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We developed and tested a method for analyzing multi- INTRODUCTION
temporal satellite imagery using change curves. The The recovery of vegetation following the 1980 eruption
method is flexible and allows an analyst to extract specific of Mount St. Helens in southwest Washington has been
change parameters from the curves depending on the re- one of the major ecological stories of the Pacific North-
search question of interest. Eight Landsat TM images of west during the past two decades. From a 550 sq km
the Mount St. Helens, Washington, blast zone from 1984 homogeneous “moonscape” following the eruption on 18
to 1995 were geometrically and radiometrically corrected. May 1980, to a heterogeneous landscape that includes
They were then transformed to estimates of green vegeta- areas of lush vegetation today, the story of Mount St.
tion cover. Unsupervised clustering was performed on the Helens’ recovery is unfolding in many ways. The study
set of eight transformed images and polynomial curves reported in this article presents one way of reading this
were fit to the cluster means. From these fitted curves, story, using a series of satellite images to characterize
parameters of interest were extracted and returned to vegetation change since 1980.
GIS layers, including number of years to reach 10% cover, Analysis of vegetation is one of the most important
the greatest rate of cover increase during the study pe- uses of satellite remote sensing data (Lillesand and Kiefer,
riod, and time-integrated cover. Statistical analysis indi- 1994; Coppin and Bauer, 1996). Although a variety of
cated that the curves did a good job of representing the remote sensing techniques has been used to analyze veg-
change trajectories of unclustered pixels. We demon- etation change (e.g., Muchoney and Haack, 1994), much
strated the use of change curve analysis by analyzing the of the research has focused on year-to-year changes,
importance in the revegetation of Mount St. Helens of the rather than trends. Coppin and Bauer (1996) listed 11
different types of disturbance resulting from the volcanic general approaches for remote sensing change detection.
eruption. The change curve analysis is useful in a variety Of these, one is based on a single date of imagery, eight
of applications where the data are continuous, more than on year-to-year changes, and two (composite analysis and
two dates of data are available, and the underlying ques- multitemporal linear data transformation) can analyze
tion of interest relates to trends in the data. Elsevier two or more dates. Even when long time series have been
Science Inc., 1999 used, the ecological analysis often focuses on year-to-year

changes (e.g., Lambin and Strahler, 1994; Olsson, 1994;
Eastman and Fulk, 1993).
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in reflectance associated with succession (Peterson and been allowed to recover with a minimum of human in-
Nilson, 1993). tervention. Vegetation in this area is highly variable both

Examination of the shape of vegetation change tra- as to amount, ranging from 0% to 100% cover, and as
jectories has been recognized in various natural resource to type, including grass, forb, and shrub dominated com-
fields as being important in understanding ecosystem re- munities, as well as conifer and hardwood trees. A de-
sponses. This has been true in studies of plant commu- tailed description of the study area is provided in Law-
nity responses. For example, Halpern and Franklin rence and Ripple (1998).
(1990) compared response curves in Douglas-fir forests

Data Acquisitionas a function of disturbance intensity and stand history.
We acquired eight dates of Landsat Thematic MapperSimilarly, Armesto and Pickett (1986) compared vegeta-
(TM) images of our study area (path 46, row 28): 19 Julytion growth curves in abandoned fields to test theories
1984; 26 August 1986; 31 August 1988; 9 Septemberof different successional mechanisms. At Mount St. Hel-
1991; 10 August 1992; 29 August 1993; 31 July 1994; andens, both del Moral and Bliss (1993) and Halpern et al.
19 August 1995. Three GIS data layers were used for(1990) have used vegetation growth trajectories to com-
this study, including the boundary of Mount St. Helenspare recovery across diverse growing conditions created
National Volcanic Monument (the Monument) and a for-by the eruption. These studies have generally not quanti-
est stand data layer, each provided by the Gifford Pin-fied the difference in the shapes of vegetation growth
chot National Forest, and a layer detailing the types ofcurves, but they have recognized that vegetation growth
disturbance resulting from the volcanic eruptions, whichtrajectories reveal important information about ecosys-
was manually digitized from a map prepared by thetem functions. For example, two ecosystems might each
USGS (Lipman and Mullineaux, 1981).start a time series with 10% cover and end with 80%

cover. However, if the first system traveled an asymptotic Preprocessing
path to 80% cover and the second traveled a path of geo- All images were registered to the 1991 scene, which we
metric increases, then the mechanisms controlling vege- received georeferenced to a Universal Transverse Merca-
tation changes probably differed. Further, projected fu- tor (UTM) grid. For each registration, 10–30 ground
ture conditions for each system might be vastly different. control points were used, and total root mean square er-

