
Comparisons among Vegetation Indices and
Bandwise Regression in a Highly Disturbed,
Heterogeneous Landscape:
Mount St. Helens, Washington

Rick L. Lawrence* and William J. Ripple*

Spectral vegetation indices have been used extensively INTRODUCTION
to predict ecological variables, such as percent vegetation On 18 May 1980, Mount St. Helens in the State of
cover, above-ground biomass, and leaf-area index. We ex- Washington erupted with catastrophic, landscape-scale
amined the use of various vegetation indices and multiple effects (Lipman and Mullineaux, 1981). In a mere 10
linear regression using raw spectral bands for predicting min, an area of approximately 500 sq km was devastated,
vegetation cover in a landscape characterized by high with destruction of substantially all above-ground vegeta-
variability in vegetation cover and soil properties. We tion (Frenzen, 1992). The ensuing debris, mud, and py-
were able to improve the explanatory value of several roclastic flows further transformed the landscape from
vegetation indices by using regression fitting techniques one of lush Pacific Northwest forests into a seemingly
including log transformations and polynomial regres- barren expanse.
sions. We expected soil-adjusted indices to perform better The Mount St. Helens eruptions and subsequent re-
than nonadjusted indices. However, soil-adjusted vegeta- covery have gathered world-wide public attention.
tion indices based on a ratio of red and near-infrared Mount St. Helens National Volcanic Monument remains

one of the most visited natural wonders in the Pacificbands explained 55–65% of the variability in vegetation
Northwest. The attention from scientists has been atcover, while two nonadjusted indices each explained
least as great. A compendium published in 1994 listed70%. An index using six spectral bands explained 40%.
637 publications and 69 research abstracts related to theThe best multiple regression model used the red and
eruptions and their aftermath (Frenzen et al., 1994).near-infrared bands and explained 75% of the variability
However, the research opportunities afforded by Mountin vegetation cover. Among the soil-adjusted indices, an
St. Helens have gone essentially overlooked by the re-index which used a computed soil line performed best.
mote sensing community. The research reported in thisRatio-based vegetation indices were less sensitive to
article is part of a program designed to exploit some ofshadow influences, but this influence was outweighed by
the remote sensing opportunities afforded by this site.the advantages of multiple regression against original

Mount St. Helens provides a nearly unique opportu-
bands. Elsevier Science Inc., 1998 nity to address some of the more perplexing problems in

remote sensing. Since the early days of satellite remote
sensing, scientists have sought to use multispectral imag-
ery to measure assorted ecological variables related to
vegetation amount. Much of this research has attempted
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continued to plague remote sensing scientists. Two of Rouse et al. (1973), and various modified versions of
NDVI designed to address its sensitivity to factors suchthese problems that are relevant to Mount St. Helens

are: 1) As percentage of vegetation cover decreases vege- as soil variability and atmospheric conditions. The for-
mula for each vegetation index discussed in this articletation reflectance signals become increasingly contami-

nated by soil reflectance noise; and 2) Variation in soil is presented in Table 1.
A second type of indices are soil-line based or or-reflectances increase the difficulty in adjusting for soil

reflectance influences. thogonal indices. These indices are based on there being
a line in spectral space (assuming two dimensions, aThe area devastated by the eruption of Mount St.

Helens provides the opportunity to address both of these plane in three dimensions, or a hyperplane in higher di-
mensions) along which bare soils of differing brightnessproblems in a relatively small landscape. The eruption

and subsequent recovery have created substantial hetero- will lie. Vegetation increases perpendicularly to the soil
line. Kauth and Thomas (1976) developed their “Tas-geneity both in substrates and vegetation cover amounts.

Thus, we have been able to formulate and test hypothe- seled Cap” transformation for Landsat MSS data, the
second component of which has become known as theses related to these issues within a range of conditions

that might otherwise require regional analysis. greenness index, which is sometimes called the green
vegetation index (GVI). Crist and Cicone (1984) have ex-The specific purposes of this study were twofold.

First, we sought to formulate and test hypotheses regard- tended the analysis to six bands of Landsat Thematic
Mapper (TM) data (excluding the thermal infrareding the relative strength of various vegetation indices that

either have been widely used or were specifically de- band). We used the version of this index currently imple-
mented in the Imagine 8.2 image processing softwaresigned to account for substrate influences. Second, we

attempted to determine whether the use of vegetation (ERDAS, 1995).
The reader is referred to the original works citedindices to measure ecological variables has advantages

over the use of multiple regression against raw, nonin- above for more detail on the theory and derivation of
these vegetation indices, as well as several excellent re-dexed spectral bands. We did not attempt to assess the

utility of vegetation indices for other purposes, such as views contained in the literature (e.g., Rondeaux et al.,
1996; Qi et al., 1994; Perry and Latenschlager, 1984).data visualization and data compression.
Specific properties of the indices relevant to our study
will be discussed below in connection with hypothesisOVERVIEW OF VEGETATION INDICES AND development.FORMULATION OF HYPOTHESES

