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ABSTRACT: This paper evaluates the potential for remote mapping of river bathymetry by (1) examining the theoretical basis of
a simple, ratio-based technique for retrieving depth information from passive optical image data; (2) performing radiative transfer
simulations to quantify the effects of suspended sediment concentration, bottom reflectance, and water surface state; (3) assessing
the accuracy of spectrally based depth retrieval under field conditions via ground-based reflectance measurements; and (4)
producing bathymetric maps for a pair of gravel-bed rivers from hyperspectral image data. Consideration of the relative
magnitudes of various radiance components allowed us to define the range of conditions under which spectrally based depth
retrieval is appropriate: the remotely sensed signal must be dominated by bottom-reflected radiance. We developed a simple
algorithm, called optimal band ratio analysis (OBRA), for identifying pairs of wavelengths for which this critical assumption is
valid and which yield strong, linear relationships between an image-derived quantity X and flow depth d. OBRA of simulated
spectra indicated that water column optical properties were accounted for by a shorter-wavelength numerator band sensitive to
scattering by suspended sediment while depth information was provided by a longer-wavelength denominator band subject to
strong absorption by pure water. Field spectra suggested that bottom reflectance was fairly homogeneous, isolating the effect of
depth, and that radiance measured above the water surface was primarily reflected from the bottom, not the water column. OBRA
of these data, 28% of which were collected during a period of high turbidity, yielded strong X versus d relations (R2 from 0·792
to 0·976), demonstrating that accurate depth retrieval is feasible under field conditions. Moreover, application of OBRA to
hyperspectral image data resulted in spatially coherent, hydraulically reasonable bathymetric maps, though negative depth
estimates occurred along channel margins where pixels were mixed. This study indicates that passive optical remote sensing
could become a viable tool for measuring river bathymetry. Copyright © 2009 John Wiley & Sons, Ltd.
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Introduction

Considerable optimism has been expressed regarding the
potential contribution of remote sensing to river research,
providing extensive, quantitative data that could yield insight
on the organization of fluvial systems from reach to
catchment scales. For example, Marcus and Fonstad (2008)
claim that ‘optical remote sensing is the only viable method
for measuring, monitoring, and mapping a large suite of in-
channel river parameters continuously at sub-metre resolution.’
On a more cautious note, these authors also emphasized the
need for further methodological development and testing. In
this paper, we examine the reliability of remote measurements
of river bathymetry by evaluating a simple, spectrally based
approach to retrieving depth from passive optical image data.

Remote sensing of water depth has a long history in
shallow marine settings (e.g. Lyzenga, 1978; Philpot, 1989;
Maritorena et al., 1994; Lee et al., 1999; Lesser and Mobley,
2007), and Gilvear and Bryant (2003) and Marcus and

Fonstad (2008) review an expanding body of literature on
depth retrieval in rivers. This type of bathymetric mapping
facilitates parameterization of hydrodynamic models (e.g.
French, 2003), morphologic inference of bed material
transport rates (Ashmore and Church, 1998), or any
investigation requiring detailed characterization of river form.
Although light detection and ranging (LiDAR) has become the
preferred means of collecting topographic data for the study
of surface processes (Slatton et al., 2007), the near-infrared
(NIR) laser pulses emitted by most LiDAR systems are strongly
absorbed by water and thus provide no information on
submerged areas (Reusser and Bierman, 2007). Alternative
technologies more readily applicable to rivers include water-
penetrating green LiDAR (Kinzel et al., 2007) and dual-
frequency bathymetric LiDAR (Hilldale and Raff, 2008), but
these systems were designed for coastal environments,
require specialized processing algorithms, and yield relatively
coarse spatial resolution for a given flying height due to a
large laser spot size and spacing. These limitations imply that,
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particularly in smaller streams, passive optical techniques
might complement sub-aerial LiDAR topography from bars
and floodplains by providing bathymetric information from
the wetted channel.

Although previous efforts to map river bathymetry from
image data have been largely empirical (e.g. Winterbottom
and Gilvear, 1997; Marcus et al., 2003), recent studies in
shallow coastal waters (e.g. Mobley and Sundman, 2003;
Dierssen et al., 2003) have helped to establish the physical
basis for remote sensing of rivers. For example, Legleiter et al.
(2004) used the Hydrolight radiative transfer model (Mobley,
1994) to quantify the effects of depth, substrate type, water
surface roughness, and water column optical properties.
Analyses of these simulated spectra indicated that the
logarithm of the ratio of the radiances for two bands was
linearly related to water depth across a plausible range of
stream conditions. Subsequent modelling suggested that
this simple algorithm would be robust in morphologically
complex channels, providing unbiased depth estimates when
bed topography and substrate type vary within a pixel
(Legleiter and Roberts, 2005).

