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Evaluation of classification methods, whether in connection with the development of new methods or in an ap-
plication setting, has beenhamperedby the lack of availability of adequate data and an approach for comparisons.
We collected 30 mostly moderate-resolution, multispectral datasets to enable statistically rigorous comparisons
of methods and have made those datasets available for other researchers. We developed a methodological ap-
proach to comparing classification methods and demonstrated the approach using six methods, C5.0, classifica-
tion tree analysis, logistic model trees, multivariate adaptive regression splines, random forest, and support
vector machines. We also demonstrated how these data and this approach can be used to address specific ques-
tions in addition to overall accuracy performance, including the relative effects of using derived components and
ancillary data and the relative success in classifying rare classes. Most methods performed best by at least one
metric with at least one dataset. Therefore, although random forest on average performed statistically signifi-
cantly better than the other methods tested, we do not recommend this method as the sole option currently in
remote sensing. Rather, our results suggest that remote sensing analysts should evaluate multiple methods
with respect to any classification project, which can be accomplished through statistical software packages.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The past two decades have seen rapid expansion of the types of clas-
sification methods used with remotely sensed imagery, especially with
respect to supervised classification methods. Few methods were com-
monly employed in the mid-1990s, with remote sensing textbooks
commonly covering parallelepiped, nearest neighbor, and maximum
likelihood classifiers (e.g., Lillesand & Kiefer, 1994), while commercial
image processing software rarely included other options. Machine-
learning methods, in particular, have seen rapid adoption since the
1990s, perhaps starting with neural networks (e.g., Heermann &
Khazenie, 1992), and then expanding into methods such as tree-based
approaches (such as classification trees, Lawrence and Wright (2001),
C5.0, Quinlan (1993), and random forest, Lawrence, Wood, and Sheley
(2006), and support vector machines, Mountrakis, Im, and Ogole
(2011)). Many of these methods have not yet been adopted within
some of themost popular commercial image processing software pack-
ages, but the evidence both in published literature and anecdotally is
that these methods are now in widespread use, often through add-ins
to commercial software or as stand-alone programs. It is likely that we
will continue to see an increasing number of new methods applied to
remotely sensed data.We are aware, for example, of over 100 classifica-
tionmethods available in the R statistical program, most of which likely
have not ever been tested in the remote sensing field, although some of
the more traditional methods, such as the maximum likelihood classi-
fier, are currently missing, complicating comparisons with such
methods. Some are not appropriate or logical choices for remote sens-
ing, but many are worth examining. The proliferation of new methods
is showing no signs of abating.

The general practice when introducing new methods to the remote
sensing field has been to provide very limited, if any, comparisons to
other methods and to apply the new methods to one or only a few
datasets. Examples from some of our publicationswill serve to illustrate
this common approach. An early paper on classification trees (Lawrence
&Wright, 2001) used a single dataset and compared no other methods.
The paper introducing stochastic gradient boosting to remote sensing
(Lawrence, Bunn, Powell, & Zambon, 2004) compared results to one
other method, single classification trees, and used three datasets. One
of the earliest papers applying random forest to remote sensing classifi-
cation (Lawrence et al., 2006) compared results to two methods, single
classification trees and spectral angle mapper, and used two datasets.
We have used our own studies to illustrate the point (so as not to
point fingers at others), but this approach of conducting very limited
comparisons is common. This tendency has likely been out of necessity,
rather than by choice. New methods are almost always developed or
adopted from other fields in the context of the needs of a specific,
often grant funded, project, thus making the collection and application
to other datasets outside the bounds of the project. There historically
has not been a readily available collection of datasets that could be
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accessed for truly rigorous comparisons (this is in comparison with sta-
tistical literature where, for example, random forest was introduced
using 19 datasets (Breiman, 2001)). Researchers also have been faced
with determining what logical comparisons would be meaningful
among the myriad possibilities available. Perhaps comparisons to max-
imum likelihood (the standard of the day)were logical in the 1990s, but
subsequent growth in available methods presents no obvious contem-
porary standard, and incorporating many different methods into an
analysis might not be practical.

Remote sensing researchers and practitioners have been left, there-
fore, with less rigorous bases on which to select classification methods.
Options have included the perceived weight of the evidence based on
many published works showing high success of certain methods, use
of methods with which a researcher has had previous familiarity and
success, or ease of application based on availability through a particular
software program.

