;g‘ Precision Agriculture, 3, 407417, 2002
‘ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Soil Phosphorus and Potassium Mapping
Using a Spatial Correlation Model Incorporating
Terrain Slope Gradient

BRIAN KOZAR bjk @montana.edu

Department of Land Resources and Environmental Sciences,
Montana State University, 334 Leon Johnson Hall, PO Box 173120,
Bozeman, MT 59715

RICK LAWRENCE rickl@montana.edu

Department of Land Resources and Environmental Sciences,
Montana State University, 334 Leon Johnson Hall, PO Box 173120,
Bozeman, MT 59715

DAN S. LONG dlong @montana.edu

Northern Agriculture Research Center, Montana State University,
HC 36 Box 43, Havre, MT 59051

Abstract. Variable-rate fertilizer application requires knowledge of the spatial distribution of soil nutrients
within fields. Grid soil sampling might be used for acquiring this information, but is often too expensive
for resolving spatial patterns in soil nutrients at the scale of precision fertilizer application. The objective
of this study was to determine whether grid sampling efficiency can be improved using cokriging estimates
with slope gradient as a secondary variable, which is easily obtained from high-resolution digital elevation
models. Soils in two northern Montana wheat fields were sampled at the nodes of a 100-m diagonal grid. Soil
test phosphorus and potassium maps were constructed with kriging and cokriging. Co-kriging uses the spatial
correlation between two variables to predict for the less intensively sampled variable of interest, often with
less estimation error than a univariate method such as kriging. The average estimation variance for cokriging
compared to kriging was reduced for all values of the correlation considered. The additional complexity of
cokriging might be justified provided a secondary variable exists that is spatially cross correlated with the
primary variable of interest.
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Introduction

Precision agriculture often incorporates precise, spatial information about soil properties
and/or nutrients (e.g., phosphorus and/or potassium) across farm fields to help meet the
goal of optimizing input of fertilizers and herbicides while maintaining or increasing
yields. The evaluation of soil nutrient levels across farm fields is typically performed
by taking soil samples, analyzing them for nutrient content, and interpolating values
between sampling points (Wollenhaupt et al., 1997). In many fields, the sampling has
been conducted on a two-dimensional grid as needed to determine the spatial distribution
in soil phosphorus (P) and potassium (K) levels and make site-specific recommendations
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for phosphate and potash fertilizers (Wollenhaupt et al., 1994). A major limitation of grid
sampling is that a large number of samples are required to resolve the spatial variability in
soil nutrient levels, which can be highly complex within fields. Unfortunately, collection
and analysis costs make this approach impractical on a large scale (Varvel et al., 1999).

The geostatistical procedure of kriging, which is based on regionalized variable the-
ory, is preferred for interpolation of grid data because it allows one to exploit the spatial
correlation between neighboring observations to predict attribute values at unsampled
locations (Isaaks and Srivastava, 1989). In general, kriging has provided better estimates
of soil properties than conventional interpolation procedures such as inverse square dis-
tance (Tabios and Salas, 1985 and Laslett et al., 1987). To this end, kriging involves the
use of the variogram. A variogram has parameters that assist in describing the spatial
correlation: the nugget, sill, and range. Correlations that occur most strongly at shorter
distances and weaken with increasing distance indicate that spatially continuous data,
including most soil properties, are strongly positively autocorrelated (Bailey and Gatrell,
1995). Comparison studies have shown that variability in soil attributes such as electrical
conductivity, bulk density, pH, nutrient content, and particle distribution can be assessed
better using variograms over traditional correlation models (Morkoc et al., 1987, Bresler
et al., 1988, and Entz et al., 1991). In addition to providing a measure of prediction error,
a major advantage of kriging over simpler methods is that sparsely sampled observations
of a primary soil variable can be complemented by secondary variables that are more
densely sampled.

