than random

chance ( p-value < 0.0001). WW, Bly, Len, and Alf were

most confused with SW, and SW was most confused with

Bly. BCTA improved accuracy in all classes by 3–12%; the
Fig. 2. Base classification tree analysis decision tree for classifying crop types in

Landsat ETM+ image; PC, principal component from combined 26 June and 12
largest increases occurred in the Bly and Len classes. BCTA

was the more accurate classifier in this study with all

accuracies exceeding the recommended 85% minimum level

of interpretation accuracy using remotely sensed data

(Lillesand and Kiefer, 2000).

Fig. 2 shows the base CTA decision tree. The complete

tree was unable to be presented due to the number of

secondary trees See-5 developed to predict crop types.

Multiple image dates played a major role in distinguishing

crop types. Difference in the blue portion of the spectrum

(band 1) from June to July was the only predictor needed to

classify CRP and was the primary decision point for WW.

Secondary decision points for WW required the multidate

PC 1 and 7 to distinguish it from SW. Alfalfa was most

similar to SW and required the June predictors band 6 and

PC 12 for final classification. Lentil was also similar to SW

and required data from both image dates, predominantly in

the form of band differences and principal components

rather than bands from individual image dates. Bly and SW

were most similar for they were not distinguishable until

>10 levels into the decision tree. The majority of Bly was

distinguished from SW based on differences in band 6.

BCTA decision trees unfortunately are not easily inter-

pretable or presentable because BCTA starts with the same

base decision tree as CTA and then develops subsequent

trees from the misclassifications in the first tree.

3.2. Crop residue biomass

Linear regression, regression tree analysis, and stochastic

gradient boosting were used to estimate crop residue
north central Montana. SW, spring wheat; WW, winter wheat; B, band from

July 2002 ETM+ images.
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Table 3

Two-sample t-test comparisons of known validation data and linear regression (LM), regression tree analysis (RTA), and stochastic gradient boosting (SGB) for

crop residue biomass

Method d.f. Mean (kg ha�1) Predicted mean (kg ha�1) p-Value RMSE (kg ha�1) Difference from mean (%)

LM 36320 5893 4225 <0.001 2658 �28

RTA 36320 5893 4418 <0.001 3116 �25

SGB 36320 5893 5893 0.99 1981 <1
biomass (Table 3). The best LM (adjusted r2 = 0.29) was:

Crop residue biomass

¼ 1081þ 51ðblueÞ � 77ðNIRÞ þ 716ðMIR1Þ
� 869ðMIR2Þ � 41ðMIR1�MIR2Þ þ 13ðMIR12Þ
þ 32ðMIR22Þ (2)

where blue was the Landsat ETM+ band 1, NIR the near

infrared (Landsat ETM+ band 4), MIR1 the middle infrared

(Landsat ETM+ band 5) and MIR2 was the middle infrared

(Landsat ETM+ band 7). Blue and MIR1 both had positive

relationships with crop residue biomass. NIR and MIR2 both

had negative relationships with crop residue biomass.

Fig. 3 shows the RTA decision tree for predicting crop

residue biomass. NIR, MIR1, thermal, and MIR2 (bands 4–

7, respectively) were used to partition the data in 19 of the 21

RTA splits. Higher crop residue predictions tended to have

low values in bands NIR, MIR1, and MIR2 and higher

values in the thermal band; the relationship of bands NIR

and MIR2 was consistent with LM. Green (band 2) was used

in two decision nodes with inconsistent effects on predicted

residue quantity. SGB results are not easily interpretable

other than reporting the relative influence of each predictor.
Fig. 3. Regression tree analysis decision tree for estimating the quantity of crop r

Landsat ETM+ image.
MIR1 (36%), NIR (30%), and MIR2 (25%) contributed 91%

of the relative influence (i.e., relative importance) in

predicting crop residue biomass, with bands 6 (6%) and 2

(3%) contributing the remaining 9%.

All three methods used for predicting crop residue

biomass included bands 4, 5, and 7. This was consistent with

results from other studies using Landsat imagery to

determine the proportion of crop residue covering the soil

also found bands 4, 5, and 7 important. Bands 4 and 5 were

used in the normalized difference index (McNarin and Protz,

1993), bands 5 and 7 were used in the normalized difference

tillage index (vanDeventer et al., 1997, and regression

models using bands 3, 5, and 7 were found to be good

predictors of residue cover (Thoma et al., 2004).

Paired t-test of means found that the LM predicted mean

value of 4225 kg ha�1 underestimated the known crop

residue mean of 5893 kg ha�1 ( p-value < 0.0001) by 28%

and had a RMSE of 2658 kg ha�1 (Table 3). RTA had a

predicted mean value of 4418 kg ha�1 and a RMSE of

3116 kg ha�1. The RTA predicted mean was 25% lower than

the known mean ( p-value < 0.0001). SGB better predicted

the actual mean residue biomass than both LM and RTA.