Rigorous mathematical characterization of growth rors ranged from 0.278 to 0.432. Images were registered
curves has long been central to biometric studies (Hunt, using nearest neighbor resampling to a 25 m pixel size.
1982). This approach has commonly been applied at both Following registration, all images were radiometri-
the individual plant and stand level. Applications have in- cally normalized to the 1995 image using the matched
cluded complex theoretical growth functions for empiri- digital counts method described by Collins and Wood-
cal applications (Richards, 1959), site-index curves (Heger, cock (1996). We located pixels from 30 invariate fea-
1968), and many others. Empirical forest growth models tures, 10 in each of three cover types, water, mature for-
used for stand growth prediction and economic modeling est, and bare soil. Of these 30 pixels, 18 (six for each
are generally based on empirically derived growth curves. cover type) were randomly selected to compute regres-

The objective of our research was to develop and sion equations for normalization, in each case predicting
test a method for characterizing vegetation change at 1995 digital numbers for each spectral band used in the
Mount St. Helens since the eruption in 1980 using study for each year of imagery. The 12 pixels not used
curves that model change in vegetation cover. The theo- to compute the regression equations were used for inde-
retical basis for this research was the same as presented pendent verification of the equations. For each indepen-
in plant community and biometric studies. Thus, we as- dent verification pixel, on a year-by-year, band-by-band
sumed that 1) vegetation change trajectories vary spa- basis, the squared error between the regression equation
tially across the Mount St. Helens blast zone and 2) predicted values and the actual 1995 values were com-
these patterns have ecological explanations and signifi- pared to confirm that the regression equations improved
cance. The first assumption is tested by our application the radiometric match with the 1995 image. Radiometric
of the procedure we present for determining change correction equations were used only when they improved
curves. Although we present one example in this article the radiometric match based on the independent verifi-
of how the second assumption might be tested, the next cation pixels.
stage of our research will test this assumption in detail The images for each date were subset using a single
when we attempt to explain observed patterns in the mask created from GIS layers. These layers were used
curves using ecological variables. to delineate portions of the Mount St. Helens blast zone

that had not been replanted to trees following the erup-
Methods tion. In addition, large water bodies, areas of snow within

the 1995 image, and areas of fog within the 1984 imageStudy Area
were masked. Finally, the images for each year wereFor this study, we examined 25,400 ha of the blast zone

from the 1980 eruptions of Mount St. Helens that have transformed to estimates of percent green vegetation
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cover (estimated cover) (Fig. 1), based on a regression where l was the mean estimated cover value, b0 was the
formula developed with the 1995 image (Lawrence and estimated intercept, bi (i51–3) were estimated coeffi-
Ripple, 1998). cients, and X was the growing season since the eruption

(season 1 was prior to the first growing season). We as-Change Curve Fitting
sumed vegetation cover was 0% immediately followingChange curves may be linear or nonlinear in their pa-
the eruption and prior to the first growing season, andrameters. For linear models, such as polynomials, least
assigned an estimated cover value of 0 to all pixels forsquares fits can be readily computed. For nonlinear
season 1.models having more than one parameter, all parameters

For each cluster, the addition of each polynomialexcept the parameter of interest can be estimated and
term was tested using an extra-sum-of-squares F-test,the parameter of interest can be computed (Richards,
and higher order terms were only included if the p-value1959). The study area contains over 400,000 pixels (25
for the added term was less than 0.05. Although otherm325 m). Therefore, to fit a change curve on a pixel-
tests can be used to chose the best fitting polynomial,by-pixel basis requires 400,000 curve fits. This was im-
using the F-test is the most conservative (least likely topractical for nonlinear models, where certain parameters
add terms). This is an important step to prevent over-must be estimated based on some a priori knowledge,
fitting the change curves, especially where there are aand would be computationally intensive for linear mod-
limited number of observations (in this case, nine obser-els. Therefore, we needed a way to reduce the number
vations, eight per cluster plus season 1) (Hunt, 1982).of curves.