These studies represented initial steps toward a more
general theoretical framework but were limited in several
important respects. First, although we advocated a spectrally
based approach, we have not determined which wavelengths
are most useful for mapping bathymetry. A second, related
problem is a lack of information on the spectral properties of
the streambed itself. Because bottom-reflected radiance is a
function not only of depth but also substrate type, in situ
observations of bottom reflectance would help to determine
how effectively the bathymetric signal can be isolated. A
recent experimental study documented the influence of
distinctive bottom types using field spectroscopy of
progressively submerged artificial substrates in a tidal channel
(Gilvear et al., 2007), but the extent to which streambed
spectral variability might confound depth retrieval in natural
rivers remains unclear. Finally, the encouraging results
obtained via radiative transfer modelling have been tempered
by a lack of validation data – a small sample of field-based
reflectance measurements and qualitative interpretations of
image-derived relative depth maps. This paper addresses
these shortcomings by pursuing the following objectives:

1. develop a simple algorithm for determining an optimal
pair of ratio bands for depth mapping;

2. evaluate the sensitivity of ratio-based depth estimates to
variations in bottom type, suspended sediment concen-
tration, and water surface roughness using Hydrolight
simulations;

3. quantify variability in bottom reflectance within a typical
channel based on field spectra; and

4. assess the accuracy of spectrally based depth retrieval
under a range of conditions using both ground-based
reflectance measurements and hyperspectral image data.

Spectrally Based Depth Retrieval

Theoretical background

Passive optical remote sensing of rivers involves measurement
of visible and near-infrared reflected solar energy that has
interacted with the atmosphere, the water column, and the
streambed. The relevant processes were summarized by
Legleiter et al. (2004), based primarily upon the work of
Philpot (1989), Mobley (1994), Maritorena et al. (1994), and
a special issue of Limnology and Oceanography (Ackleson,

2003). The notation used here is summarised in Table I. For
any wavelength λ, the upwelling spectral radiance LT(λ) can
be expressed as the sum of four components:

LT(λ) = Lb(λ) + Lc(λ) + LS(λ) + LP(λ). (1)

Lb(λ) represents bottom-reflected radiance, which is related to
both depth, due to the exponential attenuation of light with
distance travelled through the water column, and substrate
type, through a term representing the ‘bottom contrast’
between the reflectance of the streambed and that of the
water column itself. For bathymetric mapping, Lb(λ) is the
signal of primary interest and the remaining terms in Equation
(1) represent additional, complicating factors. Lc(λ) denotes
radiance emanating from the water column, having been
back-scattered upward before reaching the bed. The
magnitude and spectral shape of Lc(λ) are determined by the
water’s optical properties, which depend on absorption and
scattering by pure water, suspended sediment, and possibly
other optically significant constituents (e.g. chlorophyll,
coloured dissolved organic matter; Bukata et al., 1995). LS(λ)
represents radiance reflected from the water surface, which
can be a large fraction of LT(λ) for certain viewing geometries
(i.e. sun glint) or for roughened water surfaces. Finally, LP(λ)
indicates path radiance scattered into the sensor’s field of
view by the atmosphere.

Expanding terms in Equation (1) and suppressing the
dependence on wavelength of all variables except for depth
to simplify notation, we have (Philpot, 1989):

Table I. Notation

aη constant in Equation (9)
a(λ) absorption coefficient
as(λ) absorption coefficient for suspended sediment
aw(λ) absorption coefficient of pure water
A(λ) constant in Equation (8)
b(λ) scattering coefficient
bs(λ) scattering coefficient for suspended sediment
cs suspended sediment concentration
C(λ) constant representing transmission across air–water interface
d water depth
Dx grain size for which x percent of the distribution is finer
Ed(λ) downwelling solar irradiance
K(λ) effective attenuation coefficient
Lb(λ) bottom-reflected radiance
Lc(λ) radiance from the water column
Lk(λ) diffuse sky radiance
LP(λ) path radiance from the atmosphere
LS(λ) surface-reflected radiance
LT(λ) total at-sensor radiance
Lu(λ) upwelling radiance
Lw(λ) radiance from optically deep water
n number of spectral bands
N number of spectral measurements
R(λ) reflectance
Rb(λ) bottom reflectance of the streambed
Rc(λ) volume reflectance of the water column
R∞(λ) volume reflectance of optically deep water
R2 coefficient of determination for regression
T(λ) transmittance of the atmosphere
U wind speed
X log-transformed band ratio
β0 regression intercept
β1 regression slope
θ solar incidence angle
λ wavelength
ρ reflectance of the air–water interface
σd standard deviation of water depth
ση standard deviation of water surface elevation