The multivariate extension of kriging, known as co-kriging, is typically used for com-
bining the primary and secondary attribute data. Co-kriging improves the reliability of
interpolation between points by exploiting the spatial cross-correlation between the pri-
mary variable of interest that is linearly related to the secondary variable, or covariate
(Isaaks and Srivastava, 1989). When spatial correlation exists, the variables are said to
be co-regionalized. When two variables are co-regionalized, and the secondary variable
is over-sampled with respect to the primary variable, then the sampling efficiency of the
primary variable of interest is effectively increased (Yates and Warrick, 1987). Co-kriging
makes use of the cross-variogram function to transfer the spatial information in the sec-
ondary variable to the primary, thus improving the reliability of the interpolation process
(Yates and Warrick, 1987, Zhang et al., 1997, and Trangmar et al., 1986). Co-kriging has
been used to interpolate soil chemicals, NaHCO—P, sodium adsorption ratio, and soil
properties using their spatial covariances with secondary variables such as depth of the
soil profile, HCL, electrical conductivity, and terrain indices, respectively (Zhang et al.,
1997, Trangmar et al., 1986, Pozdnyakova and Zhang, 1999, and McKenzie and Ryan.
1999). Thus, co-kriging has the potential to result in a time and economic savings in
mapping soil properties for which there are correlated variables (Trangmar et al., 1999).

The spatial distribution of soil physical and chemical properties is often related to
the spatial distribution of other environmental variables with which they are correlated
(Trangmar et al., 1986, Bhatti et al.,, 1991, and Bailey and Gatrell, 1995). A valuable
and inexpensive source of secondary information is the digital elevation model (DEM).
Digital elevation models have been found useful for revealing previously uncaptured
spatial variability in land and soil properties, and providing explanatory variables for
predictive modeling of soil properties (Moore et al., 1993, and Gessler et al., 1995;
2000). In addition, by including readily available and inexpensive terrain data derived
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from a DEM, co-kriging was found to be useful for predicting primary soil variables
that were more costly or difficult to sample (Odeh et al., 1994; 1995). The rationale for
this approach is that topography influences soil properties due to local re-distribution of
water, solar radiation, and soil materials (Gessler et al., 2000).

If the distribution of soil P or K is affected by translocation, which is a function of
slope gradient, co-kriging of either soil test P or K along with a more easily obtainable
DEM would potentially improve prediction results. In this study, soil test results for P
and K, grid sampled from a field in northern Montana, were interpolated using ordi-
nary co-kriging that combined these soil data with slope gradient derived from a DEM.
Our objective was to determine if relationship existed between these soil test data and
slope gradient derived from a DEM, and whether these relationships could be used with
co-kriging to increase efficiency of grid sampling for precision nutrient management
programs.

Methods

The study site is a 500 m by 2000 m portion of a farm field located in Liberty County,
Montana, 13 miles north of Chester, MT (T34N, R7E, Section 17; 48°42'30" 1 10°51'30").
The site has relief of 10 to 30 meters, has rolling terrain accentuated by deep swales, and
has been dryland farmed with a wheat/fallow rotation. The climate is cool, semi-arid, with
moderate to long winters and 100-110 frost-free days, and experiences a mean annual
air temperature of 4.4°C (40°F) (Caprio et al., 1994). The area receives mean annual
precipitation of about 25.4 to 30.8 cm (10 to 12 inches), with mean annual snowfall of
about 63.5 to 127 cm (25 to 50 inches) (Caprio et al., 1994). The underlying geologic
materials are primarily glacial till derived from the Bear Paw and Judith River formations
(Veseth and Montagne, 1980). Soils are generally moderately deep and range in depth
from 25 to >100 ¢cm. We sampled soil phosphorus and potassium at 100 locations spaced
80 to 100 meters apart in a rough grid like pattern.

A survey-grade GPS receiver was used to collect a fine-resolution grid of easting,
northing, and elevation points along transects over the study site. The elevation points
were interpolated to a 5-m square grid with the commercial mapping software package
Surter (Golden Software) to create a fine resolution DEM. Phosphorus and potassium
point sample data and the DEM were stored in a geographic information system. Slope
values were derived from the DEM for each point at which soil sampling occurred. Data
for each sample point were then imported into the statistical software package S-Plus
data frame for geostatistical analysis, along with 400 additional random elevation points.

