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In the conterminous United States, wolverines (Gulo gulo) occupy semi-isolated patches of subalpine habitats 
at naturally low densities. Determining how to model wolverine habitat, particularly across multiple scales, can 
contribute greatly to wolverine conservation efforts. We used the machine-learning algorithm random forest to 
determine how a novel analysis approach compared to the existing literature for future wolverine conservation 
efforts. We also determined how well a small suite of variables explained wolverine habitat use patterns at the 
second- and third-order selection scale by sex. We found that the importance of habitat covariates differed 
slightly by sex and selection scales. Snow water equivalent, distance to high-elevation talus, and latitude-
adjusted elevation were the driving selective forces for wolverines across the Greater Yellowstone Ecosystem at 
both selection orders but performed better at the second order. Overall, our results indicate that wolverine habitat 
selection is, in large part, broadly explained by high-elevation structural features, and this confirms existing data. 
Our results suggest that for third-order analyses, additional fine-scale habitat data are necessary.
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Wolverines (Gulo gulo) are the largest species of Mustelidae 
in North America. In the conterminous United States, the cur-
rent population size is approximately 300–350 individuals on 
high-elevation public lands (Inman et al. 2013). There is lim-
ited information on wolverine ecology and behavior due to 
the effort required to study a species that occurs at naturally 
low densities and occupies challenging terrain. There also is 
still debate about what factors most strongly drive wolverine 
habitat use, including snow cover area and duration (Schwartz 
et al. 2009; Copeland et al. 2010), food abundance (COSEWIC 
2014), and human land use (Laliberte and Ripple 2004; Krebs 
et al. 2007), although several studies have been undertaken at 
various scales to predict or explain wolverine habitat (Carroll 
et al. 2001, 2020; Aubry et al. 2007; Copeland et al. 2007).

The factors hypothesized to limit wolverine habitat use are 
not mutually exclusive; however, few studies have compared 
their relative importance across scale by sex. Undertaking 
analyses by sex is essential because there is evidence of 

sex-specific habitat selection and dispersal in wolverines. Male 
home ranges are 2–4 times larger than female home ranges in 
the United States (Powell 1979; Magoun 1985; Dawson et al. 
2010; Persson et  al. 2010). Within-home-range movements 
and selection differ by sex, and only females select den sites. 
Outside of home ranges, long-distance dispersal occurs in both 
sexes (Vangen et  al. 2001; Flagstad et  al. 2004), but females 
often settle closer to their natal ranges than males (Moriarty 
et  al. 2009; Inman et  al. 2012; COSEWIC 2014). This sug-
gests that sex-specific pressures affect movement and eventual 
home-range selection. We therefore cannot effectively examine 
what factors affect wolverine habitat use without considering 
sex-specific differences in selection.

Scale also should be considered when examining the fac-
tors hypothesized to limit wolverine habitat use because cer-
tain behaviors (e.g., territory selection, den site selection) 
require different resources and occur on different spatial 
scales. At broader landscape scales in the United States, 
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wolverines are associated primarily with Northwestern for-
ested mountains (Copeland 1996) but exhibit seasonal shifts 
in elevation (Copeland et  al. 2007; Inman et  al. 2012). In 
Norway, female wolverines make selections at the den-site 
scale, home-range scale, and landscape scale based on ter-
rain ruggedness (May et al. 2012), whereas wolverines in the 
United States use high latitude-adjusted elevation and cirque 
basins for natal dens (Copeland 1996; Inman et  al. 2012). 
At the home-range scale, wolverines tolerate private roads, 
but not at the den-site selection level in Norway (May et al. 
2012), and this tolerance may vary by life stage in the United 
States. Given the variability of selection across scales, it is 
essential to identify the scale at which to evaluate in habitat 
studies (Rather et al. 2020).

Across selection scales and sex, wolverine habitat selec-
tion analyses often rely solely on radiocollar location data. 
Radiocollar presence data are one of the only methods for 
examining the habitat associations of secretive species like 
wolverines but have inherent limitations and concerns, in-
cluding repeated measures on individuals and high spatial 
autocorrelation. Ignoring spatial autocorrelation in the re-
siduals can exacerbate errors, leading to additional interpre-
tation bias, particularly for binary response variables like 
presence and availability (Dormann et  al. 2007; Northrup 
et al. 2013). These issues commonly are overlooked in ec-
ological habitat models and can lead to analytical and 
interpretational biases.