The fitted change curves were tested to determineUnsupervised statistical clustering of the eight esti-
whether they adequately represented the original pixelmated cover images created clusters that were distin-
values. We randomly selected 100 pixels from the studyguished by the estimated cover trajectories (and, pre-
area. For the random pixels we computed and comparedsumably, their vegetation cover change curves). The
1) the average estimated cover for the eight image datesclustering occurred in an eight-dimension feature space
prior to clustering and curve fitting and 2) the averagewhere the axes were the years and the data were the es-
estimated cover predicted by the fitted change curves fortimated cover values. Thus, for example, pixels that had
the same dates.low values in all eight years clustered separately from

We extracted three parameters from the changepixels that began with low values and increased geomet-
rically to high values. Generally, clusters were distin- curves to illustrate the utility of this change detection
guishable by magnitude of estimated cover values (vege- method. The parameters extracted included:
tation amount), rates of change, and change curve shape 1. Number of years the curve took to reach an esti-
(e.g., straight line, geometric curve, asymptotic, sigmoid). mated cover of 10%, expressed as

The clustering was performed using the Iterative
q15b01b1X1b2X21b3X3210,Self-Organizing Clustering (ISOCLUSTER) routine in

ARC/Grid software. The number of clusters chosen was where q1 5 number of years to reach 10% esti-
arbitrary, but we estimated, based on knowledge of the mated cover.
study area and a pilot study, that 20–30 clusters would 2. The greatest rate of estimated cover increase
allow adequate distinction of different amounts of vege- (maximum first derivative) during the study pe-
tation and likely vegetation trajectories, while providing riod, expressed as
a small enough number of clusters for practical data

q25max[dl/dX]5max[b112b2X13b3X2],analysis. Other ISOCLUSTER parameters that could be
set in ARC/Grid were maximum number of iterations (20 where q2 5 the maximum first derivative of l
were permitted) and minimum cluster size (1000 pixels with respect to X.
were specified). 3. Time-integrated estimated cover, as determined

A reasonable estimate of nonlinear parameters was by the area under the curve (integral) during the
not available. As a result, a linear model was used to study period, expressed as
fit change curves. For each cluster resulting from the

q35#(b01b1Xi1b2Xi
21b3Xi

3),ISOCLUSTER procedure, the cluster means for each
year were transferred to an S-Plus data frame (MathSoft,

where q35the integral of l with respect to Xi1995). The S-Plus linear regression model was used to
(i51–17).fit a series of polynomials (first, second, and third order)

to the means of each cluster, with the growing season To extract the parameters listed above, we entered
following the eruption as the independent variable. These the curve intercepts and coefficients into a spreadsheet
models were expressed as: and wrote three macros in Visual Basic to 1) solve each

curve for estimated cover equal to 10 (the solution is infirst-order polynomial: l5b01b1X ,
growing seasons after the eruption), 2) determine thesecond-order polynomial: l5b01b1X1b2X2 ,

third-order polynomial: l5b01b1X1b2X21b3X3 , maximum first derivative of each curve (in estimated
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cover per year), and 3) integrate the curve to determine lanche, tree removal by the directed blast, tree blow-
down, and scorched trees (Fig. 3d). For 500 randomthe area under the curve (in units of integrated esti-
points, we then extracted four measures of vegetation re-mated cover, with possible values from 0 to 1600).
sponse (time to reach 10% estimated cover, greatest rateThe results of the parameter determination were
of estimated cover increase, time-integrated estimatedused to recode the clustered image. For example, the fit-
cover, and 1995 estimated cover), which were each re-ted curve for one of the clusters was:
gressed against type of disturbance using linear regres-estimated cover5217.6120.4 X21.8 X210.05 X3 ,
sion, with volcanic disturbance type represented by a fac-

where X5number of growing seasons after the eruption. tor variable (which is the equivalent of an analysis of
A plot of this change curve is shown in column D, row variance).
4 of Figure 2. This curve increases rapidly in early years
and then becomes asymptotic. The number of growing