Copyright © 2009 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 34, 1039–1059 (2009)
DOI: 10.1002/esp

SPECTRALLY BASED REMOTE SENSING OF RIVER BATHYMETRY 1041

LT = Ed CT(Rb − Rc)exp(−Kd) + EdCTRc + TρLk + LP, (2)

where Ed is the downwelling solar irradiance, C is a constant
that accounts for transmission across the air–water interface,
T is atmospheric transmittance, Rb denotes the reflectance or
albedo of the streambed, Rc is the volume reflectance of the
water column, K is an ‘effective’ attenuation coefficient with
units of m−1 that summarizes the effects of absorption and
scattering of light within the water column (Maritorena et al.,
1994), d denotes the water depth, ρ is the reflectance of the
air–water interface (Mobley, 1999), and Lk denotes the diffuse
sky radiance. Although the following treatment is presented
in terms of radiance, these components can also be expressed
as reflectance values, which are dimensionless and thus
facilitate comparison among datasets (Schott, 1997).

Because Lb(λ) depends on both d and Rb(λ), the effects of
depth and substrate are intertwined; depth retrieval requires
a means of accounting for variations in bottom reflectance.
Figure 1(a) illustrates typical reflectance spectra for various
features from our study area in Yellowstone National Park,
USA (near 45º N, 110º W): bright limestone exposed locally

on the bed, darker gravel prevalent in most reaches, and
periphyton present throughout much of the channel. Because
LT(λ) measured above a streambed with a high Rb(λ) is larger
than that observed over a darker substrate at the same depth,
d tends to be overestimated for the bottom type with lower
Rb(λ) and vice versa (Legleiter et al., 2004). This problem can
be severe in coastal environments, where benthic habitats
with very different albedos are juxtaposed in a patchy mosaic
(e.g. Hochberg et al., 2003b), but marine researchers have
found that for an appropriate pair of spectral bands, denoted
by numeric subscripts, the ratio Rb1/Rb2 is nearly constant
across substrate types (e.g. Stumpf et al., 2003; Mishra et al.,
2007).

This observation forms the basis of a popular ratio-based
method – introduced by Lyzenga (1978), extended by Philpot
(1989), and now widely applied (e.g. Dierssen et al., 2003) –
for distinguishing changes in depth from variations in bottom

albedo. The underlying principle is illustrated in Figure 1(b):
spectral differences in Rb(λ) are small, on the order of a few
percent, relative to the order-of-magnitude spectral differences
in attenuation by the water column, summarized by the

Figure 1. (a) Reflectance spectra for various in-stream and terrestrial features observed along Soda Butte Creek. The gravel and periphyton
spectra were used to parameterize bottom reflectance for radiative transfer simulations with the Hydrolight numerical model. (b) Spectral
differences in bottom reflectance are minor relative to spectral differences in attenuation by the water column, which is dominated by absorption
by pure water. Data on the absorption coefficient for pure water aw(λ) are from Pope and Fry (1997). This figure is available in colour online at
www.interscience.wiley.com/journal/espl
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coefficient K(λ). For clear-flowing streams (i.e. those with low
concentrations of suspended sediment and for which the
influence of chlorophyll and dissolved organic matter on water
column optical properties can be considered negligible), K(λ)
is primarily determined by the absorption coefficient of
pure water aw(λ), which is lowest in the blue and increases
rapidly with wavelength through the red and NIR. Thus,
although substrate variability affects Rb1 and Rb2 to a similar
degree, as d increases the radiance LT2 measured in the band
experiencing stronger attenuation decreases faster than the
radiance LT1 in the band with weaker attenuation, and for
K2 > K1 the ratio LT1/LT2 thus increases with depth. Using
Equation (2), and taking the natural logarithm of the ratio to
account for the exponential attenuation of light by water,
we have

(3)

Because only Lb(λ) is directly related to depth, the utility
of the image-derived variable X for bathymetric mapping
depends on the relative magnitude of the various radiance
components and the extent to which the ratio of true interest,
Lb1/Lb2, can be isolated. If the other terms can be accounted
for, Equation (3) simplifies to a linear relation between X and
d, as described below.