The distinctive spectral properties of green vegetation Ratio-Based Indices
have long been used by remote sensing scientists to map The two most widely used ratio-based indices are SR and
ecological variables of interest. Jordan (1969) is credited NDVI. These indices have performed well in many ap-
with first combining near-infrared and red spectral re- plications, showing high correlations to vegetation cover,
sponses into a ratio that was then shown to correlate above-ground biomass (Tucker, 1979; Elvidge and Lyon,
highly with leaf-area index. Since that pioneering work, 1985; Anderson et al., 1993), leaf-area index (Running et
a vast number of spectral band combinations have been al., 1986; Spanner et al., 1990), and other ecological vari-
studied as measures of vegetation. These vegetation indi- ables (e.g., Cihlar et al., 1991; Myneni and Williams,
ces have been variously proposed, modified, analyzed 1994; Yoder and Waring, 1994; Wiegand et al., 1991).
theoretically, compared, summarized, categorized, and Coefficients of determination (R2) between these vari-
criticized. Although it is not our intent to repeat those ables and ratio-based indices ranging from 0.60 to 0.90
efforts here, we will review certain vegetation indices to have been reported in many studies (although some
the extent necessary to formulate hypotheses regarding studies have had lesser or greater degrees of success).
which indices should perform relatively better under the Based on a rational theory for the correlation of SR and
heterogeneous vegetation and substrate conditions found NDVI to green vegetation cover, as well as the empirical
within the Mount St. Helens devastated area. success of other studies, we formulated a baseline hy-

We have generally divided vegetation indices into pothesis:
two categories, although other categorizations might be

Hypothesis 1: Vegetation cover within the Mountappropriate for other purposes. The first type consists of
St. Helens devastated area is significantly correlatedratio-based indices. The most commonly used of these
to SR and NDVI.indices exploit the characteristic chlorophyll absorption

by vegetation in the red portion of the spectrum and We called this our baseline hypothesis because it re-
ferred to the simplest of the vegetation indices, and wehigh reflectance by vegetation in the near-infrared por-

tion (Tucker, 1979). Ratio-based indices include the sim- formed our further hypotheses relative to Hypothesis 1.
Notwithstanding the observed success of SR andple ratio (SR) developed by Jordan (1969), the normal-

ized difference vegetation index (NDVI) developed by NDVI, these indices were found to have limitations be-
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Table 1. Formulae for Vegetation Indices Used in This Articlea

Index Formula

SR SR5
Band 4
Band 3

NDVI NDVI5
Band 42Band 3
Band 41Band 3

SAVI SAVI51.5
Band 42Band 3

Band 41Band 310.5

OSAVI OSAVI51.16
Band 42Band 3

Band 41Band 310.16

TSAVI TSAVI5
a*(Band 42(a*Band 3)2b)

Band 31(a*(Band 42b))1(0.08*(11a2))

where a5the slope of the soil line and b5the intercept of the soil line

MSAVI2 MSAVI25
(2*Band 4)112√((2*Band 4)11)22(8*(Band 42Band 3))

2

GVI GVI52(0.2848*Band 1)2(0.2435*Band 2)2(0.5436*Band 3)
1(0.7243*Band 4)1(0.0840*Band 5)2(0.1800*Band 7)

a Band designations are for Landsat TM bands—Band 150.45–0.52 lm, Band 250.52–0.60
lm, Band 350.63–0.69 lm, Band 450.76–0.90 lm, Band 551.55–1.75 lm, Band 752.08–2.35
lm. Band 6, used in the bandwise regression analysis, is 10.4–12.5 lm.

cause of their sensitivity to different substrates (Huete, study area (Baret et al., 1989). Although the adjustment
to NDVI is based on the soil line, rather than vegetation1988). Several modified versions of NDVI have been de-
amount, the effect is similar in moving the assumed loca-veloped, with increasing complexity, to reduce the in-
tion of the soil line and how vegetation varies from theherent sensitivity of NDVI to varying substrates. The
soil line. TSAVI specifically adjusts to a given study area.soil-adjusted vegetation index (SAVI) (Huete, 1988) in-
As a result, we can expect it to perform better than thecorporates an adjustment factor, based on the amount of
“universally” adjusted SAVI and OSAVI. However, wevegetation, from 0 (for high vegetation) to 1 (for low veg-
also note that TSAVI assumes that there is a well-definedetation). In the absence of extrinsic knowledge, an in-
soil line. With the substrate variability present at Mounttermediate adjustment factor of 0.5 has been suggested
St. Helens, this may not be true.and generally applied. Our study area is highly variable