An alternative to logistic models is machine learning models. 
Some machine learning methods do not have all of the assump-
tions of model-based inferential methods. Machine learning 
methods can be used as predictive inferential methods (e.g., 
random forest [RF]) or inferential methods of the difference, 
and selection depends on the goal of the research. When com-
pared, logistic regression and the machine-learning algorithm 
RF can yield substantially different results (Shoemaker et  al. 
2018). If researchers have the computing capacity and data re-
quirements, machine learning tools present a reliable compar-
ison to validate or compare with logistic regression. In addition, 
machine learning methods are widely underapplied in conser-
vation when limited species data are available (Mi et al. 2017).

Here, we evaluated the relative importance of a small number 
of high-elevation variables or their surrogates on wolverine 
habitat quality by sex for 38 wolverines around the Greater 
Yellowstone Ecosystem (GYE). We carried out our analysis at 
two different spatial scales to account for scale-specific ecolog-
ical processes and provide decision-makers with more informa-
tion for future management (DeCesare et al. 2012; Rather et al. 
2020). Based on their adaptations for cold environments along 
with observations of feeding resting and denning in talus, we 
expected distance to high-elevation talus and snow water equiv-
alent to be important predictors of wolverine habitat (Telfer and 
Kelsall 1984; Copeland 1996; Copeland et al. 2010; May et al. 
2012; Inman et al. 2013). In some populations, females require 
different habitat types and resources for offspring at various 
developmental stages; thus, we also expected female wolver-
ines would have more complex habitat associations than males 
(Krebs et al. 2007).

Materials and Methods

Study area.—Our study area, in the GYE, encompasses 
Yellowstone National Park and Grand Teton National Park. 
Watersheds, geologic materials, vegetation, and geomorphic 
and hydrologic processes define the GYE boundary (Marston 
and Anderson 1991). Within the GYE, elevation, fire regime, and  
precipitation jointly drive vegetation communities, including 
short-grass prairie, sagebrush communities, conifer forest, 
mixed forest, alpine tundra, and barren talus (Despain 1990). 
Across the GYE, elevation ranges from 300 to 3,300 m. Steppe 
habitats dominate the GYE below 1,700 m, and montane conifer 
forests and alpine tundra habitat dominate above 1,700 m and 
2,900 m, respectively (Despain 1990). There is considerable 
spatial variation in precipitation patterns in the GYE (Whitlock 
and Bartlein 1993). This broad range of precipitation patterns, 
vegetation communities, and elevation supports a rich diver-
sity of plant and wildlife species (Bailey 1930; Streubel 1989; 
Marston and Anderson 1991). While the GYE is one of the last 
intact temperate ecosystems and one of the largest wildland 
areas in the contiguous United States, increasing human pres-
sures, climate change, and invasive species have significant 
influences (Berger 1991; Westerling et al. 2011; Hansen et al. 
2016). The GYE also represents the current southern extent of 
the wolverine distribution.

Wolverine data.—Previous research efforts provided loca-
tion data from 38 wolverines (23♀, 15♂) from the GYE (Inman 
et al. 2012) and followed ASM guidelines (Sikes et al. 2011). 
For each resident animal, we used relocations to create 95% 
kernel density estimates (KDEs) fit with a bivariate kernel 
function using a least-squares cross-validation bandwidth to 
avoid oversmoothing of the data (Calenge 2006). The KDEs 
were used to represent year-round home ranges for the second-
order analysis. We included all resident animals in each of the 
coefficient comparison analyses.

We used both a second-order and third-order analysis scale 
to determine the relative importance of habitat variables or their 
surrogates on wolverine habitat quality by comparing “use” and 
“available” points. For the second-order selection scale, which 
characterizes individual home-range selection within the popu-
lation home range, we extracted points within individual home 
ranges to represent used locations. Random points outside the 
home range represented available points. For the third-order 
selection scale, which characterizes individual-level selection 
of used areas within home ranges, we selected random unused 
points within the home range as available points, and telemetry 
locations represented used points.