The goal of this project was to create and demonstrate an approach
and infrastructure that will allow rigorous comparisons of classification
methods for remotely sensed data. The projectwas bounded at this time
for practical purposes to include (1) mostly multispectral, moderate
spatial-resolution datasets, (2) pixel-based, supervised classification
methods, and (3) classification schemeswith three ormore classes (be-
cause two-class problems have an additional range of methodological
options). Our approach, if found useful, could readily be expanded be-
yond these bounds, given the availability of appropriate datasets.

The methods we selected for demonstration included four that have
beenwidely favorably reported in the literature and, in order to demon-
strate the utility of this approach for evaluating newmethods, two that,
to our knowledge, have been rarely or never reported as previously
used for classification of remotely sensed data. We initially compared
these methods based on overall accuracy. Overall accuracy, however,
might not always be the only, or even primary, factor on which to
base the selection of a classificationmethod.We recognized that the ap-
proach and infrastructure we present provides the ability to rigorously
comparemethods based onmany criteria.We therefore further demon-
strated examples of how these data might be mined by conducting two
other analyses. First, because many modern classification problems, in
addition to using spectral band data, take advantage of ancillary data
and derived components, we examined whether certain classification
methods were better able to exploit these additional data by repeating
our analysis excluding ancillary data and derived components and eval-
uating the resulting changes in overall accuracy. Second, classification of
rare classes can be problematic for some classificationmethods (such as
classification tree analysis, Chawla, Cieslak, Hall, and Joshi (2008)). We
therefore also compared class accuracies among the methods for rare
classes.
2. Methods

2.1. Data

We attempted to obtain a large number of datasets meeting the
study's criteria in order to have sufficient statistical power to meaning-
fully compare methods. A number of datasets were available in-house
from previously published studies (Lawrence et al., 2004; Bricklemyer,
Lawrence, Miller, & Battogtokh, 2007; Savage & Lawrence, 2010). We
made broadly advertised requests through several remote sensing orga-
nizations/committees with which we are involved, direct inquiries to
contacts at governmental agencies, and personal requests to several re-
mote sensing colleagues. The response was extremely limited, and per-
sonal contact indicated that, while the project was deemed highly
valuable, researchers felt they did not have the time to work through
their archives to obtain and provide data. The primary source of addi-
tional datasets, therefore, came from data archived on-line by the Gap
Analysis Project (GAP) (Lowry et al., 2007).
Thefinal collection of datasets used for our analyses included five in-
house and 25 obtained through the GAP archive (Table 1). Most very
large datasets (tens of thousands of observations) were randomly sub-
set to 3000–5000 observations for computational efficiency. Most
datasets were based on Landsat imagery and included either ancillary
data (such as topographic variables), derived components (such as
tasseled cap components), or both. Additional information with respect
to these datasets can be found at the referenced citations.

2.2. Methods tested

Our approachwas demonstrated using six selectedmethods. Four of
thesemethods, classification tree analysis (CTA), C5.0 (C5), random for-
est (RF), and support vector machines (SVM), have been widely re-
ported and demonstrated as successful methods for classification of
remotely sensed data. One method, multivariate adaptive regression
splines (MARS), has been successfully reported for mapping continuous
responses with remotely sensed data (e.g., Nawar, Buddenbaum, Hill, &
Kozak, 2014), but to our knowledge has not yet been widely used for
classification applications (but see Quirós, Felicísimo, & Cuartero,
2009). We were not aware of any reported studies using logistic
model trees (LMT) with remotely sensed data but chose to evaluate it
as one of the most recent tree-based classifiers not using ensemble
methods. We used, in all cases, a version of the method implemented
in the R statistical package, using default parameters in order to stan-
dardize the comparisons (Table 2).

CTA, C5, RF, and SVM have been widely reported in the literature,
and readers are referred to these previous studies for detailed descrip-
tions of thosemethods. An overview of thesemethods andmany others
in a single volume can be found in Tso and Mather's (2009) Classifica-
tion Methods for Remotely Sensed Data, Second Edition.

LMTs are a refinement of CTA or decision trees (Landwehr, Hall, &
Frank, 2005). CTA uses a single variable at each tree node to build a
model. LMT, in contrast, builds a logistic regression model at each
node to determine the node's binary split. Each logistic regression is
built from all input variables using a stepwise variable selection ap-
proach based on model Akaike information criterion (AIC) score. This
approach gives LMT the theoretical advantage of better designed splits
at each node within a tree model.