The final ratio-based index we examined was thewith respect to vegetation amount, with substantial areas
modified soil-adjusted vegetation index (MSAVI) (Qi etlow in vegetation. Therefore, if the rationale behind
al., 1994). MSAVI is designed to correct a weakness inSAVI is sound, it should perform better than NDVI for
SAVI in how vegetation responds as it moves away fromMount St. Helens.
the soil line. MSAVI has the same conceptual basis asA minor, but potentially important, variation to SAVI
SAVI. However, with MSAVI vegetation isolines (lines ofhas been proposed by Rondeaux et al. (1996). An ap-
equal vegetation) cross the soil line at varying points.proach to optimizing the adjustment factor for general
This is believed to more accurately reflect how vegeta-applications resulted in a recommended adjustment fac-
tion spectral responses actually behave. Because of thistor of 0.16, rather than 0.5. The optimized soil-adjusted
improvement over SAVI, we expect MSAVI to performvegetation index (OSAVI) is the same as SAVI with an
better than SAVI, OSAVI or TSAVI. (For this study, weadjustment factor of 0.16. Once again, if the rationale
used the second of the proposed versions, MSAVI2,behind OSAVI is accepted, we expect OSAVI to out per-
which does not require an empirically determined soilform SAVI throughout the range of vegetation covers
line.)present at Mount St. Helens. However, because of the

Based on the theory presented for each soil-adjustedrelatively low average vegetation within the study area,
index and the results observed by the developers of thesewe hypothesized that the higher adjustment factor of
indices, we can present a second, multi-part hypothesis.SAVI might result in better performance at Mount St.

Helens than OSAVI. Hypothesis 2: For the Mount St. Helens
Rather than using a universal adjustment factor, the devastated area, soil-adjusted vegetation indices

transformed soil-adjusted vegetation index (TSAVI) uses a) are highly correlated to vegetation cover, b)
explain more variation in vegetation cover thanthe slope and intercept of the specific soil line of the
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nonadjusted indices, and c) perform in increasing The use of vegetation indices would seem to unnec-
essarily constrain the regression analysis. For example,ability in the order OSAVI, SAVI, TSAVI, and

MSAVI2. many studies using NDVI or SR fit both a simple linear
model (of the form y5b01b1x, where y5an ecological
variable of interest and x5a spectral vegetation index)ORTHOGONAL INDICES
and test for a curvilinear relationship by using a log-

Widely used orthogonal vegetation indices are based on transformed response variable [presented either as log
a universally predetermined soil line, rather than the in- (y)5b01b1x or y5b0ebx]. However, these models using
herently assumed soil line underlying NDVI. Therefore, vegetation indices are not able to independently model
orthogonal indices have not been subject to modifica- the red and near-infrared responses. Thus, if the red re-
tions similar to the soil-adjusted versions of NDVI. The sponse is curvilinear and the near-infrared is not, a com-
most widely used orthogonal index is the tasseled cap promise fit is necessary. Further, regression model fitting
greenness index, or green vegetation index (GVI). By us- using band interactions, polynomial terms, and other
ing six bands, rather than the two used in ratio-based in- data transformations are similarly constrained because
dices, the Landsat Thematic Mapper version of GVI has any function performed on the index affects both bands
the potential for making greater distinctions in vegeta- proportionately and simultaneously. At least one study
tion. In certain cases, perpendicular indices have been has found regression on individual bands to explain more
found superior in correlations to vegetation variables variability than regression against NDVI (Ripple, 1994),
than ratio-based indices (Huete and Jackson, 1988). although the causes of this effect have not been ex-
However, much of the variability in vegetation versus soil plored. This leads us to our fourth, and final, hypothesis.
occurs in the red and near-infrared portions of the spec-

Hypothesis 4: Multiple linear regression ontrum, while variation in soil types is often detected in
individual bands will explain as much or more ofmiddle infrared bands (Lillesand and Kiefer, 1994).
the variability in vegetation cover within the MountThus, we postulated that, under conditions of low vegeta-
St. Helens devastated area than any vegetationtion cover and substrate heterogeneity, GVI might be
index.more sensitive to soils than ratio-based indices, resulting

in reduced ability to distinguish differences in vegetation
cover. This leads us to our third hypothesis. STUDY AREA

Hypothesis 3: GVI will explain less variability in The 1980 eruptions of Mount St. Helens may be the
vegetation cover within the Mount St. Helens most heavily documented volcanic eruptions in history.
devastated area than ratio-based indices. In one sense, the 18 May eruption may be viewed as a

single catastrophic event. However, for most ecological
purposes it is best viewed as a related suite of distur-MULTIPLE REGRESSION APPROACH
bance events that resulted in a complex mosaic of dis-

Vegetation indices have been advocated for vegetation turbed patches. Although minute-by-minute accounts of
analysis because they provide a standardized approach to the events have been presented (e.g., Lipman and Mulli-
analysis. Although this argument has some appeal, we neaux, 1981), one paragraph by Franklin et al. (1985, p.
question its validity when there is a need to estimate or 201) provides a thumbnail sketch:
predict ecological variables (as opposed to using indices