Ecological variables.—We used a previously determined 
subset of publicly available data layers in the modeling 
process (Carroll et  al. 2020). The final variables included 
latitude-adjusted elevation (LAE, m), average monthly snow 
water equivalent (SWE, cm), distance to high-elevation talus 
(DHITAL, m), landform classification (LANDFORM, catego-
rical), vegetation class (VEG, categorical), and housing density 
(HOUSE, houses/km2; Fig. 1; Carroll et al. 2020). We focused 
on a limited number of variables because a small number of 
high-elevation variables often predict wolverine habitat well 
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(Aubry et al. 2007; Copeland et al. 2010; Fisher et  al. 2013; 
Inman et al. 2013).

Variable evaluation.—Regression and classification trees 
(herein, tree methods) are machine learning approaches that 
use continuous or ordered discrete values to generate pre-
dictive or descriptive models, which are ideal for analyzing 
complex data (De’ath and Fabricius 2000; Loh 2011). Tree 
methods are incredibly flexible, can be applied to binary re-
sponse data, and are easy to construct and interpret (De’ath 
and Fabricius 2000). We used RF on a training data set of 
80% of the data for each sex and scale to evaluate each hab-
itat predictor’s relative importance. To ensure the errors 
stabilized, we generated aggregate output from 200 RF trees, 
with stabilization occurring after approximately 150 trees 
(Lawrence et al. 2006). We examined mtry values between 2 
and 8 for each model and picked optimal mtry values based 
on percent variation explained in each regression. We esti-
mated mean square error (MSE) increase and mean minimal 
depth from the RF and randomForestExplainer packages in 
the statistical software R, version 3.5.3 (Liaw and Wiener 
2002; Kuhn 2008; R Core Team 2019; Paluszynska et  al. 

2020). We then used the remaining 20% holdback data to 
determine model performance on novel data.

Results
There generally was agreement in the output of importance 
measures both from the RF and randomForestExplainer pack-
ages across sex and scale. The rank and importance of ecolog-
ical variables differed slightly for males and females both at 
second-order and third-order analysis scales.

Second-order analyses.—Our second-order models com-
pared locations within individual home ranges to available 
locations around the population range. For the second-order 
male model, with 200 regression trees and an mtry of 7, 
the percent variation explained was 81.27%, and the mean 
squared of the residuals was 0.04. This model correctly 
predicted holdback test data with 95.74% accuracy. The 
second-order female model had 200 trees, an mtry of 7, a 
percent variation explained of 83.13%, and a mean squared 
of the residuals of 0.03. This model predicted holdback data 
with 96.46% accuracy.

Fig. 1.—Variables used in model development for both second-order and third-order analyses. Snow water equivalent, latitude-adjusted eleva-
tion, housing, and distance to high-elevation talus are continuous. The areas with hashing represent wolverine home ranges used in the analyses.

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

am
m

al/article/102/6/1466/6415482 by guest on 28 July 2023



CARROLL ET AL.—EVALUATING WOLVERINE HABITAT PREDICTORS 1469

We examined RF percent increase of the MSE. This metric 
represents the increase in MSE of predictions as a result of 
permuting one variable. Variables with higher MSE represent 
more important variables in the model, and low MSE are the 
least important (Fig. 2). The most important variables were dis-
tance to high-elevation talus, followed by linear and quadratic 
snow water equivalent for both males and females. Males and 
females differed in their ranking for quadratic latitude-adjusted 
elevation, housing, and vegetation (Fig. 2).

In addition, we examined mean minimal depth among the 
trees in the RF (or most common first tree split) for variable im-
portance (Fig. 3). The variables with the lowest minimal depth 
for males and closest to the root were distance to high-elevation 
talus, snow water equivalent, and quadratic snow water equiv-
alent, respectively (Fig. 3). For females, the lowest mean min-
imal depth variables were distance to high-elevation talus, snow 
water equivalent, and quadratic distance to high-elevation talus. 
Values from both RF (one for each sex) on 200 trees indicated 
different patterns in importance and mean minimal depths for 
vegetation, housing density, and landform type at the second-
order scale. However, both methods indicated that snow water 
equivalent and distance to high-elevation talus best explained 
observed patterns of wolverine habitat at the second order for 
both sexes (Figs. 2 and 3).

