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Abstract

Classification tree analysis (CTA) provides an effective suite of algorithms for classifying remotely sensed data, but it has the limitations

of (1) not searching for optimal tree structures and (2) being adversely affected by outliers, inaccurate training data, and unbalanced data sets.

Stochastic gradient boosting (SGB) is a refinement of standard CTA that attempts to minimize these limitations by (1) using classification

errors to iteratively refine the trees using a random sample of the training data and (2) combining the multiple trees iteratively developed to

classify the data. We compared traditional CTA results to SGB for three remote sensing based data sets, an IKONOS image from the Sierra

Nevada Mountains of California, a Probe-1 hyperspectral image from the Virginia City mining district of Montana, and a series of Landsat

ETM+ images from the Greater Yellowstone Ecosystem (GYE). SGB improved the overall accuracy of the IKONOS classification from 84%

to 95% and the Probe-1 classification from 83% to 93%. The worst performing classes using CTA exhibited the largest increases in class

accuracy using SGB. A slight decrease in overall classification accuracy resulted from the SGB analysis of the Landsat data.

D 2004 Elsevier Inc. All rights reserved.
Keywords: Classification tree analysis; Stochastic gradient boosting; Accuracy
1. Introduction

Classification tree analyses (CTA; also referred to as

classification and regression trees [CART] or decision trees)

are increasingly being used for analysis and classification of

remotely sensed digital imagery. CTA has been used suc-

cessfully for classification of multispectral (Friedl & Brod-

ley, 1997; Hansen et al., 1996) and hyperspectral imagery

(Lawrence & Labus, 2003), incorporation of ancillary data

with multispectral imagery for increased classification accu-

racy (Lawrence & Wright, 2001), and change detection

analysis (Rogan et al., 2003). Although CTA is a relatively

new statistical technique, having been developed about 20

years ago (Breiman et al., 1984), it has subsequently been the

subject of considerable development and refinement. We

examined whether one of the most recent statistical techni-

ques designed to improve on CTA, stochastic gradient

boosting (SGB), offers substantial advantages over tradition-

al CTA approaches being used by remote sensing analysts.
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CTA typically operates by recursively parsing the train-

ing observations based on a binary splitting measure applied

to explanatory variables, such as spectral responses (Brei-

man et al., 1984; Lawrence & Ripple, 2000). The results of

CTA are often in the form of easily interpreted dichotomous

trees that can be used as classification rules either by

themselves in rule-based classifiers or combined with expert

knowledge (Lawrence & Wright, 2001). The increasing

popularity of CTA as a classification technique stems from

several advantages of CTA over traditional methods, such as

maximum likelihood classifiers. CTA does not rely on any

assumptions regarding the distribution of the data, since,

unlike some conventional classifiers, it is a non-parametric

technique. A wide diversity of data sources can be used as

inputs to the classification, such as raw spectral bands,

derived spectral information (such as tasseled cap compo-

nents or vegetation indices), topographic data, and other

GIS layers. CTA automatically selects the best data layers

for classification from those provided by the analyst. CTA

handles continuous and categorical information equally

well, while traditional classifiers cannot include categorical

data. Most importantly, in many reported comparisons, CTA

has resulted in higher accuracies than other methods [e.g.,
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Lawrence & Labus, 2003; Pal and Mather, 2003 (but see

results with higher dimensional data); Rogan et al., 2002].

As a statistical method for classifying data, CTA has

several problems that have been noted (Friedman, 2001).

First, CTA will not necessarily produce the optimal classifi-

cation tree, since it partitions the data on a one-step-at-a-time

basis. A split at one level that does not create the best classes

at that level might enable better splits at lower levels and a

better overall classification tree, much the way sacrificing a

piece in a game of chess can result in a better position several

moves ahead, but this is not provided for in the methodology.

In addition, both inaccuracies and outliers in the training data

can adversely affect CTA because such data can potentially

account for a large portion of the variability in the data

(Friedman, 2001). CTA algorithms can, therefore, concen-

trate on correctly classifying this erroneous or extreme data

to the detriment of correctly classifying other data. This type

of data is typical in remote sensing training data where, for

example, a training polygon for rangeland containing 50

pixels might be expected to have several pixels with a

predominance of bare ground. Finally, the presence of an

unbalanced data set with some classes more heavily repre-

sented than others can affect the performance of CTA, with

the analysis sometimes dividing heavily represented classes

rather than splitting out lightly represented classes.

