
Abstract
We evaluated the ability of Ikonos imagery from August
and October 2000 to classify prairie pothole community
types of the Missouri Coteau of North Dakota. Classification
tree analyses were conducted to create land-cover maps at
three levels of detail. The analyses successfully distinguished
broad cover types (potholes including emergent vegetation
versus upland vegetation) at 92 percent overall accuracy.
Overall accuracy dropped to 80 percent when upland
vegetation was segregated into woody and grassy communi-
ties and to 71 percent when we attempted to classify at the
species or near-species levels. The use of two image dates
was of importance in the classifications; the failure to
acquire early season imagery, therefore, might have impaired
our results.

Introduction
The advent of readily available high spatial resolution com-
mercial satellite imagery (Petrie, 2001) presents important new
opportunities for land managers and researchers needing
classifications of landscapes that are heterogeneous at fine
scales. Vegetation, for example, often varies at spatial resolu-
tions finer than are detectable using widely available moderate
resolution imagery, such as Landsat-based imagery. We
examined plant communities of the Missouri Coteau, the
terminal moraine of the Wisconsin Glacier, which reaches
from north central Montana to Iowa. The Missouri Coteau’s
pothole and hilltop topography provides repeated examples
of a moisture gradient occupied by vegetation reaching from
aquatic through aspen, snowberry, tall grass prairie, and
mixed grass prairie, to short grass prairie (Smith, 1998).
The Missouri Coteau is valuable for range, agriculture, and
wildlife, including migrating waterfowl (Murphy, 1993).

The ability to classify accurately both grassland commu-
nities and associated wetlands, such as the prairies of the
Missouri Coteau and their potholes with emergent vegeta-
tion, is of vital importance. More than one-fourth of the
Earth’s land surface and over 60 percent of the United States
is classified as grassland (Williams et al., 1968; Holechek
et al., 1989; Laurenroth, 1979). Grasslands are critical for
wildlife habitat, plant species diversity, hydrologic func-
tions, ecosystem nutrient cycling, and grazing (Campbell and
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Lasley, 1969; Pearse, 1971). The importance of discriminat-
ing among grassland types with remote sensing has been
noted as particularly important because of the vast extent of
these ecosystems (Price et al., 2001). Wetlands, such as are
found with the potholes of the Missouri Coteau, are simi-
larly critical habitat for species including migratory water-
fowl, and mapping such features is critical to land-use
decisions (Muller et al., 1993; Semlitsch and Bodie, 1998).

Satellite imagery has been used extensively to map
grassland vegetation. Moderate resolution imagery, however,
has been almost the exclusive tool for such mapping, thereby
limiting such efforts to either broad vegetation categories or
areas of homogeneous cover types at the resolution of the
imagery. Landsat imagery has been used to discriminate
between cool- and warm-season grasses in eastern Kansas
(Price et al., 2002), four grassland habitat types in North
Dakota (Jensen et al., 2001), rough fescue grassland in western
Canada (Thomson et al., 1985), ten plant communities in
southwestern Idaho (Clark et al., 2001), and eight major
grassland and shrubland groups in southwestern Idaho
(Knick et al., 1997). Classification accuracies ranged from
60 percent to over 90 percent, indicating that Landsat
imagery has substantial potential for mapping grasslands
where the vegetation communities occur in sufficiently
homogeneous areas to be detectable at 30 m resolution.

Commercial high spatial resolution satellite-based sen-
sors, including Ikonos and Quickbird, can provide classifica-
tions at resolutions of 4 m or less. Imagery from these sensors
has been used for many applications, including monitoring
prairie dog colonies (Sidle et al., 2002), building extraction
(Lee et al., 2003), water monitoring and analysis (Huguenin
et al., 2004; JiQun et al., 2004), site-specific agriculture
(Metternicht, 2004; Vina et al., 2003), documenting vegetation
degradation in mountainous environments (Allard, 2003),
measuring tree mortality (Clark et al., 2004), estimating leaf
area index (Colombo et al., 2003; Johnson et al., 2003), and
assessing coral-reefs (Maeder et al., 2002; Palandro et al.,
2003). Few reported studies, however, have used these
sensors for classification of undeveloped land-cover (but see,
e.g., Carleer and Wolff, 2004; Quinton et al., 2003; Sawaya
et al., 2003), and the use of these data to examine grassland
communities does not seem to be well explored. One possible
reason for this lack of application might be that these sensors,
having sensitivity in the visible and near-infrared portions of
the spectrum (Goetz et al., 2003; Thenkabail et al., 2004),
have less spectral resolution than Landsat, which also has
sensitivity in the middle and thermal infrared (NASA, 2004),
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Figure 1. Location of study site, Lostwood National
Wildlife Refuge, North Dakota, shown with an Ikonos
panchromatic image.