On the applicability of deep-water corrections to 
shallow stream channels

One solution to this problem, called the deep-water correction
or Lyzenga (1981) algorithm, involves subtracting the radiance
Lw(λ) observed over deep water from LT(λ) values throughout
an image; if water column optical properties, water surface state,
and atmospheric conditions are (assumed) homogeneous,

Lw(λ) = Lc(λ) + LS(λ) + LP(λ)

and thus

Lb(λ) = LT(λ) − Lw(λ).

Although this method has been applied with reasonable
success in fluvial environments (Winterbottom and Gilvear,
1997; Gilvear et al., 2007), the approach is subject to a
number of limitations.

First consider Lc(λ). If the entire river is optically shallow –
that is, if the product dK(λ) is sufficiently small that a
measurable proportion of Ed(λ) reaches the bottom – a deep-
water correction might not be possible because any estimate
of Lw from within the channel would contain some contribution
from the streambed. Truncation of the water column by even
a perfectly absorbing, black substrate results in a volume
reflectance Rc(λ) that differs from that of a hypothetical,
optically deep water body for which dK(λ) → ∞, denoted by
R∞(λ) (Figure 2). Technically, Equation (2) should be expressed

 

 

Figure 2. Water column Rc(λ) and bottom Rb(λ) reflectance spectra. Rc(λ) spectra were simulated with the Hydrolight radiative transfer model
with a suspended sediment concentration of 2 g m−3 and perfectly absorbing, black substrates at the indicated depths. Truncation of the water
column by a bottom at finite depth reduces Rc(λ) relative to a hypothetical infinitely deep water column. Representative Rb(λ) spectra measured in
the field are included to illustrate the bottom contrast Rb(λ) − Rc(λ) between the substrate and water column. This figure is available in colour
online at www.interscience.wiley.com/journal/espl
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in terms of R∞(λ) (Philpot, 1989), but we use Rc(λ) to
emphasize that observations of R∞(λ) might not be available
in rivers.

LS(λ) depends on water surface state, which is primarily a
function of wind speed in marine settings and varies little
from one pixel to the next. In rivers, water surface topography
depends on flow hydraulics and is thus much more variable
over small spatial scales; if LS(λ) is subsumed as a component
of Lw(λ) and subtracted uniformly across an image, these local
variations in LS(λ) persist. Similarly, surface reflectance corrections
developed for ocean colour remote sensing assume that
the water-leaving radiance Lb(λ) + Lc(λ) is zero in the NIR.
Any radiance measured at 750 nm is attributed to surface
reflectance, which is spectrally flat (i.e. ρ (λ) = ρ), and
subtracted across the spectrum (e.g. Hooker et al., 2002;
Hochberg et al., 2003a). This approach is not applicable to
shallow rivers, however, because a large bottom contribution
implies that the water-leaving radiance cannot be considered
negligible for wavelengths up to 800 nm (Legleiter et al.,
2004).

LP(λ) is also problematic. Because water has such low
reflectance, atmospheric path radiance can be a sizable
fraction of the total at-sensor radiance, particularly over deep
water. Subtracting Lw(λ) from LT(λ) can be considered a
simplified form of atmospheric correction (Spitzer and Dirks,
1987), but the difficulties involved in estimating Lc(λ) and
LS(λ) imply that using observations of Lw(λ) would result in
uncertain estimates of LP(λ) as well. More sophisticated and
robust methods of atmospheric calibration have been developed
for ocean colour remote sensing (e.g. Gao et al., 2000), but
they require a level of data and expertise that make them less
practical to apply.

Relative magnitude of radiance components

Given the difficulty of accounting for water column, water
surface, and atmospheric effects in shallow rivers, a less
restrictive approach involves considering the relative magni-
tude of the terms in Equation (2), keeping in mind that Lb(λ)
is the component of interest for bathymetric mapping. In
streams with typical depths on the order of tens of cm (small
d), relatively clear water (small K(λ)), and highly reflective
substrates (large Rb(λ)), and with favourable viewing geometry
(small LS(λ)) and reasonably good atmospheric conditions
(small LP(λ)), the other radiance components can be
considered negligible:

Lb(λ) � Lw(λ) = Lc(λ) + LS(λ) + LP(λ).