Methods for producing ‘‘optimal’’ classification trees

have not yet been practical (Friedman, 2001). Several

methods, however, including boosting and bagging, have

recently been developed to address the shortcomings of CTA

(Bauer & Kohavi, 1999; DeFries & Chan, 2000; Friedl et al.,

1999). These methods, sometimes called voting or ensemble

methods, operate by generating multiple trees and classify-

ing observations generally based on a majority or weighted

majority vote of the multiple trees (Opitz & Maclin, 1999).

The primary difference among these new methods is how the

multiple trees are developed. Two major types of methods

have been developed, those that develop new classification

trees based on the results of previous classification trees

(boosting methods) and those that rely on subsets of the

training data to develop new classification trees (bagging

methods) (Bauer & Kohavi, 1999). Many variants of these

basic methods exist (Opitz & Maclin, 1999).

Boosting methods have generally produced the greatest

increases in accuracy, although under certain circumstances

lower accuracies can result (Bauer & Kohavi, 1999; Opitz &

Maclin, 1999). Boosting methods begin by producing a

standard classification tree (Freund & Schapire, 1996,

1999). Training data are then assigned weights with incor-

rectly classified data given greater weight; the greater the

misclassification, the greater the assigned weight. This forces

the new classification tree to emphasize the hardest classifi-

cation problems in the training data. The process is repeated

for a specified number of iterations, and the set of resulting

classification trees vote on the correct classification using a

plurality rule. Boosting has been shown to improve classi-

fication tree performance in many cases, while performing at
least as well as CTA in most remaining cases (e.g., Freund &

Schapire, 1996, 1999; Opitz & Maclin, 1999). Boosting does

not, however, assist with inaccurate training data, outliers, or

unbalanced data sets. ‘‘Outliers’’ (training data that are

incorrectly labeled or that are especially hard to distinguish

from other classes), for example, can have an adverse effect

on boosting because the algorithm will place emphasis on

these observations, since they will be the worst classified and

given the greatest weight in the boosted classification trees

(Bauer & Kohavi, 1999; Freund & Schapire, 1996, 1999;

Opitz & Maclin, 1999).

Bagging methods are bootstrapping approaches where

multiple classification trees are developed by repeatedly

selecting random subsets of the original training data (Brei-

man, 1996). A user-specified number of iterations is per-

formed and, as in boosting, observations are classified based

on the most common prediction from among the multiple

classification trees. In a comparison of traditional classifi-

cation trees, bagging, and boosting, bagging consistently

produced higher classification accuracies than single classi-

fication trees, but was often less accurate than boosting

(Opitz & Maclin, 1999).

SGB is a hybrid of the boosting and bagging approaches

(Friedman, 2001, 2002). First, instead of using the entire data

set to perform the boosting, a random sample of the data is

selected at each step of the boosting process. Second,

boosting is based on a steepest gradient algorithm, with the

gradient defined by deviance (twice the binomial negative

log-likelihood) as a surrogate for misclassification rates.

Finally, instead of developing full classification trees at each

stage of the boosting procedure, relatively small trees are

developed, with 6 terminal nodes being a common size. As

with the other ensemble methods, larger trees are not formed,

rather each tree developed during the process (often 100–

200 trees) is summed, and each observation is classified

according to the most common classification among the

trees. The combined effect of these differences from other

boosting methods reduces SGBs sensitivity to inaccurate

training data, outliers, and unbalanced data sets since, among

other things, the steepest gradient algorithm places emphasis

on misclassified training data that are close to their correct

classification, rather than the worst classified data. SGB has

been shown in most cases to produce substantially higher

accuracies with independent data (data that were not used to

develop the trees) than either CTA or other boosting methods

(Friedman, 2002). Finally, unlike CTA, which is highly

prone to overfitting to training data, SGB is highly resistant

to overfitting since very small classification trees are used at

each step of the boosting process.
2. Methods

We compared the accuracy of SGB to CTA on three

different image classification problems. The three data sets

were selected for their wide spectral, spatial, and land cover



Table 1

Comparative accuracies for classification of IKONOS imagery of the Sierra

Nevada Mountains

CTA accuracy (%) SGB accuracy (%)