The 18 May 1980 eruption began at 0832 PDTfor data visualization purposes, for example). Rather, if
when a large earthquake triggered a massivethe study requires knowledge of an ecological variable of
avalanche of debris involving the entire upperinterest (e.g., above-ground biomass), the researcher
portion of the mountain. Movement of this massmust ultimately analyze the relationship between the
unroofed the core of the mountain wherespectral index used and the ecological variable, generally
superheated groundwater flashed to steam,through a regression analysis. For example, several stud-
unleashing a blast of steam and rock debris in aies have found high correlations between NDVI and leaf-
1808 arc to the north. Mudflows rampagedarea index (LAI) (e.g., Running et al., 1986; Spanner et
through the valley-bottom forests to the west andal., 1990; Chen and Cihlar, 1996). However, the nature
southeast. Volcanic ash rained from the sky to theof the relationship varies with each study so that we can-
northeast of the mountain from the morning ofnot say that a certain NDVI generally equals a certain
18 May into the next day. In early afternoon ofLAI. For example, when we used the two regression for-
18 May and during the subsequent eruptions,mulae published by Spanner et al. (1990) for two differ-
pumiceous pyroclastic flows (flows of hot gasesent years, and assumed an NDVI value of 0.5, the esti-
and pumice) spilled northward out of the newlymated LAI differed by 5.5% between the two scenes.
formed crater across the deposits left by theChen and Cihlar (1996) showed that the regression for-

mula can differ between seasons. avalanche.



Comparisons of Vegetation Indices 95

The effects were clearly devastating throughout the af- sii) have appeared throughout the area, and some roots
fected area. Disturbed areas were generally well defined of willows (Salix spp.) and black cottonwood (Populus
depending on the type of disturbance affecting them. trichocarpa) that were up-rooted by mudflows and the
Thus, the resulting landscape is a mosaic of deposits from debris avalanche happened to come to rest at the surface
the debris avalanche, pyroclastic flows, mudflows, downed and resprout (Frenzen, 1992).
timber, scorched vegetation, and airfall tephra. Each of
these deposits has distinctive characteristics regarding

METHODSthickness, deposit temperature, and substrate composition
(Franklin et al., 1988). As a result, potential spectral prop- Data Acquisition
erties of the substrate and potential rates of vegetative re- The study area was extracted from a 19 August 1995 TM
covery vary significantly throughout the area. scene (path 46, row 28). We received the data rectified

The specific selection of our study area was dictated to a Universal Transverse Mercator (UTM) grid using a
by the larger study of which this research is a part. The cubic convolution resampling method.
larger study is examining the natural recovery of the area The study area was subset using a mask created
devastated by the 1980 eruptions. Therefore, the study from four GIS layers. The Gifford Pinchot National For-
area was limited to that portion of the devastated area est (GPNF) provided a layer defining the boundaries of
that has not been reforested following the eruption. the Mount St. Helens National Volcanic Monument (the
Large water bodies within the area were also excluded. Monument). Areas outside the Monument were subject
Figure 1 is a false color composite of the study area us- to reforestation and were masked from the study area. A
ing the TM image acquired for this study. The study area stand data layer provided by GPNF was used to exclude
consisted of approximately 25,400 ha, or approximately the few stands within the Monument that were refor-
42% of the area devastated by the eruption. ested. A disturbance map prepared by the USGS (Lip-

Vegetation structure and types are not readily sum- man and Mullineaux, 1981) was manually digitized and
marized for the study area because plant cover is highly used to delineate those areas within the Monument that
variable, within site plant diversity is often high, and suc- were devastated by the eruptions. Finally, an unsupervised
cessional changes are, in some cases, rapid, making pre- classification of the study area portion of our Landsat
vious reports rapidly obsolete. Early reports of vegetation scene, using the ISODATA algorithm (ERDAS, 1995),
in blowndown forests reported 0.2% mean canopy cover was used to identify large water bodies and exclude them
in 1981, with dominant species primarily herbaceous, in- from the study area. The resulting study area image is
cluding pearly everlasting (Anaphalis margaritacea), this- shown in Figure 1.
tle (Cirsium spp.), fireweed and willowweeds (Epilobium Reference data were provided by interpretation of
spp.), ryegrass (Lolium spp.), and groundsel (Senecio true color aerial photographs (1:15,840) loaned to us by
spp.) (Franklin et al., 1985). By 1992, these species had the Monument. The aerial photographs were acquired incompletely covered portions of the landscape (Frenzen, late June through late July 1995. Ground visits to the1992). In subalpine study sites, substantially different re-

study area were conducted with copies of aerial photo-sults have been reported (del Moral and Bliss, 1993). Re-
graphs during summer 1996. During these visits, we de-covery has varied depending on the nature of the distur-
lineated examples of different cover conditions on thebance, with less than 1% cover reported on pyroclastic
aerial photographs as an aid to aerial photo interpre-flows, under 5% on mudflows, and over 40% on adjacent
tation.tephra covered sites. Although there is significant overlap