Comparison of means found that the SGB predicted mean

value of 5893 kg ha�1 was not significantly different than
esidue biomass in north central Montana. B is the band from 14 September
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the known crop residue mean ( p-value = 0.99). SGB had a

RMSE of 1981 kg ha�1, smaller than both LM and RTA.

Plots of predicted vs. actual crop residue values showed that

the majority of predictions fell near the 1:1 line; however

there is significant spread in the data for all methods (Fig. 4).

Prediction intervals (95%) were widest for RTA, whereas

LM and SGB were similar in width (Fig. 4). Although the

prediction intervals were similar in width, fewer SGB

predictions fell outside of the 95% prediction interval than

LM predictions. This result is quantified by SGB having a

smaller RMSE than LM. Residue prediction data clustered
Fig. 4. Plot showing predicted crop residue biomass using linear regression

(a), regression tree analysis (b), and stochastic gradient boosting (c) vs.

computed crop residue biomass using farmer supplied crop yields from farm

surveys and crop-specific harvest indices (kg ha�1). Solid line is regression

line, dashed lines are 95% prediction interval, and dotted line indicates 1:1

agreement.
in columns because known residue values were calculated

using Eq. (1) based on average crop yield per acre from

survey results. Substantial variability in crop yield and thus

calculated crop residues existed among pixels, as would be

expected.
4. Discussion

Many methods have been used for classifying various

agricultural management practices using satellite imagery.

In this study, classification of crop types was highly accurate

(97%) and estimation of mean crop residue biomass was not

different than known values ( p-value = 0.99). No-till and

tilled fields were classified in previous studies with >93%

accuracy (Bricklemyer et al., 2002; vanDeventer et al.,

1997). Finally, regional estimates of soil disturbance were

not different than known values (Bricklemyer et al., 2006b).

Using satellite imagery can be an effective tool for large area

monitoring and verification of agricultural practices related

to carbon sequestration.

4.1. Crop type

Discriminating crop types is a function of variability in

crop growth habits. The use of multiple image dates was

important for distinguishing crop types in this study. This

was indicated by difference variables and principal

components comprising 13 of the 21 decision nodes in

CTA. Important difference variables were in bands 1, 5, and

7 and are likely related to crop growth habits and canopy

closure. The proportion of soil and vegetation spectral

mixing becomes dominated by vegetation as crops mature

and the canopy closes. The amount that bands 1 (blue), 5

(MIR), and 7 (MIR) reflected changes as crops matured was

attributable to effects of the crop canopy closure related to

chlorophyll absorption of band 1, the sensitivity of band 5 to

water in growing plants, and cellulose absorption (band 7)

(Jensen, 1996; Thoma et al., 2004). The importance of

individual bands 1, 5, and 7 for discriminating crop types

was also likely a function of canopy cover for similar

reasons. Bands 2 (green) and 4 (NIR) are known to be

associated with green and NIR wavelengths reflected by

healthy, photosynthetically active vegetation. Bands 2 and 4

could have been used in the models to separate fall seeded

(WW) and perennial crops (alfalfa and CRP) from more

recently spring seeded crops (SW, barley, and lentil) due

again to differences in crop biomass and canopy develop-

ment.

The diversity in crop types and whether a crop was fall or

spring seeded likely contributed to confusion between crop

types expressing spectrally similar crop phenology. Confu-

sion occurred between SW, WW, and Bly (Tables 1 and 2).

SWand Bly are both spring seeded cereal crops, have similar

growth habits, and visually appear quite similar in the field

until the formation of the seed head (i.e., heading). Heading
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might have begun between the June and July images thus

allowing for accurate discrimination between SW and Bly.

The confusion between WW and SW could be due to similar

spectral signatures, considering both are wheat crops.

Accurate separation likely occurred due to differences in

crop canopy cover and more advanced maturation of WW in

the July image. WW in June and July would have had the most

visible aboveground biomass compared to the spring seeded

crop types in this study. Crop canopy cover and similar above

ground biomass production in late June and early July might

have contributed to confusion between late seeded SW and

Len. CRP had the least confusion with other crops probably

because the mixing of previous year’s senescent biomass and

present year’s green growth would spectrally look quite

different than the mono-crop conditions of the other crops.

BCTAwas a particularly effective method for classifying crop

types given the variability in crop types and seeding dates.