RESULTSseasons to reach 10% estimated cover was 1.5, the great-
est rate of curve increase is an increase in estimated The clustering procedure resulted in 24 clusters repre-
cover of 17% for each growing season, and time-inte- senting different change trajectories (Fig. 2). (References
grated estimated cover was 827. Each of these values was to specific curves in this article refer to the columns and
transferred to a separate GIS layer, along with corre- rows in Fig. 2. For example, curve D1 refers to the curve

in the upper right corner of Fig. 2.) We extracted inter-sponding values for each of the other clusters and their
cepts, coefficients, model p-values, and model R2s forassociated change curves (Figs. 3a, b, and c).
each of the curves (Table 1). A co-occurrence matrix for

Use of Change Curves the curves and types of disturbance enabled us to de-
To demonstrate the utility of, and further test, the meth- scribe qualitatively the spatial extent of the clusters rep-
od, we applied our analysis to a specific ecological ques- resented by the curves with respect to the volcanic dis-
tion. Previous plot-based research has noted a relation- turbances (Table 2).
ship between revegetation at Mount St. Helens and the With one exception (curve A1), polynomial curves fit
nature of the disturbance resulting from the volcanic to the cluster means explained between 84% and 100% of
eruption (del Moral and Bliss, 1993; Means et al., 1982). the variability in the cluster means. Curve A1 explained
Volcanic deposits varied greatly as to thickness and tem- only 36% of the variability. Curve fits all had p-values,
perature (Franklin et al., 1985). The debris avalanche 0.001, except for curve A1 which had a p-value of 0.09.
and mudflows were less than 1008C, the tree blowdown However, because the curves were fit to temporal data,
and scorched areas ranged from 1008 to 3508C, and the which are not independent, p-values might not accu-
pyroclastic flows were 350–8508C. The debris avalanche rately reflect the quality of the curve fits. Of the 24 fitted
was 10 m to over 100 m thick, the pyroclastic flows were polynomial curves, six were first order, six were second
1–10 m thick, deposits from mudflows and in the tree order, and 12 were third order.
blowdown areas were about 0.1–4 m thick, and deposits Our test of the difference between pixel-level esti-
in the scorched tree areas were less than 0.1 m thick. mates of vegetation cover and estimates of vegetation

These differences in volcanic deposits had significant cover from the change curves estimated values for the
effects on the presence of surviving roots and seeds, the unfitted pixels at 0.5% less than the change curve esti-
ability of such survivors to resprout above ground, and mates, with a 95% confidence interval from 21.2% to
the ability of germinating seeds to reach organic soils. 0.2%. We believe the 0.5% difference is ecologically in-
We believed that these effects should be observable with significant. The inclusion of 0 in the confidence interval
our analysis. Further, we hypothesized that the nature of indicates that, statistically, there was no difference be-
these effects would vary depending on how recovery was tween the original pixels and the values estimated by the
characterized. For example, we expected that the greater change curves. Thus, there was convincing statistical evi-
depth of deposits in the tree-down area, as compared to dence that the change curves did a good job of reflecting
the scorched tree area, would result in slower early re- the response of the original pixels.
covery and longer times to reach 10% cover in the tree- The change curves graphically demonstrated that ar-
down area. Toward the end of our study period, how- eas with similar beginning and ending values might have
ever, many portions of both the tree-down and scorched very different change trajectories (for example, Curves D1,
areas became completely covered by vegetation. As a re- C2, and D6 on Fig. 2). Specific parameters from the
sult, we expected less difference between in these areas change curves were extracted (Table 3) and used to reclas-
for measures of ending vegetation cover or maximum sify the clusters resulting from the multivariate clustering
rates of increase. (Figure 3). Throughout the study area, the number of

To test this hypothesis, from a map prepared by the years to reach 10% estimated cover varied from slightly
USGS we created a GIS layer showing six types of volca- over 1 year to almost 11 years (one curve did not reach

10% by the end of the study period), maximum rates ofnic disturbance, pyroclastic flows, mudflows, debris ava-



Figure 2. Change curves fitted to 24 cluster means resulting from multitemporal clustering of the eight esti-
mated cover layers in Figure 1. The axes are the same for each graph. The X-axis represents the growing sea-
sons from 1 (prior to the first growing season after the eruption) to 17 (1995). The Y-axis represents estimated
green vegetation cover from 0% to 100%.
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Table 1. Statistics for Change Curves Fitted to Means of Multitemporal Clustersa