Third-order analyses.—Our third-order models compared 
telemetry locations within individual home ranges to random 
locations. For the third-order male model, with 200 regres-
sion trees and an mtry of 2, the percent variation explained 
was 20.44%, and the mean square of the residuals was 0.10. 
This model correctly predicted holdback test data with 86.59% 
accuracy, which was lower than the second-order model. The 
third-order model for females had 200 trees, an mtry of 7, a 

percent variation explained of 35.54%, and the mean square 
of the residuals was 0.12. This model predicted holdback data 
with 81.92% accuracy. While the withheld prediction accuracy 
for males was better than the third-order model for females, 
it was much lower than either of the second-order models. 
Furthermore, the percent variation explained indicated poor 
performance for both third-order models.

We examined RF MSE for the third order as well. The most 
important variables in the MSE were snow water equivalent, 
distance to high-elevation talus, and quadratic snow water 
equivalent for males (Fig. 2). The same three variables were 
most important for females, with distance to high-elevation 
talus ranking higher both than snow water equivalent and quad-
ratic snow water equivalent. Males and females also differed in 
rankings for latitude-adjusted elevation, vegetation, and land-
forms (Fig. 2). The variables with the lowest minimal depth for 
males and females were distance to high-elevation talus, snow 
water equivalent, and latitude-adjusted elevation, respectively 
(Fig. 3). Like the second-order models, values from both third-
order RF models indicated distinct patterns for male and female 
wolverines in importance. Still, both methods indicated that 
distance to high-elevation talus, snow water equivalent, and 
latitude-adjusted elevation best explained observed patterns of 
wolverine habitat at the third order (Figs. 2 and 3).

Discussion
Given the uncertain future of how anthropogenic change will affect 
wolverine habitat, examining factors that explain wolverine hab-
itat use and drive selection using various methods is increasingly 
important. We found that the importance of habitat covariates dif-
fered by sex and selection scales and supported some, but not all, 
of or hypotheses. Although there was variation in the order of vari-
able importance, the same suite of variables was highly ranked for 
both sexes. At both selection scales, distance to high-elevation talus, 
snow water equivalent, and latitude-adjusted elevation were ranked 
highest in all analyses both for male and female wolverines. Our 
findings therefore align with previous wolverine research efforts at 
various selection scales (Aubry et al. 2007; Copeland et al. 2007, 
2010; Fisher et al. 2013; Inman et al. 2013).

Those previous efforts focused primarily on predictive ana-
lyses of wolverine habitat selection using parametric methods. 
A first-order analysis on the same data used here revealed the 
importance of latitude-adjusted elevation, terrain ruggedness 
index, April 1 snow depth, road density, interpolated human 
density, distance to high-elevation talus, distance to tree cover, 
and distance to April 1 snow > 2.5 cm for predictive modeling 
(Inman et al. 2013). Other efforts found late-spring snowpack 
and high topographic ruggedness are predictors of wolverine 
habitat at first- and second-order scales (Aubry et  al. 2007; 
Copeland et al. 2010). Those studies used various data layers 
to identify meaningful relationships between wolverine selec-
tion and rugged terrain or snow. Their results align with our RF 
findings that broad-level habitat selection for wolverines can be 
predicted or identified using a small number of high-elevation 
variables.

Fig. 2.—Percent mean sqaure error (MSE) increase from the random 
forest. Variables with higher MSE represent more important variables 
in the model, and low MSE are less important. Here, SWE is snow 
water equivalent, LAE is latitude-adjusted elevation, TAL is distance 
to high-elevation talus, H is housing density, VEG is vegetation, and 
LF is landform type.
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Ecological variable evaluation.—Our RF results supported 
the hypothesis that distance to high-elevation talus and snow 
water equivalent would be the most important variables for 
wolverine habitat selection. Talus is an important habitat struc-
ture (Copeland 1996; May et al. 2012; Inman et al. 2013), and 
there is evidence that wolverines use talus and boulder fields 
extensively for food caching, denning, microrefugia from 
warm temperatures during summer, and hunting (Kortello 
et al. 2019; van der Veen et al. 2020). Given the broad range 
of physical habitat structure used for various wolverine behav-
iors, including reproductive behavior, the importance of talus 
is logical for both sexes. Based on the importance of talus, ge-
ology may be a key driver of wolverine habitat selection in their 
southern distribution.