More specifically, the contribution from the water column
relative to that from the bottom diminishes as depth decreases,
bottom albedo increases, and absorption predominates over
scattering:

(4)

(5)

(6)

where a(λ) and b(λ) are absorption and scattering coefficients,
respectively. These inherent optical properties determine the

magnitude and spectral shape of K(λ), which is an apparent
optical property that also depends on the angular distribution
of the underwater light field (Mobley, 1994).

The relative contribution of LS(λ) depends on illumination
and viewing geometry, which completely specify the value of
ρ when the water surface is level, a typical value being
0·028. For the more realistic case of an irregular water
surface, ρ increases with roughness to values in excess of
0·1 as a greater proportion of the individual surface facets
become oriented so as to reflect brighter, near-sun portions of
the sky radiance distribution into the sensor’s field of view
(Mobley, 1999). The effects of water surface topography are
examined later, but for now we reason that for shadow-
and cloud-free conditions and typical viewing geometries,
illumination of the river is dominated by the direct solar
beam rather than diffuse sky light and LS(λ) is a small,
constant fraction of Lb(λ).

The relative magnitude of LP(λ) is difficult to generalize
because atmospheric effects vary with elevation, visibility,
and the distribution of water vapour and aerosols.
Nevertheless, the following first-order approximation seems
reasonable: because Rayleigh scattering scales as λ−4, LP(λ)/
Lb(λ) can be significant in the blue but becomes small to
negligible at longer wavelengths.

Simplification of the log-transformed band ratio

Where and when these scaling arguments are valid, Lb(λ) �
Lw(λ) and the bottom-reflected radiance can be considered
the dominant term in Equation (1). Equation (3) then reduces
to

(7)

This expression can be simplified further because C(λ) = C
is essentially constant (Mobley, 1999; Dierssen et al., 2003)
and T(λ) typically does not vary appreciably across an
image except for wavelengths affected by strong molecular
absorption bands. The primary factors controlling irradiance
(time, date, and location) are all fixed for a given scene.
Although the angle of incidence and thus the magnitude of
Ed(λ) vary locally as a function of streambed slope and
aspect, these topographic effects influence both wavelengths
equally and cancel in the ratio (Legleiter and Roberts,
2005). Combining these terms into a single constant and
rearranging (7), we obtain a dimensionally homogeneous,
linear relationship between the image-derived variable X and
water depth d:

(8)

where A = ln[Ed1C1T1/Ed2C2T2]. The slope term in this relation is
the difference in effective attenuation between the two bands,
and X increases with depth for K2 > K1. The intercept includes
the constant A and incorporates the bottom contrast between
the streambed and water column.

With this simplification, we next consider which terms in
Equation (8) might vary across an image and which are likely
to remain approximately constant. Both K(λ) and Rc(λ) are
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determined by the inherent optical properties of the water
column, which can be assumed homogeneous over reach
scales except where suspended sediment is introduced by
tributaries or other sources. Rb(λ) depends on substrate
composition but, to the extent that Rb1/Rb2 is actually constant
across bottom types, this ratio will not vary spatially, either.
The only quantity in Equation (8) expected to vary on a pixel-
by-pixel basis is the one of interest, d, implying that the
remotely sensed variable X is well-suited for bathymetric
mapping. Furthermore, because the slope and intercept in
Equation (8) are computed as a difference and a ratio,
respectively, precise knowledge of absolute radiance values is
not necessary, allowing depth information to be retrieved
from uncalibrated image data. In this case, regression of in situ
depth measurements against X values from the corresponding
image pixels can be used to determine the coefficients of a
linear relation between X and d.

Methods and Data

Optimal Band Ratio Analysis (OBRA)

The preceding theoretical development suggests that under
certain circumstances, and for certain combinations of
wavelengths, a linear relation between the remotely sensed
variable X and flow depth d can be established and used to
map bathymetry from passive optical image data. Ultimately,
only two bands are needed to calculate the log-transformed
band ratio, but because the terms in Equation (8) vary
spectrally, the key to reliable depth retrieval is to consider
a range of wavelengths and select band pairs that satisfy, to
the fullest extent possible, the critical assumptions outlined
above and are relatively insensitive to departures from these
assumptions. We have developed a simple technique, which
we call Optimal Band Ratio Analysis (OBRA), for identifying
appropriate band combinations and calibrating Equation (8).
This method exploits high spectral resolution data by
determining the pair of wavelengths that yield the strongest
linear relation between X and d.