MARS (Friedman, 1991), implemented in the “earth” package in R,
has been used in very limited remote sensing classification applications
(Quirós et al., 2009). MARS is similar to CTA in that it is a recursive
partitioning algorithm. MARS, however, incorporates a multi-stage re-
gression that uses spline functions. MARS is based on regression func-
tions, but methods have been developed to adapt it to classification
problems. A reader interested in expanded detail on the functioning of
MARS is referred to the citations above.

2.3. Analysis

Training data in each case consisted of 75% of the total dataset (ex-
cept for dataset #4, whichwas 50%). Validation data consisting of a ran-
domly selected 25% of each dataset (except for dataset #4) were
extracted, retained for accuracy assessment, and not used in model
building. A function was created in the R statistical programming lan-
guage for eachmethod tested. The applicable function used the training
data for each dataset sequentially to build a model for that dataset, gen-
erate accuracy statistics based on the withheld validation data, and
compile the accuracy statistics for all datasets into a single spreadsheet
for each method. Overall accuracies were compared pairwise between
methods using a Wilcoxon's paired signed rank test with a Bonferroni
correction for multiple comparisons (Demsar, 2006).

The comparative ability of each method to utilize ancillary data and
derived components was evaluated by removing these components
from each dataset and repeating the previous analysis using only spec-
tral band data. Changes in accuracy compared to analyses using all data



Table 1
Information with respect to 30 datasets used for the analysis. Source A was in-house while Source B was the GAP Analysis Project. Landsat data is from the TM and ETM+ sensors, and in
many cases includedmultiple dates and/or excluded thermal data. Locations are general, andmore specific locations can be found in the publications referencing these data. Ancillary data
TC = tasseled cap components and topo = topographic layers, such as elevation, slope, and aspect.

Dataset Source Location Number of bands/sensor Ancillary data Number of classes Number of training observations

1 A Greater Yellowstone Ecosystem 18/Landsat 18 (TC, topo) 6 561
2 A Yellowstone National Park 14/Landsat 37 (TC, topo) 21 5248
3 A Virginia City, Montana 128/Probe-1 None 6 999
4 A Northeast Montana 14/Landsat 21 (TC) 6 35950
5 A Sierra Nevada Mountains, California 4/IKONOS 1 (topo) 4 2780
6 B West Utah 18/Landsat 9 (TC, topo, landforms) 22 3999
7 B Central Utah 6/Landsat 4 (TC, topo) 3 4000
8 B Southeast Utah 18/Landsat 9 (TC, topo, landforms) 28 4000
9 B East Central Utah 18/Landsat 9 (TC, topo, landforms) 23 4000
10 B Northwest New Mexico 18/Landsat 11 (TC, topo, landforms) 19 4000
11 B Southwest New Mexico 18/Landsat 11 (TC, topo, landforms) 26 5000
12 B Northwest Nevada 12/Landsat 12 (TC, topo, landforms) 18 5000
13 B West Central Nevada 12/Landsat 17 (TC, topo) 15 3499
14 B Northwest Arizona 18/Landsat 9 (TC, topo, landforms) 20 4998
15 B Northeast Arizona 18/Landsat 9 (TC, topo, landforms) 19 4000
16 B North Central Arizona 18/Landsat 9 (TC, topo, landforms) 23 6010
17 B Central Arizona 18/Landsat 9 (TC, topo, landforms) 19 6008
18 B Southwest Arizona 18/Landsat 9 (TC, topo, landforms) 14 6004
19 B Northwest Colorado 6/Landsat 16 (TC, topo) 65 6018
20 B Central Colorado 6/Landsat 16 (TC, topo) 53 6019
21 B East Colorado 6/Landsat 19 (TC, topo) 44 6012
22 B West Central New Mexico 18/Landsat 11 (TC, topo, landforms) 34 1844
23 B North Central New Mexico 18/Landsat 8 (TC, topo, landforms) 40 5426
24 B South Central New Mexico 18/Landsat 8 (TC, topo, landforms) 45 6011
25 B East New Mexico 18/Landsat 11 (TC, topo, landforms) 39 6009
26 B North East Nevada 12/Landsat 9 (TC, topo) 32 6010
27 B East Nevada 12/Landsat 17 (TC, topo) 34 6015
28 B South Nevada 12/Landsat 9 (TC, topo) 27 6009
29 B South West Nevada 12/Landsat 18 (TC, topo, landforms) 31 6013
30 B North West Nevada 18/Landsat 9 (TC, topo, landforms) 13 5998
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were calculated, and the relative effects of these changeswere analyzed
using the same Wilcoxon's test.