although many studies do not use the coarser spatial resolu-
tion thermal infrared.

One possible solution to the lack of spectral resolution
in Ikonos and Quickbird imagery compared to Landsat is to
incorporate temporal information through the use of multi-
ple images across the growing season. Use of multi-date
imagery has been shown to achieve higher classification
accuracies (Guo et al., 2000) and has two potential advan-
tages. First, certain cover types might be best distinguished
on one date, while other cover types might be best distin-
guished on another date (e.g., Lawrence and Wright, 2001).
Second, difference images (those created by subtracting
spectral values of one date from spectral values on another
date (Coppin et al., 2004)), certain components from multi-
temporal principal components analysis (Fung and LeDrew,
1987; Eastman and Fulk, 1993), or other techniques can
represent differences in plant phenology among different
cover types (Coppin et al., 2004). Use of high-resolution
multi-temporal imagery can involve distinctive problems
(Sugumaran et al., 2002). Precise georeferencing can be more
difficult than with coarser resolution imagery and registra-
tion of images acquired at different look angles, for example,
can be difficult. Shadows can be a greater problem with
high-resolution imagery, and shadows appearing on one date
might be absent on another, complicating classification
efforts.

Our objective was to evaluate the ability of multi-temporal
high spatial resolution satellite imagery to map vegetation
communities in a spatially fine scale heterogeneous region.
Classification success would suggest that such analysis could
overcome the spatial resolution limitations of sensors such as
Landsat imagery as well as the spectral resolution limitations
of sensors such as Ikonos and Quickbird.

Methods
Our study site was the northern half of the Lostwood National
Wildlife Refuge (LNWR). LNWR is located in Burke and Montrail
Counties of northwestern North Dakota, 37 km south of
Canada and 113 km east of Montana (Figure 1) at an elevation
of 675 m to 764 m. This terrain comprises non-integrated
wetland drainages, filled by snowmelt and rainfall through
surface runoff and subsurface seepage. The 10,888 ha refuge,
thus, is dotted with 2,178 ha of prairie wetlands (Smith,
1998). The Prairie Pothole Region of the Missouri Coteau is
useful for grazing and farming and, with its wetlands, is
important for migratory waterfowl and upland bird species
(Rolling and Dhuyvetter, 2003).

High spatial heterogeneity of vegetation types at LNWR
is due primarily to diverse habitats (bottoms, slopes, and
hilltops) in the rolling topography and, secondarily, to the
clonal spread of grasses, shrubs, and trees. Vegetation includes
native wetland communities; native prairie communities;
native, but invasive, tree and shrub communities; and intro-
duced cropland species. The pothole wetlands are diverse in
size, depth, vegetation, and water quality. The primary woody
communities are Populus tremuloides (aspen) and Symphori-
carpos occidentalis (snowberry). The grassy prairie communi-
ties include northern phases of tall, mixed, and short grass
prairie, dominated by Stipa comata (needle-and-thread),
Mulenbergia cuspidate (plains muhly), Bouteloua gracilis (blue
grama), Agropyron smithii (western wheatgrass), Stipa viridula
(green needlegrass), Festuca scabrella (rough fescue), and
Mulenbergia richardsonis (mat muhly). Dominant introduced
grasses are Bromus inermis (smooth brome) and Poa pratensis
(Kentucky blue grass). Both grasses are highly competitive,
perennial, rhizomatous, and sod-formers.