Curve b0 b1 b2 b3

Designation (Intercept) (X coefficient) (X2 coefficient) (X3 coefficient) R2

A1 0.22 0.16 — — 0.36
B1 21.32 1.13 — — 0.89
C1 20.30 1.89 — — 0.93
D1 4.65 22.34 0.27 — 0.84
A2 23.35 5.85 20.22 — 0.90
B2 22.51 3.00 — — 0.95
C2 27.50 7.64 20.27 — 1.00
D2 21.65 0.21 0.72 20.03 0.98
A3 210.45 11.29 20.96 0.03 0.99
B3 211.34 12.13 20.73 0.02 1.00
C3 23.01 3.51 20.52 0.03 1.00
D3 213.66 14.8 21.15 0.03 1.00
A4 27.73 4.91 — — 0.99
B4 213.06 8.82 20.23 — 0.93
C4 24.38 5.62 — — 0.99
D4 217.63 20.38 21.76 0.05 0.96
A5 218.53 20.94 21.91 0.06 0.99
B5 211.30 11.52 20.38 — 0.98
C5 221.00 24.21 22.07 0.06 0.95
D5 0.78 22.06 0.47 — 0.98
A6 22.45 0.73 1.07 20.05 0.99
B6 216.31 18.39 21.35 0.04 0.98
C6 224.78 28.60 22.52 0.07 0.96
D6 216.79 20.14 22.01 0.06 0.90

a Curve designations refer to the columns and rows of Figure 2. R2 values indicate the percentage of variation in cluster means explained by the
fitted curves.

increase from less than 0.2% to almost 24% per year, and senting 6976 ha, had an R2 of 0.36. Our examination of
time-integrated estimated cover from 26 to 1121. When the spatial extent of the pixels represented by this curve
we used these parameters as response variables, type of (Table 2) explained these results. This curve represented
volcanic disturbance explained 1) 40% of variability in time areas that were most severely affected by the eruption
to reach 10% estimated cover (p-value,0.0001), 2) 21% for and that had little vegetation response as of the end of
maximum rate of estimated cover increase (p-value, the study period (generally less than 5% cover). The veg-
0.0001), 3) 33% of variability in time-integrated esti- etation in these areas consisted largely of annuals and
mated cover (p-value,0.001), and 4) 33% of variability sparse shrubs. We believe that, because of the sparse
in 1995 estimated cover (p-value,0.0001). vegetation in this area and the slow rate of increase in

cover, sources of annual variability not related to trends
in vegetation change were stronger relative to overall

DISCUSSION vegetation trends than in other areas. These sources of
variability might have included annual variability in soilOur study showed that change curves can be an effective
moisture, uncorrected radiometric differences, annualtool in characterizing vegetation change as mapped by
climatic differences resulting in phenological variability,digital imagery. We realized that the method we used (a
and differences each year in length of growing seasonscombination of multivariate clustering and curve fitting)
prior to image acquisition. The overall trend was closeresulted in the loss of information from the original im-
to flat (an increase of less than 0.2% vegetation cover perages because pixel values differed from their respective
year). Thus, these variations on a year-to-year basis werecluster means and the curve fits contained residual error.
not readily modeled with change curves, although theBoth of these conditions can be expected in every appli-
curve did represent the overall flat trend. Further, therecation of this method. Our results, however, indicated
was less variability in the data for curve A1 than thethat, at least for our study, this loss of information was
other curves. Thus, in spite of the low percentage of vari-not significant. The comparison of average estimated
ability explained, the residual standard error for curve A1cover from unfitted pixel values and from curve esti-
was less than 22 of the other 23 curves.mates provided evidence that the curve fitting technique

The change curves (Fig. 2) can be grouped intoaccurately represented the trajectories present in the
three major types, based on disturbance types. The curvesoriginal data.