Our analysis of the ability of each method to classify rare classes
beganwith a definition of “rare classes”. We set as an arbitrary standard
for this study any class where the size of the class's training dataset was
less than one percent of the total training dataset. Many datasets, espe-
cially those from the GAP project, had a large number of classes (mean
of 25 and range of 3–65), and this threshold produced an appropriate
relative amount of rare classes (303 of 747 total classes). We then com-
pared the class accuracies for these rare classes as a group using the
same Wilcoxon's test. Producer's and user's accuracies were tested
separately.
Table 2
Summary of methods tested and key parameters applied for eachmethod. The default pa-
rameters in the R statistical package were used in each case to standardize comparisons.

Method Parameters

Random forest ntree = 500
mtry = square root of number of
variables
sampsize = two thirds of dataset

C5.0 trials = 10
Logistic model trees None
Support vector machines kernel = radial

degree = 3
gamma = number of variables
cost = 1
nu = 0.5

Multivariate adaptive regression
splines

pmethod = backward
ncross = 1
nfold = 0
varmod.conv = 1
varmod.clamp = 0.1
varmod.minspan = −3

Classification tree analysis None
3. Results

3.1. Overall accuracies

Individual dataset overall accuracies were similar to those reported
for these datasets in peer-reviewed articles using these data. Mean
overall accuracies were low (51–73%) primarily because of the effect
of the GAP datasets (Table 3, Fig. 1). The GAP analysis involved a large
number of classes (125 identified classes within the entire region),
and the GAP study reported an overall mean accuracy of 61% (Lowry
et al., 2007). There were statistically significant differences in all
pairwise comparisons of overall accuracy among the classifiers (all p-
values b0.01, except RF compared to C5, p-value = 0.05).

RF resulted in the highest mean overall accuracy, although C5 re-
sulted in a mean overall accuracy within 1% of RF. CTA performed
worst on average, trailing RF by over 22%. The superior overall accu-
racy of RF, however, did not mean that it was always the best classifier
for individual datasets. RF had the highest overall accuracy for 18
datasets, while C5was best for 11, and LMTwas best for one. The differ-
ence between the best and second best classifier inmany cases was less
Table 3
Comparisons of overall accuracy based on 30 datasets and all variables, including spectral
band data, derived components, and ancillary data. Pairwise differences in mean overall
accuracywere all statistically significant (p-values b 0.01, except random forest compared
to C5.0 p-value = 0.05).

Method Mean overall
accuracy

Number of times as best
classifier

Random forest 73.19% 18
C5.0 72.35% 11
Logistic model trees 64.82% 1
Support vector machines 62.28% 0
Multivariate adaptive regression splines 58.50% 0
Classification tree analysis 50.84% 0



Fig. 1. Comparison of six classificationmethods across 30 datasets, including analysis of spectral band data, derived components, and ancillary data combined (All Data) and spectral band
data only. Methods compared are random forest (RF), C5.0 (C5), logistic model trees (LMT), support vector machines (SVM), multivariate adaptive regression splines (MARS), and clas-
sification tree analysis (CTA). See Section 2.2 for method descriptions.
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than 1% of overall accuracy, however, while in some cases is was sub-
stantially more (Fig. 1).
3.2. Spectral band only accuracies

The relative performance of the methods when classifications were
evaluated using only spectral bands (excluding both ancillary data and
derived components) was the same as with all variables included
(Table 4, Fig. 1). All classifiers performedworse in terms of overall accu-
racy with the reduced number of variables. There were substantial dif-
ferences, however, in how much worse each performed, indicating
differences in how effectively each method was able to use the addi-
tional variables. C5 demonstrated nearly a 15% decrease inmean overall
accuracy, indicating that on average itwas best able to take advantage of
the additional variables, while RF had a decrease of over 12%. The de-
crease for other classifiers was less than 10%, with CTA showing the
smallest decrease of less than 8% on average, indicating that overall it
was least effective in taking advantage of the additional variables.