Input data for OBRA consist of paired observations of
depth and a radiometric quantity measured in n spectral
bands – radiance, reflectance, or digital numbers. These data
could be obtained through radiative transfer simulations, by
field spectroscopy, or from coordinated field measurements
and remotely sensed data collection. For each pair of bands
(λ1, λ2), the algorithm proceeds by calculating X values,
performing a regression of d on X, and using the resulting
coefficients to populate n × n matrices of intercept β0(λ1, λ2),
slope β1(λ1, λ2), and coefficient of determination R2(λ1, λ2)
values that summarize spectral variations in the nature and
strength of the relationship between X and d; because these
matrices are symmetric, only their upper diagonals are
retained. The optimal band ratio is then taken to be that
which yields the highest R2. The corresponding R2(λ1, λ2)
matrix indicates whether this optimum is fairly broad, with
adjacent bands also yielding strong relationships with depth,
or rather narrow, implying that radiometric observations at
those particular wavelengths are essential for accurate
bathymetric mapping. Because the log-transformed band ratio
X is the sole explanatory variable in the OBRA regressions,
the only effect (in a statistical sense) considered explicitly is
the interaction between bands. Including the individual
bands as main effects would improve the predictive power of
the regressions and could render X statistically not significant
in some cases (e.g. Robinson et al., 2004; Maynard et al.,
2007).

Radiative transfer simulations

To examine the effects of substrate type, water column optical
properties, and water surface roughness on spectrally based
depth retrieval, we performed OBRA of reflectance spectra
simulated with the Hydrolight numerical radiative transfer
model (Mobley, 1994; Mobley and Sundman, 2001). This
model is widely used by marine scientists (e.g. Dierssen et
al., 2003; Lesser and Mobley, 2007) and additional detail on
Hydrolight and our parameterization thereof can be found
elsewhere (Legleiter et al., 2004; Legleiter and Roberts,
2005). For our purposes here, the critical inputs to Hydrolight
were:

1. water depth, varied in 5 cm increments from 5 to 100 cm;
2. bottom reflectance for two substrate types – the gravel

and periphyton spectra shown in Figure 1(a);
3. suspended sediment concentration cs, varied from 0 to

8 g m−3 and used to specify the optical properties of the
water column by multiplying each cs value by an optical
cross-section (Bukata et al., 1995) to compute absorption
as(λ) and scattering bs(λ) coefficients for suspended sedi-
ment; and

4. wind speed U, varied from 0 to 5 m s−1 to represent vary-
ing degrees of water surface roughness.

Hydrolight accounts for the effects of water surface
irregularity on the reflectance and transmittance properties of
the air–water interface by simulating surface realizations that
have a zero mean, Gaussian distribution of wave slopes with
a variance related to wind speed (Cox and Munk, 1954). The
corresponding water surface elevations are also normally
distributed and have a standard deviation ση given by
(Mobley, 1994)

(9)

where aη = 0·0229 m1/2 s1/2 is a constant derived from the
original work of Cox and Munk (1954). Radiative transfer
simulations parameterized by wind speeds up to 5 m s−1 thus
represent significant water surface topography, with ση on
the order of 5 cm. The extent to which this approach is
appropriate for river channels, where surface roughness
primarily results from turbulent flow processes, is not known,
but Hydrolight simulations parameterized in terms of wind
speed provide a useful surrogate for quantifying the influence
of surface-reflected radiance on depth retrieval.

To isolate the effects of substrate, optical properties and
surface state, spectra were simulated for all depths for
different values of one variable while holding the other two
constant. Performing OBRA for each of these simulated
datasets in turn summarized the influence of each variable on
depth retrieval across the full range of the variable of interest.
In addition, to examine more realistic field conditions, we
extracted from an existing Hydrolight database a random
sample stratified by the probability distributions of depth and
substrate type observed in our study area. This data-base
included the same values of d and cs but spanned a broader
range of substrates and surface states by including limestone
and andesite Rb(λ) spectra and U up to 15 m s−1 (Legleiter
et al., 2004).