Exploratory data analysis (EDA) was conducted for the soil nutrients and for slope
values to look for any possible trends that might indicate lack of stationarity. Observed
trends were removed using linear regression. Semivariograms were calculated individu-
ally for phosphorus, potassium, and slope gradient, using the estimator: ¢

N(h)

y(h) = W) & [2(x) —2(x; + )], (1)

where z(x;) and z(x; +h) is the variable of interest at locations x; and x,+h and N(h)
is the number of point pairs separated by h. Directional variograms were computed to
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identify whether the spatial autocorrelation had a directional component, or anisotropy.
Calculation of the co-regionalization was then determined using the cross-variogram
estimator:

LY

Vip(h) = W(h_) Z [z)(x;) — 2, (x; +h)][z,(x;) — 2 (x; + )}, (2)

i=1
with definitions as in Eq. (1). The semivariograms and cross-variograms were further
characterized by fitting them to a spherical model, using a generalized least squares
estimation approach. This process allowed for modeling the covariance structure of the
data while eliminating second-order, trend effects (Bailey and Gatrell, 1995).
Parameters obtained from the semivariograms were used in a kriging procedure to
predict for phosphorus and potassium. The prediction area encompassed, but did not
exceed, the area where the original sample points were located. The estimated value is
a weighted average of the data set:

N
i(xy) = z Az(x;), (3)
i=1
where 2(x,) is the estimated value, N is the number of observations z(x;), and A, (i =
I,...,N) are the weights assigned to the sampling points. Parameters obtained from
the semivariograms and the cross-variogram were then used in a co-kriging procedure to
predict for phosphorus and potassium based on the correlation between the soil nutrient
values and the slope gradient values. The prediction area is the same as that for the
kriging procedure. The estimated value is calculated through:

N, Ny
21(x0) :ZAIIZI(Xli)+Z/\2jZZ(x2j)7 4)
i=1 i=1

where N, and N, are the number of neighbors of z, and z,, respectively, and A, and
A,; are the weights associated to each sampling point. A full, comprehensive discussion
of semi- and cross-variograms, the models and parameters used to characterize them,
and kriging procedures is beyond the scope of this paper. For a detailed description
and discussion of models, parameters, and kriging and co-kriging procedures, see, e.g..
Bailey and Gatrell (1995).

Cross-validation of the predicted values obtained from both the kriging and co-kriging
procedures was then conducted to determine the accuracy of both procedures for predict-
ing phosphorus and potassium. Cross-validation systematically removed each data point
from the original dataset and used the remaining observations to estimate that data value.
The estimated value was then compared to the true value for evaluating a goodness of fit
of both the kriging and co-kriging models. Comparison of the resulting value, the mean
squared difference, between the two procedures determined which procedure was more
accurate. The mean squared difference, or prediction variance, is calculated by:

I R )
a; = N > lz(x) — 2(x)T", (5)
i=
where N is the number of observations, z(x;) is the actual value of variable being pre-

dicted at x;, and Z_,(x;) is the predicted value at location x; without z(x;). The lower the
prediction variance, the more accurate is the prediction model.
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Table 1. Descriptive data analysis of variables for the dataset

Variable Number Mean Median Min Max SD

Potassium (mg kg=') 100 452.2 424 132 779 142.3
Phosphorus (mg kg™') 100 13.6 12 2 89 10.4
Slope (degrees) 433 5.98 5 1 20 2.3

SD = Standard deviation.

Results

Potassium demonstrated greater variability relative to the mean than did phosphorus
(Table 1). The soil variables were in general normally distributed. Phosphorus contained
two rather high outliers with values of 42 and 89 mg kg~'. Due to the effect that these
outliers may have on the structure of the variogram, these outliers were removed from
the subsequent analysis. Normalization of the data did not result in significantly lower
variances in the data, so data were not transformed for analysis.