LNWR’s climate is semi-arid, with an annual mean
precipitation of 43 cm and deviations of greater than 10 cm

in four of ten years (Rolling and Dhuyvetter, 2003). The
average annual temperatures at LNWR are between �40°C in
winter (January maximum/minimum at 9°/–20°C) and 38°C
in summer (July maximum/minimum at 28°/11°C). The
growing season, therefore, is limited by winter storms that
can occur as late as early June and frosts as early as August.

Ikonos multispectral imagery was acquired on 11
August 2000 and 10 October 2000. We attempted to obtain a
spring and a fall image to capture maximum phenological
variability, but were not able to obtain a clear image prior to
August due to weather and acquisition difficulties. The
imagery has a spatial resolution of 4 m and included four
spectral bands (blue, 0.45–0.52 �m; green, 0.52–0.59 �m;
red, 0.62–0.68 �m; and near-infrared, 0.77–0.86 �m). Pixel
values represented 11-bit scaled radiance values. Imagery
was georeferenced to a Universal Transverse Mercator
(UTM WGS84) coordinate system and the images were regis-
tered to within one pixel. In addition to the raw Ikonos
spectral bands, we used several derived components to
represent potential changes in vegetation spectral responses
between the two dates. These components included (a)
difference images created for each of the four bands by
subtracting the August spectral values from the October
spectral values, and (b) seven principal components from a
principal components analysis of the eight spectral bands
from the two dates (the first principal component was
determined to not include change data).

The reference data for classification and accuracy assess-
ment were collected using on-ground surveys with differential
GPS during summer months. A minimum of ten circular plots
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TABLE 1. CLASSIFICATION SCHEME FOR IKONOS IMAGERY OF LOSTWOOD

NATIONAL WILDLIFE RESERVE

Level 1 Level 2 Level 3

Potholes, including Potholes, including Potholes, including 
emergent emergent emergent 
vegetation vegetation vegetation

Upland vegetation Woody vegetation Aspen
Snowberry

Grassy vegetation Grasses with 
dwarf shrubs

Grasses without 
dwarf shrubs

TABLE 2. LEVEL 1 CLASSIFICATION ACCURACY ASSESSMENT

Potholes/
Emergent Upland User’s
Vegetation Vegetation Totals Accuracy

Potholes/emergent 215 3 218 98.6%
vegetation

Upland vegetation 78 759 837 90.7%
Totals 293 762 1055
Producer’s accuracy 73.4% 99.6%
Overall accuracy 92.3%
Kappa 0.79

were collected for each of 21 vegetation cover types (later
combined into five types for analysis), with each plot having a
6 m radius. Reference data for each cover type were randomly
divided into equal training and accuracy assessment data sets.

Data used in the classification included eight original
spectral bands, four difference image components, and
seven principal components. Classification tree analysis
(CTA) in S-Plus statistical software was used to create a set
of decision trees and associated classification rules for the
study area. CTA (sometimes referred to as classification and
regression tree analysis, CART, decision trees, or recursive
partitioning) is a non-parametric classification algorithm that
has been demonstrated to be effective in classifying complex
data sets with multi-temporal components (Lawrence and
Wright, 2000).

Classification was conducted hierarchically, with each
of three levels representing increasing discrimination among
cover types (Table 1). Level 1, therefore, included only the
broadest differentiation of potholes (including emergent
vegetation) and upland vegetation. At Level 2, upland
vegetation was segregated into two functional classes, woody
vegetation (consisting of aspen and snowberry) and grassy
vegetation (consisting of grasses with and without dwarf
shrubs). Finally, at Level 3 woody vegetation was segregated
into two species classes, aspen (both tree and shrub forms)
and snowberry, and grassy vegetation was segregated into
two functional classes, grasses with and without dwarf
shrubs. Accuracy assessments followed traditional error
matrix methods (Congalton and Green, 1999).

Results
Overall accuracy for the Level 1 classification was 92
percent (Kappa statistic 0.79). Individual class accuracies
ranged from a low of 73 percent for producer’s accuracy for
potholes to 100 percent for producer’s accuracy for upland
species (Table 2). Most confusion was due to the classifica-
tion of some pothole areas as upland vegetation. Areas of
dense emergent vegetation, which had similar spectral

characteristics to upland vegetation, were the primary cause
of this error.