BCTA was the better crop type predictor compared to

CTA. BCTA increased accuracy across all crop type classes

by 3–12%. The boosting algorithm appears to have been able

make finer adjustments in the decision trees to better

differentiate crops that look similar, SW and Bly, for

example. The methods of producing subsequent decision

trees that focus on the more difficult classifications, and the

use of a plurality vote, more accurately distinguished crop

types. It also appeared that both CTA and BCTA were not

affected by the unbalanced nature of the dataset, although

this is known to be an issue with these algorithms (Lawrence

et al., 2004). There were substantially more SW fields/pixels

than other classes (see column and row totals in Tables 1 and

2).

4.2. Crop residue biomass

The results of this study support that combinations of

bands 4, 5, and 7 are important for predicting the quantity of

crop residue biomass and residue cover. Band 4, as discussed

above, is known to be associated with actively growing

vegetation; hence a negative relationship might imply that

more actively growing vegetation would correspond to

lower crop residue biomass. This might be true for a post-

harvest image; however this might also be causing

inaccurate estimates. Band 5 is sensitive to the amount of

water in plants (Jensen, 1996). The positive relationship

between band 5 and crop residue biomass was likely a

function of senescent crop residues having very little water

content. Absorption of band 7 could be related to cellulose

absorption by crop residues (Thoma et al., 2004). The

negative relationship of band 7 would imply that with

greater crop residue biomass, which is senescent and high in

cellulose, more absorption of band 7 would occur.

Predictions using LM, RTA, and SBG have two spatial

scales of accuracy to consider when tested against known

values using paired t-tests. Accurately predicting the mean

value signifies that the method would be a strong predictor of

regional crop residue biomass, areas of over-prediction
would be balanced by areas of under-prediction (Fig. 4). A

small RMSE and narrow 95% prediction interval would

suggest that the model also would accurately predict

individual pixel and/or field values. Both the LM and

RTA models significantly underestimated the mean crop

residue biomass ( p-value < 0.0001 for both methods) by 28

and 25%, respectively, and had large RMSE values. This

suggested that neither LM nor RTA were good methods for

predicting crop residue biomass in this study. SGB

accurately predicted the mean crop residue biomass value

( p-value = 0.99) and had a RMSE smaller than the other

prediction methods; however RMSE was 34% of the known

mean average. The results suggested that SGB was a strong

predictor of regional crop residue biomass, however large

RMSE values suggested that none of the methods were good

local predictors of crop residue biomass when given known

crop yields and representative harvest indices.
5. Conclusion

Analysis of Landsat imagery can be an effective tool for

monitoring and verifying agricultural practices related to

carbon sequestration. This study showed that six crop types

in dryland Montana agriculture could accurately be

classified (97% accuracy) using BCTA. The ability to

classify various crops across a region has the potential to

enhance regional soil C sequestration estimates by verifying

and documenting crop rotations and cropping intensity, both

of which are important factors in modeling soil C dynamics.

Multiple image dates within a year would be necessary for

monitoring and verifying management practices that influ-

ence soil carbon sequestration. The earliest post-seeding

cloud-free spring image date (i.e., early May) would be most

useful for determining tillage practices and soil disturbance

(Bricklemyer et al., 2006a). Image dates in the early to middle

(i.e., June) and late (i.e., late July–August) portions of the

growing season would be necessary for accurate crop type

determination. In addition to multiple within-year images,

multiple year images are required for documenting crop

rotations. A post-harvest image date (i.e., mid-late Septem-

ber) is necessary for estimating crop residues. Timely image

acquisition would be high priority for monitoring and

verifying agricultural management practices related to carbon

sequestration. An interesting side effect of image timing is

that producers would not know the imagery dates ahead of

time, so attempts to wait until after image acquisition to till,

for example, would not be practical.

Crop residue biomass could be accurately estimated at

regional scales using SGB. None of the methods used,

however, were able to predict accurately at the local (i.e.,

field or farm) level. Estimates of crop residue biomass could

be used in conjunction with biophysical models, such as

Century, for more accurate estimation of soil carbon changes

over time. Additionally, with further research in C cycling in

semi-arid Montana agriculture, residue estimates could be
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used to develop regional indicators of annual C sequestration

by estimating the amount of above- and below-ground

biomass C returned to the soil (knowing crop types and crop

yield) and estimating the proportion of that C that is

converted to soil organic carbon.

The specific models developed in this study are scene

dependant do to the nature of empirical models, however the

methods used to develop the models are not scene dependant

and are easily employed given ground-truth information.

Annual field data on at least a subset of fields will be

required because of the scene dependant nature of empirical

models. The farm survey provided excellent field level data;

however the process was time and resource intensive. Local

governmental agencies could play a major role in supporting

this type of monitoring and verification of C sequestering

practices, the Farm Service Agency (FSA) and conservation

districts, for example. Analysis of Landsat ETM+ imagery

can be an effective, low cost tool for monitoring and

verifying agricultural management practices related to

carbon sequestration across large areas with high accuracy

at local and region scales.
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