We also predicted that snow water equivalent (a surrogate 
of snow depth that summarizes site and basin snowpack con-
ditions) would be important, given that wolverines are highly 
snow- and cold-adapted. Wolverine’s snow adaptations include 

their foot loading, pelage characteristics, general distribution, 
and life strategy (Telfer and Kelsall 1984). Snow water equiv-
alent was consistently important in our analyses across sex 
and scale. While there is evidence against wolverines being 
snow obligate (Webb et al. 2016; Aronsson and Persson 2017; 
Jokinen et al. 2019), snow still is an important wolverine hab-
itat feature for a variety of reasons, including niche separation, 
food caching, and denning (van der Veen et al. 2020).

Latitude-adjusted elevation also ranked high in our models. 
Latitude-adjusted elevation likely is explanatory because it cap-
tures the general ecological characteristics where the species 
niche exists. This could result both from current and evolutionary 
needs to avoid competition with larger carnivores, which are less 
likely to hunt at high elevations on steep terrain. In addition, in 
the GYE, low elevations often are devoid of trees or rock struc-
tures used as escape cover from other large carnivores.

Scale comparisons.—Our second-order models performed 
roughly eight percentage points better on holdback data than 

Fig. 3.—Minimal variable depth for each model. A variable’s minimal depth equals the depth of the node, which splits on that variable and is the 
closest to the root of the tree. A low minimum depth indicates many observations are divided into groups based on this variable. The black labeled 
vertical bars represent the mean of the distribution (Paluszynska et al. 2020). Here, SWE is snow water equivalent, LAE is latitude-adjusted ele-
vation, TAL is distance to high-elevation talus, H is housing density, VEG is vegetation, and LF is landform type.
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the third-order models and had much higher values for percent 
variance explained. These results suggest that a small number 
of high-elevation variables explain population-level wolverine 
habitat selection well and match those of the previous landscape 
to population-level predictive analyses that used parametric 
methods. While our third-order models did well predicting 
holdback data, the percent variance explained indicated that the 
variables did not perform well for within-home-range analyses. 
This finding suggests that unlike at broader scales, wolverine 
habitat selection is challenging to identify with only a small 
number of high-elevation variables and likely requires more 
nuanced analyses.

There are few third-order selection studies on wolverines 
in the western United States. Research on within-home-
range habitat selection for wolverines located primarily in 
and around Idaho suggests that drainage bottom topography, 
avoidance of steep slopes, and proximity to forest edge are 
essential habitat characteristics for both sexes (Heinemeyer 
et al. 2019). This analysis, like ours, found sex-specific dif-
ferences in selection. Using ranked standardized regression 
coefficients, they identified that females selected for talus and 
smaller forest patches with more edge, while males selected 
for fir-dominated forests and areas close to secondary roads 
(Heinemeyer et  al. 2019). There also is evidence that wol-
verines are associated with different vegetation types and 
elevations seasonally, prefer northerly aspects, and avoid 
roads at this scale (Copeland et  al. 2007). These and more 
nuanced variables should be considered for future RF sea-
sonal within-home-range analyses.

Management implications.—Our RF approach confirms that a 
small number of high-elevation variables are important for wol-
verine habitat at the population level in the GYE. Our RF results 
further indicated that high-elevation talus or similar geological 
features best predicted wolverine habitat selection, which aligns 
with some previous research (Copeland 1996; Inman et al. 2013; 
van der Veen et al. 2020) but contradicts others (Copeland et al. 
2007). While high-elevation features explain population-level 
and home-range-level wolverine habitat, within-home-range se-
lection (third order) is more complex in the GYE. The GYE rep-
resents the southern extent of the wolverine distribution, and the 
long-term success of wolverines in this region, like that of many 
other species and natural amenities, will benefit from planning 
for anthropogenic changes (Hansen and Phillips 2018). However, 
high-elevation areas in the Rocky Mountain West generally are 
in public ownership and well-regulated, which bodes well for 
wolverine conservation efforts.
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