Field spectroscopy

In an effort to validate this approach to remote mapping
of river bathymetry, we performed ground-based spectral

ση η=a U ,
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measurements along three reaches of Soda Butte Creek (Table II),
a tributary to the Lamar River in the northeastern corner of
Yellowstone National Park, USA. A number of previous
remote sensing investigations have been conducted in this
area (e.g. Legleiter et al., 2002; Marcus et al., 2003), and our
ongoing research focuses on sediment transfer and channel
change within the Lamar River watershed. The relevant
channel attributes at the time of our spectral data collection
are depth, substrate type, water surface roughness, and
turbidity, which we use in a generic sense to refer to the
optical properties of the water column. Flow depths at
spectral measurement locations ranged from 4 to 80 cm, with
an average depth of 27·6 cm (Table III). The bed of Soda Butte
Creek is comprised of heterogeneous gravel derived from
Eocene volcanics (andesite), glacial outwash, and Paleozoic
carbonate rocks; grain sizes are reported in Table II. During
the mid- to late-summer period when we made our
radiometric observations, much of the streambed was coated
with periphyton, which tended to be best-developed in
shallow and/or low-velocity areas of the channel. Spectral
data span a range of water surface states from highly
turbulent, broken water in riffles to flat water over pool
tailouts. Suspended loads within the snowmelt-dominated
catchment typically decline to low levels by mid-July, and
data from a gauging station on the Lamar River indicate
typical cs values of 2–8 g m−3 during late summer when most
of our spectral data were collected. Over a quarter of our
measurements, however, were obtained on 2 August 2007
following a thunderstorm that introduced significant amounts
of suspended sediment, obscuring the streambed from view
except along shallow channel margins. Spikes in the gauge
record of 10–100 times base-flow cs values suggest that
these spectra represented concentrations an order of magnitude
higher than our other measurements, and a surface water
sample obtained on this date had a cs of 61 g m−3.

Ground-based reflectance data were acquired with a
FieldSpec HandHeld spectroradiometer (Analytical Spectral
Devices, Inc., or ASD) that measured upwelling spectral
radiance from 400 to 900 nm with a nominal sampling
resolution of 1 nm and a full-width half maximum (FWHM)
of 2–3 nm. Nadir-viewing measurements were made from
above the water surface (1·5 m above the bed) by mounting
the ASD on a large camera tripod; an 8º fore-optic provided a
field of view 21 cm in diameter. All data were collected in raw
digital counts and converted to reflectance by dividing target
spectra by the counts measured above a white reference
panel made of Spectralon (Labsphere, Inc.). Five spectra
were measured for each target and stored for subsequent
inspection and averaging. Spectra were typically collected
during a 1–1·5 hr midday period, with solar zenith angles
ranging from 26·5º to 36·0º (Table III). Reflectance data were
collected along channel cross-sections that spanned a range
of depths, substrate types, and water surface states. For each
location, we positioned ourselves and oriented the tripod to
avoid both shadows and wakes. One set of spectra was
measured under natural conditions and then a mat coated
with flat-black spray paint (reflectance ≈ 0·03 across all
wavelengths) was placed over the streambed and a second
set of spectra collected. This experimental design served to
isolate the bottom-reflected radiance by covering the bright
bottom with an artificial ‘black’ control. Black mat spectra
were not recorded on 2 August 2007 due to high turbidity
and in a few other cases where flow strength was sufficient to
lift the weighted mat off of the streambed. In addition to the
reflectance data, flow depth was measured with a ruler for
both the exposed bed and the black mat and the substrate
was characterized by acquiring a digital image with a
waterproof camera. In total, 199 ground-based spectral
measurements were collected from three reaches on seven
separate days (Table III).

Table II. Characteristics of study reaches along Soda Butte Creek

Reach
Drainage area 

(km2)
Bed slope 
(m m−1)

Width
(m)

D16 
(mm)

D50 
(mm)

D84 
(mm)

Hollywood (HW) 116 0·0079 10 25 51 96
Round Prairie (RP) 150 0·0062 21 22 39 70
Footbridge (FB) 239 0·0066 22 23 48 90

Reported width is the reach-averaged water-surface width at the time of spectral data collection. The notation
Dx denotes the percentile of the grain size distribution for which x% are finer; percentiles are computed by averaging
the percentiles for individual pebble counts distributed evenly throughout each reach.