in species composition among these sites, dominance var-
Sampling Procedureies greatly. Most abundant species in order of importance
Prior to sampling the data, we determined the numberin 1990 included on tephra sites bentgrass (Agrostis die-
of samples necessary to detect differences in vegetationgoensis), prairie lupine (Lupinus lepidus), spreading phlox
indices of significance. We intended to estimate vegeta-(Phlox diffusa), and Newberry fleeceflower (Polygonum
tion cover from the aerial photos in increments of 10%.newberryi), and on a mudflow Newberry fleeceflower,
Therefore, we needed sufficient samples to detect, withprairie lupine, and Cardwell’s penstemon (Penstemon car-
95% confidence, half-width differences of this incre-dwelli). However, there was significant change in the rel-
ment, or 5%. Using the procedures outlined in Mont-ative importance of species on the mudflow site between
gomery (1991), we determined that 95 sample points1988 and 1990, emphasizing the rapid changes taking
would be adequate for all the vegetation indices we ex-place within the area. Although tree species are not yet
amined. This sample size was confirmed by applying theof significant influence within the Mount St. Helens dev-
same procedures to our estimates of vegetation coverastated area, in some areas late snowpacks at the time of
after our aerial photo interpretation was completed. Wethe eruption protected mountain hemlock (Tsuga mer-
acquired 200 sample points to account for the possibilitytensiana), and Pacific silver fir (Abies amabilis), scattered

alder (Alnus spp.), and Douglas-fir (Pseudotsuga menzie- of having to screen out some points and potential curvi-
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linear relationships between indices or raw TM bands differentiation possible with visual interpretation. Thus,
estimates of 1–10% cover were classified as 5%, 11–20%and vegetation cover.

A random set of sample points was generated for the as 15%, and so on. In addition, estimates of 0% cover
were recorded.Landsat image using Imagine 8.2 image processing soft-

ware’s accuracy assessment program (ERDAS, 1995). Ac-
Statistical Analysistual sample plots included a 333 pixel area with the

sample point at its center. We selected this plot size be- Prior to performing any regression analysis, and to assist
cause we were confident we could accurately locate plots in the selection of regression models, we examined explor-
of this size on the 1:15,840 scale aerial photos. We elimi- atory graphs of the data. Boxplots (Fig. 2) of NDVI, soil-
nated 32 points for the following reasons: 1) 17 points adjusted indices, and GVI showed no significant depar-
because they were affected by snow cover, generally tures from symmetry. Both SR and percentage of green
within the volcano’s crater; 2) eight points because they vegetation cover (Veg Cover) as interpreted from the ae-
were too close to the edge of the study area to obtain a rial photos showed some degree of skewing, indicating the
three-by-three pixel plot; 3) five points because the aerial potential advantages of data transformation, such as a log
photograph was missing; 4) one point because the plot transformation. Plots of Veg Cover versus individual bands
was partially covered by a pond; and 5) one point be- and indices revealed no unexpected trends, other than
cause it duplicated another point. The final set of 168 some possible curvilinear relationships.
points was used for all statistical analysis reported in Simple linear regression was used to initiate analyses
the article. of individual vegetation indices. For each index, analysis

For each sample plot we recorded the average digi- of residual plots and exploratory data plots was used to
tal number (DN) values for each TM spectral band. SR, guide potential improvements in the regression fits. Ex-
NDVI, and GVI were computed from these DN values. tra-sum-of-squares F-tests were used to evaluate the sig-
For the soil-adjusted indices, DN values were trans- nificance of additional predictor variables, and coeffi-

cients of determination (R2) were examined to determineformed to exoatmospheric reflectance units prior to com-
puting index values (Markham and Barker, 1986). the amount of variability explained by the best fitting

models. To avoid infinite values, for log transformationsEach sample plot was located on the aerial photos
using landmarks identifiable on both the photos and the of variables containing 0 values, a value was added to the

variable equal to 0.01 times the smallest incrementalLandsat image. Plots were marked, labeled, and inter-
preted. For each plot, we made visual estimates of the value of the variable. (For example, for vegetation cover,

which was recorded in integer increments, a value ofpercentage of the plot covered by 1) green vegetation
and 2) shadow. All estimates were made in 10% incre- 0.01 was added to each entry, so that, for a sample plot

with no vegetation, we used a value of log 0.01).ments because we felt this was the reasonable limit of

Figure 2. Boxplots for vegetation
indices used in this study and per-
cent of green vegetation cover as in-
terpreted from aerial photographs.
Plots do not show substantial devia-
tions from symmetry, except for SR
and percent of vegetation cover,
which are skewed toward lower val-
ues, indicating possible advantages
of data transformations.
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Forward and backward stepwise regression was used tion of variables that are significant when considered
with all seven TM bands to provide guidance as to which with other variables already in the model.
bands might be significant in predicting Veg Cover. As All final regression models were statistically highly
with vegetation indices, residual and exploratory data significant (all p-values,0.0001). R2 for the final regres-
plots were used to guide further regression analysis and sion models for the ratio-based vegetation indices ranged
select the best fit. from 0.55 to 0.70. Final models for SAVI and MSAVI2

were simple linear regressions. OSAVI and TSAVI in-
cluded third-degree polynomials, while NDVI included a

RESULTS fourth-degree polynomial. SR was the most complex
model and included a log transformation of SR and aVegetation Indices
third-degree polynomial.Regression models for the vegetation indices using simple

The final regression model for GVI explained sub-linear regression and models with a log-transformed re-
stantially less variation than the ratio-based indices, withsponse variable (log-transformed models), as has been tra-
an R2 of 0.40. This model included a log-log transforma-ditionally used in vegetation index studies (e.g., Anderson
tion and no polynomial terms.et al., 1993; Chen and Cihlar, 1996; Friedl et al., 1995;