We were concerned that the fit of curve A1, repre- revealed much about the nature of revegetation in these
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Table 2. Spatial Extent of Clusters Relative to Their Fitted Curves and the Volcanic Disturbancea

Curve Area
Designation (has) Spatial Extent Relative to Volcanic Disturbance

A1 6976 Pyroclastic flows, large portions of debris avalanche, and mud flows
B1 4551 Pyroclastic flows, debris avlanche, and mud flows
C1 2809 Tree blowdown and tree removal
D1 1051 Debris avalanche and mud flows
A2 1246 Scattered locations in tree blowdown and tree removal
B2 1711 Primarily in tree blowdown
C2 983 Scattered in tree blowdown and tree scorched
D2 697 Primarily in tree blowdown
A3 493 Primarily in tree blowdown
B3 798 Scattered in tree blowdown and tree scorched
C3 432 At edges of debris avalanche and mud flows
D3 458 Scattered in tree blowdown and tree scorched
A4 298 Scattered in tree blowdown and tree scorched
B4 278 Scattered in tree blowdown and tree scorched
C4 175 Primarily in tree blowdown
D4 403 Primarily in tree scorched
A5 207 Scattered in tree blowdown and tree scorched
B5 200 Scattered in tree blowdown and tree scorched
C5 169 Scattered in tree blowdown and tree scorched
D5 139 At edges of debris avlanche
A6 97 In tree blowdown and tree scorched in Toutle River Valley
B6 149 In tree blowdown and tree scorched in Toutle River Valley
C6 110 In tree scorched and at edges of mud flows
D6 475 Scattered in tree blowdown and tree removal areas

a Curve designations refer to the columns and rows of Figure 2.

areas. Generally, curves A1, B1, and C1 occurred on the The extensive field data necessary to conduct a vali-
dation of our results were not available because this studypyroclastic flows, debris avalanche, tree removal areas,

and mud flows (Table 2). These were areas most severely was conducted retrospectively. However, we were able
to compare qualitatively some of our results with pre-affected by the eruptions. All three of these curves were

represented by first order polynomials that remain at low viously published trajectories from plot based studies at
Mount St. Helens. Trajectories of percent mean coverlevels of cover at the end of the study period.

Curves D1, C3 and D5 occurred primarily at the from 1980 to 1990 have been published for plots in the
scour, lahar, blast, Pumice Plains, and Plains of Abrahamedges of mud flows and the debris avalanche (Table 2).

Each of these curves was characterized by very slow in- areas (del Moral and Bliss, 1993). The mudflow scour
areas were primarily associated with our curve D1 (Tablecreases in early years, with rapidly increasing rates of re-

covery toward the end of the study period. Many of 2), while the other areas were primarily associated with
curves A1 and B1. The plot based curves were consistentthese areas have had substantial establishment of alder,

which took several years to establish, but is now grow- with our derived curves, with the scour area increasing
to approximately 14% by 1990 in the plot based studying rapidly.

The remaining curves were found primarily in the and 15.5% in our study, and the other areas increasing
very slowly to no more than 4% by 1990 in the plottree blowdown and tree-scorched areas, although they

were also found to some extent in the tree removal areas. based study and 2.1% in our study.
Similar trajectories have been published for 1980–These curves were generally characterized by rapid in-

creases in cover in early years, in many cases becoming 1986 with respect to tree blowdown and tree-scorched
areas (Halpern et al., 1990). By 1986, both blowdownasymptotic toward the end of the study period at approx-

imately 50–80% estimated cover. We believe the shape and scorched plots had between 10% and 15% cover. On
a landscape scale, these areas have been noted to containof these curves reflected the effect of buried surviving

vegetation and seeds that existed in much of these areas significant variability (Franklin et al., 1988). This is sup-
ported by our study, where 15 different change curvesfollowing the eruption. These survivors provided for

rapid revegetation. However, factors such as substantial are associated with these areas (Table 2). Although many
of our curves associated with these areas predicted greaternumbers of downed trees prevented these areas from be-

coming fully occupied. In addition, curves that repre- vegetation cover than that shown in the plot-based stud-
ies, the plot-based results are within the range of oursented a substantial amount of the tree removal area

(curves A2 and D6) generally became asymptotic at predicted values for blowdown and scorched areas.
The utility of this approach for change detection waslower levels of cover than curves for other areas.
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Table 3. Parameters Extracted from Change Curves