The decision tree for Level 1 was fairly simple, with five
terminal nodes and the incorporation of 3 of the 19 potential
explanatory variables (Figure 2). Explanatory variables used
in the classification included the near-infrared and green
bands from the August Ikonos image and the red band differ-
ence component. Potholes were identified primarily by lower
radiance in the near-infrared portion of the spectrum for
water-dominated areas, as would be expected due to the high
absorption of infrared by water. Other pothole areas were
distinguished by high green radiance, probably because
ponded water kept emergent vegetation greener than upland
vegetation in August. Finally, some pothole areas were
distinguished by high near-infrared responses, possibly also
indicating the presence of healthy vegetation in emergent
vegetation zones.

For the Level 2 classification, which segregated upland
vegetation into grassy and woody vegetation, overall classifi-
cation was 80 percent (Kappa statistic 0.68). Individual class
accuracies ranged from 68 percent for woody vegetation
producer’s accuracy to 99 percent for pothole user’s accu-
racy (Table 3). The largest source of confusion was woody
vegetation being classified as grassy vegetation, while the
sum of grassy vegetation classified as woody vegetation and
potholes classified as grassy vegetation accounted for an
equivalent amount of error.

Figure 2. Decision tree for the Level 1 classification.
Splitting rules at each node indicate the left branching
at the nodes. Difference components were created by
subtracting the August spectral values from the October
spectral values.

TABLE 3. LEVEL 2 CLASSIFICATION ACCURACY ASSESSMENT

Potholes/
Emergent Woody Grassy User’s
Vegetation Vegetation Vegetation Totals Accuracy

Potholes/ 215 3 0 218 98.6%
emergent
vegetation

Woody 28 199 41 268 74.3%
vegetation

Grassy 50 89 430 569 75.6%
vegetation

Totals 293 291 471 1055
Producer’s 73.4% 68.4% 91.3%

accuracy
Overall 80.0%

accuracy
Kappa 0.68
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TABLE 4. LEVEL 3 CLASSIFICATION ACCURACY ASSESSMENT

Potholes/emergent Grasses With Grasses Without
Vegetation Aspen Snowberry Dwarf Shrubs Dwarf Shrubs Totals User’s Accuracy

Potholes/
emergent vegetation 215 3 0 0 0 218 98.6%

Aspen 0 88 5 0 3 96 91.7%
Snowberry 28 23 83 4 34 172 48.3%
Grasses with 

dwarf shrubs 0 0 19 54 14 87 62.1%
Grasses without 

dwarf shrubs 50 0 70 43 319 482 66.2%
Totals 293 114 177 101 370 1055
Producer’s accuracy 73.4% 77.2% 46.9% 53.5% 86.2%
Overall accuracy 71.9%
Kappa 0.62

The decision tree for Level 2, which segregated upland
vegetation into woody and grassy vegetation, was much
more complex than the Level 1 decision tree, had nine
terminal nodes, and incorporated six explanatory variables,
the red band from the August image, the green, red, and
near-infrared bands from the October image, and principal
components 5 and 6 (Figure 3). We interpreted principal
component 5 as representing changes in green spectral
radiance from August to October and principal component
6 as primarily changes in blue radiance between the two
images. Most grassy vegetation was distinguished by higher
values in the October red band, possibly due to earlier
senescence for grasses (i.e., less absorption by photosyntheti-
cally active vegetation). For those observations with lower
red radiance, much of the woody vegetation was distin-
guished from grassy vegetation by lower radiance in the
August red band, perhaps for the same reason.

For the Level 3 classification, which segregated woody
vegetation into aspen and snowberry and distinguished
grassy vegetation with and without dwarf shrubs, overall
classification was 72 percent (Kappa statistic 0.62). Individ-
ual class accuracies ranged from 47 percent for snowberry
producer’s accuracy to 99 percent for pothole user’s accu-
racy (Table 4). Grasses without dwarf shrubs were most

often confused with snowberry and grasses with dwarf
shrubs, while snowberry was the largest source of confusion
for aspen. In addition, the grasses with dwarf shrubs were
poorly distinguished and substantial confusion remained
among aspen and other classes.