Jordan, 1969; Spanner et al., 1990; Yoder and Waring,
Bandwise Regression Models1994), were all statistically highly significant (p-values,

0.0001). Table 2 sets forth R2 for each of these models. Simple linear and log-transformed regressions of individ-
NDVI performed best (best R250.65), followed by TSAVI ual bands against Veg Cover were performed to deter-
(best R250.62), SR (best R250.60), OSAVI (best R25 mine the basic relationships between our variable of in-
0.59), MSAVI2 (best R250.55), and SAVI (best R250.55). terest and the bands. Table 4 sets forth the slopes,
GVI performed substantially worse (best R250.40). p-values, and R2 for these regressions. Veg Cover varied

We found that we could improve on several of these inversely with all bands except Bands 4 (near-infrared)
models by including polynomial terms in the final regres- and 5 (middle-infrared). Each band individually in a sim-
sion models. Other transformations, including additional ple regression was able to explain at least one-forth of
log, inverse, and square-root transformations, did not im- the variation in Veg Cover, except Band 6 (thermal infra-
prove model results. Table 3 sets forth for Veg Cover red), which explained 18% of the variability, and Bands
regressed against each vegetation index the final regres- 5 and 7 (middle-infrared), which explained 2% and 6%
sion model selected and the multiple R2 representing the of the variability, respectively. Only Band 5 performed
amount of variation explained by the model. Although better in a log-transformed model, with 11% of variabil-
some of the final models selected may be more complex ity explained.
than may be desirable for the additional amount of varia- Forward stepwise regression on all seven TM spec-
tion explained over the simple models, only by fitting the tral bands against nontransformed Veg Cover resulted in
best regression model can the indices be objectively a model including Bands 3 (red), 4 (near-infrared), and
compared. Choosing a simpler model involves subjective 6 (thermal infrared). All three bands were highly signifi-
judgments as to what level of model complexity is worth- cant (all p-values,0.01), the model was highly significant
while and compromises an objective comparison. The ex- (p-value,0.0001), and the multiple R2 was 0.69. How-
tra-sum-of-squares F-test is a rigorous standard for the ever, a review of the residual plots from the regression
addition of predictor variables and only allows the addi- showed potential curvature in the fit. Review of residual

plots, exploratory data plots, and stepwise regression in-
cluding polynomial terms was used to guide further

Table 2. Results of Linear and Log-Transformed model fitting. The final fitted bandwise regressionRegressions of Percentage of Vegetation Cover against
model was:Vegetation Indicesa

Veg Cover5106.0025.50 (Band3)10.048 (Band 3)2Linear
Regression Log-Transformed 11.36 (Band 4)20.0051 (Band 4)2.

Index R2 Regression R2

The regression model and each model term were
SR 0.6002 0.3502 highly significant (all p-values50.0135), and the multipleNDVI 0.6539 0.5900

R2 was 0.75.SAVI 0.5515 0.5001
OSAVI 0.5912 0.5535
TSAVI 0.6184 0.5796 Effect of Shadows
MSAVI2 0.5546 0.4782

We regressed each vegetation index and the final band-GVI 0.3261 0.4025
wise regression model against the percent of shadow

a Log transformations did not improve any regressions, except for GVI. cover in each plot from our aerial photo interpretationNDVI explained the most variation (65%) and GVI explained the least
(40%). to determine the relative sensitivity to shadow influence.
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Table 3. Final Regression Models for Percentage of Vegetation Cover Estimated from Aerial Photos against Individual
Vegetation Indicesa

Index Regression Model Multiple R2

SR Veg Cover529.531312.63 (log SR)133.18 (log SR)2264.12 (log SR)3 0.6982
NDVI Veg Cover59.78145.35 NDVI1105.11 NDVI21510.84 NDVI32725.10 NDVI4 0.7040
SAVI Veg Cover521.911143.77 SAVI 0.5515
OSAVI Veg Cover53.86220.50 OSAVI1436.40 OSAVI22327.86 OSAVI3 0.6166
TSAVI Veg Cover53.34233.74 TSAVI1540.63 TSAVI22423.81 TSAVI3 0.6476
MSAVI2 Veg Cover520.681124.65 MSAVI2 0.5546
GVI log (Veg Cover)520.7310.066 log (GVI) 0.4025

a Variables were tested for significance using extra-sum-of-squares F-tests. Ratio-based indices that have not been soil adjusted (SR and NDVI)
explained the most variation (70%), followed by soil-adjusted indices (55–65%). GVI explained substantially less variation (40%).

Most shadows were the result of topography and stand- This last source of variability illustrates an important
limitation of the accuracy of vegetation indices. For ex-ing dead trees. Live vegetation was rarely tall enough to

cause substantial shadowing. Shadow was not significant ample, two plots might each have 50% vegetation cover.
Within the portion of the plot covered by vegetation, onefor any of the ratio-based indices (all p-values.0.5).