Greatest Rate
Curve Years to Reach Time-Integrated of Estimated Cover

Designationa 10% Estimated Coverb Estimated Coverc Increased

A1 64.0 26 0.2
B1 10.1 141 1.1
C1 5.5 265 1.9
D1 10.5 177 6.8
A2 2.5 422 5.4
B2 4.2 383 3.0
C2 2.5 542 7.1
D2 4.3 520 5.7
A3 2.2 568 9.5
B3 1.9 692 10.7
C3 8.2 326 15.9
D3 1.8 749 12.6
A4 3.6 579 4.9
B4 2.8 689 8.4
C4 2.5 735 5.6
D4 1.5 827 17.0
A5 1.5 881 17.3
B5 1.9 845 10.8
C5 1.4 982 20.2
D5 7.1 486 14.0
A6 3.3 839 8.9
B6 1.6 980 15.8
C6 1.3 1121 23.8
D6 1.5 658 16.3

a Curve designations refer to columns and rows of Figure 2.
b Obtained by solving the curve for 10.
c Obtained by integrating the curve over the study period.
d Obtained by finding the maximum value of the curve’s first derivative during the study period.

demonstrated by our volcanic disturbance type analysis. should have survived beneath a relatively thin layer of
fresh volcanic deposit. However, in the tree blowdownAs we expected, based on previous plot-level studies,

vegetation recovery was significantly correlated to type of zone, the disturbance was more severe and deposits aver-
aged somewhat thicker. In the debris avalanche and py-volcanic disturbance (all p-values,0.001). There were, of

course, many other factors that affected vegetation re- roclastic flow areas, deposits were too thick for spouting
vegetation to penetrate, even if survivors existed. Com-covery as well. This resulted in a substantial percentage

of unexplained variance in our analysis. pared to the debris avalanche, in the mud flows there
was greater opportunity for uprooted plants to be depos-Although the significance of disturbance type could

have been shown through other analyses, our change ited on or near the surface where they might resprout.
These different mechanisms related to disturbance typecurve analysis permitted us to make additional distinc-

tions. While we expected that disturbance type would strongly influenced early vegetation recovery and, as a
result, disturbance type explained a large amount of vari-significantly affect revegetation throughout the study pe-

riod, it was important to understand why the amount of ance in number of years to reach 10% cover.
Although statistically significant, type of disturbancevariance explained varied with the measure of vegetation

recovery used. only explained 33% of the variance in 1995 estimated
cover. We believe this occurred because other factorsThe largest amount of variation explained (40%) was

with respect to number of years to reach 10% estimated had increasing influence over revegetation with time. For
example, in substantial portions of both the tree scorchedcover. This was a measure of early vegetation response.

Previous studies noted the importance of surviving seeds and tree blowdown zones, estimated cover had become
asymptotic by 1995 (Table 1, Fig. 2). Thus, these areasand below-ground portions of sprouting species in the

early response at Mount St. Helens (Franklin et al., became less distinguishable by disturbance type. Portions
of the debris avalanche (especially those represented by1985). We expected the presence of survivors would vary

significantly with the type of disturbance and be re- curve D1), which in many cases did not reach 10% esti-
mated cover for over 10 years, have now rapidly in-flected in the number of years to reach 10% cover. For

example, in the tree-scorched zone, above-ground vege- creased to 40% estimated cover or more, decreasing
their distinction from portions of the tree blowdowntation was killed, but substantial below-ground vegetation
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zone. We believe that, in general, while the volcanic dis- forests to mixed stands to conifer, 3) seasonal changes as-
turbance mechanisms dominated early recovery, over sociated with plant phenology, or 4) rates of urbanization,
time other factors have played an increasing role in the such as changes at the pixel level in percent of land con-
variability of patterns across the Mount St. Helens land- verted from agriculture to urban, but not categorical
scape. These factors include an increasing influence of changes in pixels from agricultural to urban. Thus, this
stochastic factors, such as seed dispersal mechanisms and technique is applicable to sets of continuous data (not the-
weather influences. matic), with more than two dates, where the question of

Type of disturbance explained the least amount of interest relates primarily to trends.
variance (21%) with respect to greatest rate of estimated
cover increase. We believe that this variable responded The authors wish to acknowledge the assistance of Warren Co-
to a more complex array of influences. The debris ava- hen, U.S. Forest Service Pacific Northwest Research Station,

Doretta Collins, Washington State Department of Natural Re-lanche along the Toutle River Valley was an example.
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tional Volcanic Monument, for their support in this project.
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article. Partial funding for this project was provided throughrecovery, have experienced some of the greatest rates of
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