EDA for phosphorus levels revealed a directional trend, as levels were generally higher
in the eastern side of the plot at the higher terrain (Figure 1). The linear regression
detrending model fitted phosphorus as a function of the x and y coordinates.

phosphorus = 2813.87 4 .0179(x) — .0022(y) (6)
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Figure 1. Sampled phosphorus (A) and potassium (B) levels overlayed onto the area landscape for purposes of
detecting trend. Actual sample points measure <Im? and size of points on figure are for visual purposes only.
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The detrending model was statistically significant (p-value = 0.02), and, although the
model only explained a small portion of the variability in the data (R? =0.08), it was
useful in removing some trend in the data and improving the variogram fit. The residuals
of the detrending model, therefore, were used to create a variogram for phosphorus.
The potassium data also exhibited a moderate directional trend (Figure 1). Levels were
generally higher beginning in the western portions where the terrain contained a mild
northwest facing slope, then lower as the terrain undulated back down on a southeast
facing slope, then higher again on another northwest facing slope in the eastern portion
of the plot. The linear regression model chosen to detrend the potassium data fitted
potassium as a function of elevation and the sin of the x coordinates.

potassium = 12152 — 3.547(elev) — 47.886(sin(x)) (7)

The sin function represented the undulation of the terrain. This model resulted in a
R-squared of 0.28 with a significant p-value of <0.001.

Semi-variograms for each of the two soil variables (Figure 2 and Table 2) and for
slope (Figure 3 and Table 2) were generated, along with a cross-variogram for potassium
and slope (Figure 3 and Table 2), after the removal of trend, as discussed earlier. The
variogram for phosphorus illustrated a pure nugget effect, i.e., the nugget (small scale
spatial variability) equaled the variance of the data. This corresponded to a complete
lack of spatial dependence between phosphorus samples. Due to this lack of spatial
dependence, no model could be fitted to the semi-variogram that would yield useful
predictive value (Bailey and Gatrell, 1995). No predictions of phosphorus based on slope
gradient could therefore be constructed using semi- and cross-variograms. Potassium and
the slope gradient did exhibit spatial structure and stationarity after detrending. The semi-
variogram for slope and the cross-variogram were assumed isotropic, while an anisotropic
calculation was used for the potassium semi-variogram due to directional dependency.
The crossvariogram for potassium and slope showed a strong cross correlation. The
crossvariogram demonstrated that a positive increment in slope value corresponded to a
negative increment in potassium. As slope gradient increases, therefore, the amount of
potassium in the soil decreases.

A total of 334 equally spaced point estimates of potassium were generated in a rect-
angular grid, using both the kriging and co-kriging methods. The prediction are encom-
passed, but did not exceed, the area from which the original 100 samples were taken.

The predicted values obtained from the kriging and co-kriging procedures were then
plotted in a map for purposes of visual comparison (Figure 4). Cross-validation resulted
in a range of residuals from the original values of —289 to 170, although a majority of
the residuals fell in the range of —50 to 50. Kriging resulted in a prediction variance
of 9,769.2, while co-kriging resulted in a prediction variance of 5,430.7. This translated
into a 44% improvement in prediction variance when employing co-kriging rather than
kriging for estimating potassium across our filed.

Discussion

Both phosphorus and potassium displayed first order variation across the field, indicating
large-scale trends in distribution of these soil nutrients. Sample size and spatial intensity
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Figure 2. Semi-variograms of potassium (A) and phosphorus (B).
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of the sampling scheme influence the quality of semi- and cross-variograms. Phosphorus
failed to demonstrate autocorrelation at the scale of our sampling necessary for the con-
struction of the semi-variogram, both before and after potential outliers were removed.
This result indicated that phosphorus varied at scales below 80 to 100 m. Thus, any
attempt to accurately estimate soil phosphorus at our study site would require intense
sampling at distances considerably shorter than 100 m. Potassium showed a field-wide
trend related both to elevation and the rolling terrain. In addition, autocorrelation was