There were also differences in which methods achieved the highest
overall accuracy with each dataset. RF more often achieved the highest
overall accuracy when using only spectral band data, while C5 only
achieved the highest overall accuracy with one dataset. LMT achieved
the highest overall accuracy with three datasets (as opposed to only
Table 4
Comparisons of overall accuracy based on 30datasets and only spectral band data, excluding der
statistically significant (p-values b 0.01). Random forest and multivariate adaptive regression s

Method Mean overall accuracy Num

Random forest 60.75% 25
C5.0 57.47% 1
Logistic model trees 55.52% 3
Support vector machines 53.18% 1
Multivariate adaptive regression splines 49.47% 1
Classification tree analysis 42.90% 0
once when all variables were used), while in one case MARS tied RF
with the highest overall accuracy.

3.3. Class accuracies for rare classes

Our datasets contained a large number of rare classes, 303, primarily
because of the large number of classes specified for the GAP project. All
differences between methods were statistically significant (p-values b
0.01), except for the best methods for both user's and producer's accu-
racy, C5 and LMT for user's accuracy (p-value = 0.10) and RF and C5
for producer's accuracy (p-value = 0.09).

C5 produced the best rare class results when mean producer's and
user's accuracies were averaged (Table 5). C5 had the highest mean
user's accuracy (although it was not statistically significantly different
than LMT at an alpha of 0.05) and the second highest mean producer's
accuracy (although it was not statistically significantly different than
RF at an alpha of 0.05). RF and LMT also produced relatively high class
accuracies.

CTAproduced theworst class accuracies, nearly completely failing to
successfully differentiate any rare classes. MARS and SVM, while having
higher class accuracies than CTA, also produced relatively low accura-
cies compared to the best methods.

There were substantial differences in how often each method pro-
duced the best class accuracies, similar to the overall accuracies. RF
ived components and ancillary data. Pairwise differences inmean overall accuracywere all
plines tied as the best classifier in one case.

ber of times as best classifier Mean decrease in accuracy vs all components

12.44%
14.88%
9.30%
9.10%
9.03%
7.94%



Table 5
Comparisons of user's and producer's accuracies based on 303 rare classes and all variables, including spectral band data, derived components, and ancillary data. Pairwise differences in
mean overall accuracy were all statistically significant (p-values b 0.01) except C5.0 and logistic model trees for user's accuracy p-value= 0.10 and random forest and C5.0 for producer's
accuracy p-value = 0.09.

Method Mean user's
accuracy

Number of times with highest user's
accuracy

Mean producer's
accuracy

Number of times with highest producer's
accuracy

Random forest 36.03% 196 59.77% 134
C5.0 44.03% 53 56.41% 108
Logistic model trees 41.40% 28 43.51% 58
Support vector machines 13.44% 13 25.33% 2
Multivariate adaptive regression splines 6.24% 13 13.63% 1
Classification tree analysis 0.22% 0 0.85% 0
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most often produced the highest user's and producer's accuracies. C5
was second with respect to both types of class accuracies, generating
the highest user's accuracies only 27% as often as RF, while generating
the highest producer's accuracies almost as often as RF. LMT also often
generated the highest rare class accuracies, while SVM andMARS rarely
had the highest rare class accuracies. CTA never had the highest rare
class accuracies.

4. Discussion and conclusions

We conducted statistically rigorous comparisons of six remote sens-
ing classification methods using 30 datasets from a diversity of sources.
Our comparisons focused initially on overall accuracy. We also demon-
strated how these data could be mined to answer more specific ques-
tions by evaluating (1) how well the methods were able to exploit
derived spectral and other ancillary data and (2) how themethods com-
pared for classifying rare classes.

A simplistic conclusion from our results, that we believe should be
rejected, might be to use RF, because it produced the highest overall ac-
curacy on average. Delving only slightly deeper into the results revealed
that there are many individual cases where RF did not result in the
highest accuracy. RF generated the highest overall accuracy only 60%
of the timewith our full data sets, while C5 produced higher overall ac-
curacy in most other cases and LMT had the highest overall accuracy
once. Analyses using only spectral band data resulted in RF having the
highest overall accuracy with increased frequency (over 83% of the
time), but, depending on the data set, every other method had the
highest accuracy at least once, except for CTA.

The addition of components other than spectral bands on average
improved the performance of all methods (Table 4). The improvement
for individual datasets, however, was highly variable, ranging from vir-
tually no improvement on average to an average of 37% overall accuracy
improvement. The level of improvement was also highly method de-
pendent with some datasets, while it was much more consistent with
other datasets (standard deviation of improvement among methods
ranged from less than 1% to 14%).