The decision tree segregating woody vegetation types for
Level 3 had three terminal nodes and used two explanatory
variables, the red band from the October image and the green
band from the August image (Figure 4). Snowberry was
distinguished by having higher responses in both bands,
probably because the higher leaf area in aspen resulted in
more absorption in the visible bands. The aspen present at
the site, however, is mostly in the shrub stage, which would
have leaf areas that overlap with those of snowberry, result-
ing in substantial residual confusion between these classes.

The decision tree segregating grasses with and without
dwarf shrubs had five terminal nodes and used four
explanatory variables, the near infrared band from the
October image and principal components 2, 4, 7, and 8
(Figure 4). We interpreted principal component 2 as change
in the visible bands, principal components 4 and 7 both as
change in all bands except green, and principal component
8 as change in all bands. Grasses with dwarf shrubs were
distinguished from grasses without dwarf shrubs primarily
by having lower values in all principal components, indicat-
ing that the grasses with dwarf shrubs had less change in
spectral values from August to October. One possible expla-
nation for this might be that the dwarf shrubs senesced later
than the grasses, resulting in less change between the two
dates. An alternative might be that dwarf shrubs tend to
appear on drier sites with less vegetation cover and more
soil exposure. The exposed soil might result in a more
constant spectral signature over time. The dwarf shrubs,
however, are often topped by tall grasses, which could
explain the substantial confusion between these two classes.

Discussion
Classification of multi-date Ikonos imagery for our prairie
pothole site was fairly successful, with some notable
exceptions. Classes at the broad first level, pothole versus
upland vegetation, were well distinguished, as were most
classes at the second level, grassy versus woody vegetation.
At the third level, which included species and near species
classes, however, accuracies dropped substantially. The
snowberry and grass with dwarf shrub classes, in particular,
were not well distinguished from grasses. Examination of
the decision trees used to create these classifications
suggests the probable reason for this confusion. We believe
that the primary method of distinguishing dwarf shrubs and
snowberry from grasses was differences in rates of spectral

Figure 3. Decision tree for the Level 2 classification
segregating upland vegetation into woody vegetation
and grassy vegetation. Splitting rules at each node
indicate the left branching at the nodes. PC refers to
multi-temporal principal components created by principal
components analysis of all eight bands from the two
dates of imagery.
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change between August and October, due either to differ-
ences in rates of senescence, soil exposure, or both.

The decision trees used for our classifications support
our concept that temporal information might be valuable for
separating vegetation types. Raw spectral bands from both
dates were used in the decision trees, although it is unknown
whether this resulted from distinctions being evident only on
certain dates or slight statistical advantages from a band on
one date versus another. More compelling was the promi-
nence of derived data representing changes from one date to
the other. The difference in red radiance was important to the
Level 1 classification. Several principal components that
represented changes in radiance between the two dates were
important at Levels 2 and 3. These principal component data
were particularly important because late in the season, when
our imagery was acquired, the rates of phenological change
vary substantially among species. Our classifications, there-
fore, were able to exploit some of these differences among
classes that most likely otherwise would not have been
distinguishable because of the substantial overlap in spectral
responses among classes on any single date.

The success of our classifications also might have been
affected by the particular dates of imagery we obtained.
Although we contracted for spring, summer, and fall images,
Space Imaging, LCC was not able to obtain a spring Ikonos
image during the study period. The failure primarily was
due to unacceptable cloud conditions (one image was
obtained but was returned as unacceptable for this reason,
another was clear but followed a late season snow storm
with substantial drifting snow still on the ground). The use
of images from more phenologically varied periods might
have been able to detect variations in vegetation that were
not evident from two relatively late season images.

Conclusion
Our objectives were to determine whether multi-temporal
Ikonos imagery could successfully map prairie pothole
communities, both in terms of delineating potholes with
their emergent vegetation and in distinguishing among
upland vegetation communities. Our results indicate that
these data can be highly successful for pothole and wetland
determination. Results for upland communities were mixed.
Broad categories were fairly well distinguished, and we
found that the multi-temporal nature of the data was often
important for making these distinctions. Several similar
communities, however, remained confused. It is important
for future research to determine whether obtaining imagery
for more distinctive dates, such as spring and fall, can
overcome these problems.
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