Producer’s

Tree 84 92

Water 96 96

Meadow 87 94

Rock 76 98

User’s

Tree 82 92

Water 100 100

Meadow 61 91

Rock 95 98

Overall 84 95

Table 2

Comparative accuracies for classification of Probe-1 hyperspectral imagery

of Virginia City, MT, and surrounding areas

CTA accuracy (%) SGB accuracy (%)

Producer’s

Water 71 100

Conifer 96 91

Deciduous 50 88

Developed 74 96

Range 86 99

Disturbed 96 80

User’s

Water 100 99

Conifer 85 90

Deciduous 89 90

Developed 80 96

Range 94 94

Disturbed 88 89

Overall 83 93
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diversity and because we had used CTA previously to classify

these data with varying degrees of success. Although these

data represent a wide diversity, they are, of course, by no

means exhaustive of all of the cases an image analyst might

face.

The first data set included an IKONOS 4-m resolution

multispectral image from Sequoia National Park, California

acquired August 2001 (Bunn et al., in review). The IKO-

NOS data consisted of four spectral bands from 450 to 850

nm. A slope gradient layer based on a 10-m digital elevation

model (DEM) was resampled to 4 m based on nearest

neighbor resampling and also included in the classification

based on previous analysis. The classification was part of a

study conducted to examine forest spatial patterns at upper

treeline. The classification scheme, therefore, only included

meadows, rock, trees, and water. The reference data collect-

ed through ground observations included 5560 sample

points, which were randomly divided into equal training

and accuracy assessment data sets.

The second data set was derived from a Probe-1 5-m

resolution hyperspectral image of Virginia City, MT, ac-

quired in August 1999 (Driscoll, 2002). Probe-1 is an across

track sensor that collects spectral data in 128 bands from

440 to 2507 nm, all of which were used in the classifica-

tions. No ancillary data were incorporated into this classi-

fication. The area imaged has experienced substantial

mineral extraction activities in the past, and the classifica-

tion scheme included conifer and deciduous forest types,

rangeland, water, disturbed lands from mining, and devel-

oped areas. The reference data collected through ground

observations included 1947 sample points, which were

randomly divided into approximately equal training and

accuracy assessment data sets.

The final data set used was Landsat ETM+ imagery from

the Greater Yellowstone Ecosystem (GYE) in Montana,

Wyoming, and Idaho acquired in the summer, fall, and

winter of 1999 and 2000 (registration error among all

images less than 0.5 RMSE), together with extensive

ancillary data (Lawrence & Wright, 2001). Six Landsat

ETM+ spectral bands, ranging from 405 to 2350 nm, were

used in the analysis (the thermal band was not used).
Ancillary data that were used in the classifications included

elevation, slope, and aspect from a 30-m DEM, tasseled cap

brightness, greenness, and wetness components from each

date, and difference images in these components between

summer and fall, and summer and winter. The data were

collected as part of a study of conifer forest expansion in the

GYE, and the classification types included conifer and

hardwood forests, herbaceous ground cover, conifer/herba-

ceous mix, conifer/hardwood mix, and burned areas. The

reference data collected through air photo interpretation and

ground observations included 1,122 sample points, which

were randomly divided into equal training and accuracy

assessment data sets.

We constructed classification trees for each of the train-

ing data sets using CART 5.0 (Salford Systems, 2002).

CART 5.0 provides a variety of splitting rules for construct-

ing classification trees, and in each case we selected the rule

that maximized accuracy of the reserved accuracy assess-

ment data (for the IKONOS and Landsat data, the class

probability rule, and for the Probe-1 data, the gini rule).

CTA often requires classification trees to be reduced, or

pruned, to guard against overfitting to the training data. We

used a cross validation method provided in CART 5.0 to

select, in each case, the optimal size pruned tree. This

pruning method randomly divides the original training data

into 10 equal subsets for cross validation analysis. Classi-

fication tree sets, or groves, were created using SGB as

implemented in TreeNet software (Salford Systems, 2001).

The reserved accuracy assessment data sets were used to

compare the accuracies of the CTA and SGB classifications

using standard error matrix measures of accuracy.
3. Results

Summary accuracy statistics for the IKONOS data, in-

cluding overall accuracy, producer’s class accuracies, and

user’s class accuracies, demonstrated improved or equal
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accuracy using SGB compared to CTA (Table 1). Overall

accuracy increased by 11%. SGB class accuracies improved

for all measures except for producer’s and user’s accuracy for

water, which stayed the same at 96% and 100%, respectively.