A straightforward, but we believe similarly erroneous, analysis of
howwell each method was able to use components other than spectral
band data also could be misleading. C5 demonstrated the greatest im-
provement when using the additional components; however RF still
produced the highest overall accuracies. One should not conclude,
therefore, that when using additional components beyond spectral
band data that there is necessarily an advantage to using C5 as opposed
to RF. An analyst also should not ignore the other methods simply be-
cause RF and C5 have a strong tendency to produce the highest accura-
cies. Each of the other methods was able to produce the highest
accuracy at least once, except for CTA, and for three datasets (all GAP
data with a high number of classes) the consistently high performing
RF and C5 methods performed very poorly, as did all other methods
(Fig. 1).

Our conclusions fromour analyses of overall accuracies (e.g., that the
best performing method is dataset dependent) was strongly supported
by our analysis of class accuracies for rare classes. There were again
substantial differences among methods as to which produced, on aver-
age, the highest producer's and user's accuracies. An analysis solely of
average accuracy percentagesmight lead one to favor C5, as it produced
the highest average accuracies counting both producer's and user's ac-
curacy. An examination of howoften eachmethod produced the highest
class accuracy, however, demonstrated the RF produced the highest
class accuracy much more often. Each method had the highest
producer's and user's accuracy for rare classes at least once, except for
CTA.

Our results do provide strong evidence that, compared to the other
methods tested, CTA is an inferior classifier as it was implemented in
this study. CTA never produced the highest overall accuracy either
with all components or with spectral bands only and had the worst ac-
curacy in all but two cases. CTA was also the worst method for classify-
ing rare classes, almost completely failing to classify the rare classes.
CTA, however, often requires more user interaction to determine a par-
simonious pruning level thatfits an analyst's objectives,whichmight in-
crease its accuracy especially for rare classes, while in this study we
implemented an automated pruning algorithm to enable efficient pro-
cessing and remove subjective pruning that would compromise objec-
tive comparisons. The ease of interpreting the dichotomous tree
produced by CTA also might make it desirable for certain applications,
including exploratory data analysis (Lawrence & Wright, 2001).

Our results also demonstrated a strong relationship between overall
accuracies and number of classes (p-value for each method b0.01). The
amount of variability in overall accuracy accounted for by this relation-
ship, however, varied substantially among methods (R2 for each
method: RF = 28%; C5.0 = 48%; LMT = 33%; SVM = 29%; MARS =
48%; CTA = 46%).

Parameters for all methodswere standardized, in addition to the use
of automated pruning for CTA, in order to allow valid comparisons
among classifications. Default parameters were used in all cases, al-
though for some methods classification accuracies can be substantially
affected by the parameters selected. Optimization routines exist for
some methods, while others rely on heuristic approaches. An analyst
selecting methods for a single classification would be well advised to
evaluate the effect of parameters on final classification accuracy.

Our results strongly indicate that, when classifying remotely sensed
data, an analyst is not well served in relying on a single method. A
method agnostic approach, rather, is recommended, where multiple
methods are compared to evaluate the best performing method for a
given dataset and analysis objective. The absence of modern classifica-
tion methods from commercial software packages has resulted in
many remote sensing scientists increasingly relying on more flexible
approaches, such as statistical packages, to process their images. This
can, in many cases, make it relatively easy to modify code to substitute
classification methods and efficiently compare alternative approaches
and method parameters, such as kernel configuration for SVM (Huang,
Davis, & Townshend, 2002), pruning level for CTA, and ensemble pa-
rameters for RF.

We also recommend that remote sensing scientists developing or
applying new classification methods should embark upon rigorous
comparisons to existing widely used methods. We have encouraged
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this approach by making the datasets and a sample of R code used for
this study downloadable at www.americaview.org. These data are pro-
vided in comma-delimited csv file format, which might need
reformatting depending on the data input requirements for the new
methods, but we hope that the effort will be worthwhile in enabling
the remote sensing community to have more meaningful analyses of
new approaches. Finally, there are many other questions in addition to
those we have addressed here that can be answered with these data.
Utilizing confusion matrixes and the resulting producer's, user's, and
overall accuracies (Congalton & Green, 2009) are but a few of the met-
rics available for assessing classification accuracy as well (Foody,
2002). We encourage those interested to download these data and em-
bark upon further analyses.
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