Table 2. Parameters of the semivariograms and cross-variogram

Lag Azimuth MaxD Tol Sill Nugget * Range
Potassium 100 0 800 11.5 20140 2349 416
Slope 100 none 800 none 16.7 4.5 580
K/Slope 100 none 800 none —357 4.11 499

MaxD = maximum distance to compute variograms. Tol = tolerance angle of azimuth. Nugget, and Range

measured in meters.
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Figure 3. Semi-variogram of slope (A) and cross-variogram of potassium and slope (B).

evident at our sample separation, indicating that predictions could be made through esti-
mation procedures using values of potassium sampled at this intensity (80 to 100 m).
The difference in spatial dependence, or autocorrelation, for the two soil nutrients sug-
gested that, for the purpose of spatial modeling, optimal distances between samples varies
among soil properties. The negative autocorrelation between potassium and slope meant
that for this field steeper slopes had lower potassium levels. This relationship also meant
that knowledge of slope gradient, which was easily derived, could improve our estimates
of soil potassium for this field.

A comparison between the original sampled potassium values and the kriged and co-
kriged estimates (Figure 4) indicated that much of the prediction error occurred where
there were steeper slopes and on the knoll area near the middle of the field. In these areas
potassium was primarily under-predicted. Co-kriging, however, did result in markedly
increased accuracy among these areas. Based on our cross-validation, co-kriging with the
terrain index of slope improved our mapping of soil potassium by 449% when compared
to kriging. The results indicated that allowing slope angle to be incorporated into the pre-
diction of potassium through co-kriging accounted for some of the variability necessary
for accurate predictions.



SOIL PHOSPHORUS AND POTASSIUM MAPPING USING A SPATIAL CORRELATION MODEL 415
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Figure 4. Potassium estimated by the kriging (A) and co-kriging (B) procedures.

The influence topography has on soil formation, and the strong role topography can
play in the spatial distribution of soil properties, can result in strong correlation between
soil properties and terrain indices. Our results suggested that co-kriging with terrain
indices can take advantage of this correlation by making a prediction for a soil property,
based not only on surrounding values of that soil property, but also on surrounding
values of the terrain index as well. This method can be particularly useful when the soil
property (primary variable) is undersampled, and the value of the terrain index (secondary
variable) at the locations being predicted is known. Here co-kriging should show the
most improvement over kriging.

The correlation discerned here between slope and potassium suggests translocation of
potassium within the soil profile. However, the relationship between terrain and potas-
sium is influenced by other environmental factors present in the system, such as geology,
climate, and other soil properties, and the processes that occur between them. Further-
more, as the processes that define these relationships vary between fields, it is likely that
so to will the relationship between potassium and terrain vary between fields. Therefore,
any one particular geostatistical model will have varied levels of success from field to
field. Geostatistics presents an exciting option for prediction of soil properties and nutri-
ents, but these techniques are only beneficial if they can accurately model the system in
which it is being used. Other terrain indices (e.g., plan and profile curvature: compound
topographic index) might capture the processes that underlie the relationship between
topography and the spatial distribution of soil properties more accurately, dependent on
the system in which the analysis is being conducted.
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Improved estimates of soil nutrients at sub-field scales are critical for the success
of precision farming. A detailed survey of individual fields is generally not practical,
and methods that incorporate field sampling are necessary. This study demonstrated that
geostatistical methods can provide reasonable estimates of soil nutrients, if sampling
is sufficiently intense to capture the scale at which the nutrients vary. Incorporation of
correlates, such as terrain variables that influence soil formation and nutrient distribu-
tion, can improve these estimates dramatically and can allow for further reduction in
sampling. Furthermore, these techniques can aid us in understanding the processes that
occur between topography and soils that drive the spatial distribution of soil properties
and nutrients across landscapes. Given increased understanding of these processes and
the system in which they occur, this can in turn allow for further implementation of
geostatistical and terrain modeling prediction techniques.
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