In each case, the class accuracies that were the lowest using

CTA realized the largest improvements in SGB, with pro-

ducer’s accuracy for rock increasing 22% from 76% to 98%,

and user’s accuracy for meadow increasing 30% from 61% to

91%. These improvements were the result of CTA exhibiting

substantial confusion between these two classes, which was

almost entirely resolved using SGB.

Summary statistics for the Probe-1 data exhibited similar

results to the IKONOS data, but with some important

differences (Table 2). Overall accuracy experienced a sim-

ilar increase with SGB, in this case 10%. Also similar to the

IKONOS data, the classes that experienced the lowest

accuracies with CTA had the largest increases in accuracy

using SGB, with producer’s accuracy for deciduous increas-

ing 38% from 50% to 88%, and user’s accuracy for

developed increasing 16% from 80% to 96%. Again, these

improvements were almost entirely the result of confusion

between these two classes using CTA that was almost

entirely resolved using SGB. The accuracy of several

classes, however, experienced decreases, contrary to the

IKONOS classification.

Results for the Landsat classification were substantially

different from the other data. Overall accuracy was nearly

identical, decreasing 2% with SGB compared to CTA. The

similarity in overall accuracy, however, was not shared by

the class accuracies, which varied widely from CTA to

SGB. Also contrary to the other data, no obvious trends in

class accuracies were evident. For producer’s accuracy, the

worst performing class for CTA, conifer/herbaceous at 49%,

was also the worst performing class with SGB, decreasing to

42% (Table 3). On the other hand, the next worse

performing class with CTA, hardwood at 59%, had the

largest accuracy increase with SGB, up 31%. The classes

that performed well with CTA, conifer and conifer/hard-
Table 3

Comparative accuracies for classification of Landsat ETM+ imagery of a

portion of the Greater Yellowstone Ecosystem

CTA accuracy (%) SGB accuracy (%)

Producer’s

Conifer 90 79

Conifer/herbaceous 49 42

Burned 68 69

Conifer/hardwood 88 59

Hardwood 59 90

Herbaceous 83 96

User’s

Conifer 59 60

Conifer/herbaceous 88 85

Burned 67 28

Conifer/hardwood 32 36

Hardwood 89 74

Herbaceous 48 61

Overall 64 62
wood, had substantial decreases in SGB producer’s accura-

cy, down 11% and 29%, respectively. A similar lack of

pattern was seen in the class user’s accuracy statistics.
4. Discussion

Our results demonstrated that SGB can achieve substan-

tially improved accuracy compared to CTA, although not in

all cases. Although the CTA results for the IKONOS and

Probe-1 data were very good in the low to middle 80%

overall accuracy range, respectively, the results with SGB

were outstanding in the middle 90% range. SGB was able to

identify areas of class confusion in these data and resolve

the discrepancies, generally without sacrificing the accuracy

of other classes.

It is not clear why SGB failed to produce higher

accuracies with the Landsat data and, in many instances,

had reduced individual class accuracies. Analysis is prob-

lematic, since statisticians developing boosting methods

remain unclear as to exactly why ensemble procedures

produce superior results to single classification trees (Scha-

pire et al., 1998), and our three data sets provide a limited

sample from which to draw conclusions. We did, however,

note certain patterns that lead us to working hypotheses.

The Probe-1 and IKONOS images represented high-

resolution data, while the Landsat pixels are substantially

coarser, covering from 36 to 56 times the area per pixel,

respectively. Although the effectiveness of other boosting

methods has been shown not to be dependent on high

variance among classes (Schapire et al., 1998), high within

class variability might have a positive effect on SGB

compared to CTA. CTA might be unable to generate enough

rules to cover all the possible variability present within each

class, while the linear combination of trees in SGB might

allow for many more ways to classify each observation

(potentially the total number of different ways 100–200

trees could vote for each possible outcome). Higher resolu-

tion data generally exhibits greater within class variability

than coarser resolution data, given similar class definitions.

Further, the classification scheme for the Landsat data was

more detailed (containing 6 vegetation classes versus 2 for

the IKONOS data and 3 for the Probe-1 data), which also

might have led to decreased within class variability. SGB,

which developed between 150 and 200 decision trees to

classify the data and combined these trees for prediction,

was able to define a greater number of rules leading to

specific classes. We hypothesized, therefore, that SGB

might be more able to define a variety of rules to account

for the increased class variability of the higher resolution

data, thus resulting in greater increases in class accuracies.