However, percent of shadow was marginally significant plot might have an LAI of 2 while the other has an LAI
of 4. Because the deeper canopy reflects more near-for GVI (p-value50.13) and highly significant for the

bandwise model (p-value50.003). Of our 168 plots, 44 infrared and absorbs more red, the second plot will have
had at least 5% shadow coverage. a higher vegetation index, all other factors being equal.

We expect this variability might be especially noticeable
at high cover amounts, where LAI can continue to in-DISCUSSION
crease while increases in percent cover are limited.

Ratio-Based Indices—Hypotheses 1 and 2 All ratio-based indices except SAVI and MSAVI2 in-
corporated polynomial terms in their best regression fits.As predicted in Hypotheses 1 and 2a, all ratio-based in-
It has been found in previous studies that vegetation in-dices were significantly correlated to vegetation cover.
dices often have a curvilinear fit to LAI because theThis result was expected based on the known biophysical
spectral response saturates beyond a certain point (Rip-relationships between red and near-infrared reflectance
ple, 1985). We believe that the effect of varying leaf ar-and green vegetation. Further, the variation explained by
eas also results in curvature in our study. We hypothesizethe best of these individual indices was substantial (65–
that, as vegetation cover increases, leaf area within70%) and well within the range found by previous stud-
patches of vegetation also tends to increase. For exam-ies. We expected, in addition to soil variability, several
ple, as vegetation initially invades a barren site, mostsources of unexplained variation would prevent higher R2

patches are made up of annuals or juvenile plants. Fur-values, including 1) the estimation of vegetation cover in
ther occupation of the site may include new invaders,10% increments incorporated variation within these
but will also result from the expansion and aging ofranges, 2) phenologic changes in vegetation during the
plants already present. This in turn leads to deeper cano-1–2 months between aerial photo and satellite image ac-
pies and, especially in the red band, greater absorptionquisition were not accounted for, and 3) vegetation cover
for the amount of vegetation cover. For example, percentamounts with differing leaf-area indices (LAI) were
vegetation cover might increase within a sample plottreated as equal, although it is known that higher leaf-

area indices can affect spectral responses. from 20% to 40%, while in-patch LAI increases from 2

Table 4. Results of Linear and Log-Transformed Regressions of Percentage of
Vegetation Cover against Individual Spectral Bandsa

Linear Regression Log-Transformed Regression

TM Band Slope p-Value R2 Slope p-Value R2

Band 1 21.69 ,0.0001 0.4281 20.17 ,0.0001 0.3605
Band 2 22.64 ,0.0001 0.3343 20.25 ,0.0001 0.2495
Band 3 21.80 ,0.0001 0.4363 20.16 ,0.0001 0.3070
Band 4 0.75 ,0.0001 0.2729 0.079 ,0.0001 0.2517
Band 5 0.19 0.06843 0.01974 0.050 ,0.0001 0.1118
Band 6 21.81 ,0.0001 0.1769 20.16 ,0.0001 0.1120
Band 7 20.70 0.001375 0.05964 20.019 0.4342 0.003667

a Signs of slope terms indicate positive correlations with Bands 4 and 5 and negative correlations
with all other bands. Linear relations provide better fits with all bands except Band 5.
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Table 5. Coefficients of Variation for Each Landsat TMto 4. In this case, the sample plot LAI increases from
Spectral Band for Bare Soil Sample Plots Indicate the Relative0.4 to 1.6, a four times increase in LAI with a two times
Amount of Variability in Soil Reflectance for Each Banda

increase in percent vegetation cover. The response is,
Coefficient oftherefore, curvilinear.

Band VariationThe simple linear, log-transformed, and final models
Band 1 0.12do not support Hypothesis 2b, but do partially support
Band 2 0.17Hypothesis 2c. Both SR and NDVI explained more vari-
Band 3 0.22ability than any of the soil-adjusted indices. TSAVI did
Band 4 0.09

better than SAVI and OSAVI, as hypothesized, but Band 5 0.36
MSAVI2 did not. Finally, OSAVI performed better than Band 6 0.03

Band 7 0.31SAVI, contrary to expectations.
We believe that our results are explained by the par- a The middle-infrared Bands 5 and 7 show substantially more variability

than other bands.ticular soil line present in our study. We estimated the
soil line for the soil-adjusted indices to have an intercept
of 20.02 and a slope of 1.1. Reflectance values used in

probably added significant noise to the predictor vari-calculating these indices range from 0 to 1. Thus, the
able, thereby interfering with the relationship that weintercept and slope are not substantially different from 0
observed with the red and near-infrared bands.and 1, respectively. These soil line parameters are the

To confirm the effects of soil on different bands, wesame as inherently assumed for NDVI and SR and might
calculated the coefficients of variation for each band forexplain the superior performance of these indices.
all sample plots with no vegetation cover. The results areTSAVI uses the computed soil line parameters and,
presented in Table 5. The coefficient of variation nor-probably for this reason, performed better than other
malizes the variability for each band and reflects the rel-soil-adjusted indices. OSAVI uses a smaller correction
ative amount of variability in bare soil for each band.(0.16) than our implementation of SAVI (0.50), and thus
Bands 5 and 7 show substantially more variability in soildiverged less from NDVI. We believe that MSAVI might
response than other bands. Therefore, the inclusion ofhave performed better if we had used MSAVI1, which
these bands in an index increases the amount of informa-uses computed soil line parameters. tion contained in the index that is not related to vegeta-