This is also consistent with previous findings that variance

reduction by using random subsets of the data for boosting

is an important reason why SGB outperforms other boosting

methods (Friedman, 2002). In addition, other boosting

methods have failed when the base classification tree had
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low accuracy (Schapire, 1999), and we might be seeing this

effect with SGB and the low classification accuracy levels

we achieved with the Landsat data.

As SGB conducts its boosting operation, it concentrates

on resolving observations that are near the decision space

boundaries defined by the data model (Friedman, 2002).

That is, observations within an individual decision tree that

are close to being in another class are more likely to be

identified and corrected in the boosting operation. When

two classes are very similar, therefore, SGB is particularly

effective at resolving the differences between the two

classes. This theoretical advantage in SGB was demonstrat-

ed in both the IKONOS and Probe-1 data. With the

IKONOS data, the main source of confusion in the CTA

classification was between rock and the alpine meadows

found in the high Sierra Nevada Mountains in summer,

where some areas can have spectrally similar dry, sparse

grasses or rock on similar slopes. The main difference

between the IKONOS CTA and SGB classifications was

the resolution of these classes. Similarly with the Probe-1

data, the primary source of confusion with CTA was

between the deciduous class and the developed class, which

consisted of Virginia City, MT, a town containing substan-

tial deciduous plantings. Again, SGB was able to resolve

these similar classes.

Although SGB did not produce higher overall accuracy

with the Landsat data, certain classes had substantial

improvements. An analyst deciding between CTA and

SGB might consider examining the results of the accuracy

assessments to determine which classes to classify with

CTA and which to classify with SGB.

An important disadvantage of SGB for some applications

is that it does not provide readily interpretable decision

trees. Such trees, which are provided by CTA, have numer-

ous advantages. They reveal to the image analyst the basic

structure of the data, identifying which variables (spectral

bands and/or ancillary data) are being used to discriminate

among classes. This information can be used to increase

understanding of spectral properties of earth objects and

their differences and can provide an important diagnostic on

the adequacy of the classification model that cannot be

provided by accuracy assessments alone. If the training and

accuracy assessment data are not representative, for exam-

ple, the classification model can develop erroneous rules

that will not be revealed in the accuracy assessment. An

examination of the rules can assist in this evaluation (e.g.,

Lawrence & Wright, 2001). This is not possible, however,

with SGB, which develops multiple decision trees that are

combined for prediction.

Although SGB does not provide readily interpretable

decision trees or rules, it does provide information on the

relative importance of variables in predicting each class. For

the IKONOS data, for example, for predicting the tree class,

blue was the most important band (relative importance of

100 assigned to the most important band), followed by slope

(66), near infrared (43), green (32), and red (12). Consid-
ering interactions among variables, the most important pairs

of variables for predicting the tree class were slope and blue,

blue and near infrared, and slope and near infrared. These

are logical rules and readily interpretable given the spectral

response of the desired classes. The study site included

many slope facets too steep to hold vegetation and therefore

the slope layer was the obvious base layer for classifying the

image. In areas with moderate to gentle slopes, the distin-

guishing spectral feature between the exposed substrate and

the other classes was high blue reflectance in the granite,

diorite, and monzonite spectra. In areas with slopes amena-

ble to vegetation, the near-infrared layer distinguished well

between the high chlorophyll wet meadows and the rela-

tively lower chlorophyll forests. These class importance data

provided some insight into the structure of the data,

although not nearly as complete as that provided by CTA,

where individual nodes can be traced to provide the precise

rules applicable for each class.

SGB has the capability of producing higher accuracies

than traditional CTA for remotely sensed data, although the

results appear to be dependent on the specific data. As

continues to be the case with image classification, there is

no single classification algorithm that can be expected to

provide maximum accuracies with all data since the statis-

tical method that can best distinguish between and among

classes is likely dependent upon the specific attributes of the

data, including, among other things, classes being distin-

guished, resolution (spectral, spatial, radiometric, and tem-

poral), and quality of training data. With that caveat in mind,

SGB can provide truly exceptional accuracies with certain

data. Substantially more experience is necessary to identify

the best applications for SGB, although with our data the

best performance was experienced with high-spatial-resolu-

tion imagery, and we speculate that this might be the result

of high class variability present with such data. For the

moment, it appears that SGB is a worthwhile alternative

classification algorithm for an image analyst to consider.
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