Although for our study area SR and NDVI explained tion cover.
more variation than soil-adjusted indices, our analysis in-
dicates that the basis underlying soil-adjusted indices is Bandwise Regression—Hypothesis 4
sound. Adjustment of indices in accordance with soil line

The results of our regression against the raw, nonindexedparameters improved results. In our case, these parame-
bands supports our hypothesis that this approach has theters were not substantially different than those assumed
potential for out performing vegetation indices. The re-in unadjusted indices. However, these results also point
gression model was highly significant and explained be-to the importance of using actual soil line parameters.
tween 5% and 20% more variation than the ratio-basedWhen “universally” applicable parameters were applied,
vegetation indices. Figure 3 displays the estimated per-as in SAVI and OSAVI, results were inferior to unad- centage of vegetation cover for the study area based on

justed indices. the final bandwise regression model. An examination of
the bandwise regression model explains why this ap-

GVI—Hypothesis 3 proach can be superior to vegetation indices.
GVI was significantly correlated to vegetation cover but, The final bandwise regression model includes only
as predicted by Hypothesis 3, explained substantially less Bands 3 and 4, as do the ratio-based vegetation indices.
variation than ratio-based indices. The relatively poor re- Thus, like the vegetation indices, the bandwise model is
sponse of GVI might be explained by the relatively low a function of these two bands. Further, as with several
vegetation cover (and consequent high substrate expo- of the ratio-based models, the bandwise model includes
sure) in the study area, combined with the inclusion of a term reflecting a curvilinear relationship (the squared
middle-infrared bands in the calculation of GVI. The red and near-infrared bands). However, the relative in-
middle-infrared portion of the spectrum is known to be fluence of the bands and their polynomials is markedly
sensitive to soil mineral content. Our study area is char- different. For example, the red band has over four times
acterized by a heterogeneous mosaic of soils poor in or- the influence of the near-infrared band, and the squared
ganic matter. The reflectances of these soils can be ex- infrared band has about one-tenth the influence of the
pected to be heavily influenced by mineral content and squared red band. This might be the result of the red
other substrate characteristics, which vary throughout the band having a much lower spectral asymptote than the
area (Hoblitt et al., 1981; Ugolini et al., 1991). The influ- near-infrared band (Ripple, 1985). Thus, the bandwise

regression approach allows the decoupling of bands andence of this soil variation on the middle-infrared bands
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permits the analyst to discover different relationships be- Although substantial success has been achieved
through the use of vegetation indices to predict ecologi-tween the response variable and each band, including

different polynomials, coefficients, and transformations. cal variables, we believe that bandwise multiple regres-
sion should achieve equivalent or better results withoutThis flexibility is not possible with regression against veg-

etation indices. Further, because different biophysical additional effort. In order to understand the relationship
between an index and an ecological variable of interest,mechanisms control different band responses, there is no

reason to believe the relation of individual bands to eco- it is usually necessary to perform regression or other
analysis to establish the relationship. The use of vegeta-logical variables will necessarily be the same.

Using bandwise regression did not require substan- tion indices unnecessarily constrains the regression analy-
sis. Instead, we have shown that improved results maytial additional time when compared to the use of vegeta-

tion indices. With both approaches, we had to perform be obtained by performing regression on the original
bands and using a range of regression techniques (step-regression analysis to relate spectral responses to our

ecological variable of interest. The only additional step wise analysis, individual band transformations, polyno-
mial terms) to fit the best regression model.required for the bandwise regression was the selection of

spectral bands as predictor variables. This step should
take a few hours, at most, which we believe is not a sig- The authors wish to acknowledge the assistance of Peter Fren-

zen and Gordon Glockner, Mount St. Helens National Volcanicnificant increase in time for most projects. Further, this
Monument, Warren Cohen, U. S. Forest Service Pacific North-additional step can be eliminated if only the red and
west Research Station, and Thomas Erkert, Gifford Pinchot Na-near-infrared bands are employed. Although the exclu-
tional Forest, for their support in this project. Warren Cohensive use of these two bands is not unreasonable, consid- and Frederick Swanson, U. S. Forest Service Pacific Northwest

ering our results and those of previous studies, we be- Research Station, Alfredo Huete, University of Arizona, and
lieve that testing other spectral bands is prudent. The Steve Stehman, Syracuse University, provided constructive re-

views of the manuscript. Partial funding for this project wassuccess in other study areas of multiband orthogonal in-
provided through the National Science Foundation (Grantdices, as well as indices using middle-infrared (e.g., Du-
#GER-9452810) under the auspices of the NSF Graduate Re-sek et al., 1985) and thermal infrared bands (Boyd and search Fellowship in Landscape Studies.

Ripple, 1997), indicates that the optimal selection of
spectral bands might depend on the individual scene and
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