Table III. Summary of field spectral data collection on Soda Butte Creek

Date Reach* θs (º) N D ± σd (cm) Max d (cm) Notes

27 July 2006 RP 32·8 15 26·9 ± 14·3 66 –
28 July 2006 RP 30·7 26 26·4 ± 11·7 52 –
10 Aug 2006 FB 33·4 23 21·8 ± 12·5 49 A few high cirrus clouds
11 Aug 2006 FB 31·9 30 27·1 ± 13·2 49 Wind-roughened water surface
19 Aug 2006 HW 36·0 20 28·5 ± 17·3 65 Includes backwater channel
13 July 2007 RP 26·5 30 38·5 ± 14·8 73 Higher discharge, greater D
2 Aug 2007 RP 29·6 55 24·8 ± 16·9 80 High cs, no mat spectra

All dates All sites 31·0 199 27·6 ± 15·4 80 72% clear water/28% turbid

* see Table II.
θs denotes the solar zenith angle at the mid-point of the data collection period for that date, N is the number of spectral measurements, and D and
σd denote the mean and standard deviation, respectively, of the flow depth d at the spectral measurement locations.
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Post-processing of these spectral data was performed
within the Spectral Analysis and Management System (Rueda
and Wrona, 2003). The five individual spectra for each
sampling location and substrate type were plotted and any
obvious outliers removed; the remaining spectra were then
averaged to obtain a single mean spectrum. Reflectance was
then calculated by dividing the raw digital counts by the
counts for the Spectralon standard recorded closest in time
and a third-order, 15 nm-wide Savitzky–Golay smoothing filter
applied twice (Savitzky and Golay, 1964; Hochberg et al.,
2003b). The resulting averaged, smoothed reflectance spectra
were used as input to the optimal band ratio analysis (OBRA)
procedure described above. In addition, we compared
spectra for the exposed bed and black mat to determine the
extent to which substrate reflectance varied within the
channel and to assess the contribution of Lb(λ) to LT(λ).

We also used these data to examine the effects of reduced
spectral resolution on depth retrieval. Field spectra were
convolved from the original 1 nm sampling interval of the
ASD to 5, 10, 20, 50, and 100 nm wide, equally spaced
bands using a Gaussian kernel with the specified FWHM;
OBRA of the degraded spectra was then performed. We also
evaluated two sensors for which spectral response information
was available: Quickbird, a popular multispectral satellite,
and the Airborne Imaging Spectrometer for Applications
(AISA), a hyperspectral sensor used to acquire image data
from our study area. In this case, the full-resolution field
spectra were convolved to each sensor’s band passes and the
OBRA procedure applied to the resampled spectra.

Remotely sensed data

To evaluate how well results from field spectroscopy might scale
up using remotely sensed data, we analyzed hyperspectral
images from the Lamar River and Soda Butte Creek acquired
on the morning of 1 August 2002 under clear skies during
base-flow conditions. The AISA sensor measured upwelling
spectral radiance at wavelengths from 495 to 898 nm in
34 bands with FWHM of 3·42 nm. Downwelling irradiance
data were collected simultaneously using a diffuse collector
mounted on top of the aircraft and used to calculate apparent
at-sensor reflectance. Due to the low flying height (2000 m
above ground) and high altitude of our study area (1975–2142 m),
atmospheric effects were minimal and no atmospheric
correction was applied. Geo-referencing based on position
and orientation data logged during the flight resulted in a
pixel size of 2·5 m, relative to a wetted channel width of up
to 50 m on the Lamar River but on the order of 15 m for
much of Soda Butte Creek.

On the day of the flight, depth measurements were made
along several transects on Soda Butte Creek. Field data were
related to specific pixels by marking each transect end point
with a tarpaulin identifiable on the image and measuring the
distance to each depth reading. Reflectance data for these
locations were extracted from the image and inspected to
exclude spectra contaminated by terrestrial features, which
were obvious due to the much higher reflectance of gravel
bars and riparian vegetation in the NIR. The remaining
spectra and corresponding depth data (n = 21) were input to
OBRA to select the optimal pair of bands and calibrate the
resulting X versus d relation. In addition, to evaluate whether
wavelengths suitable for remote bathymetric mapping could
be identified via field spectroscopy, X values were computed
using the optimal bands selected via OBRA of convolved
field spectra and related to depth measurements collected
during the flight.

Results

Assessment of ratio-based depth retrieval: OBRA 
of radiative transfer simulations

We performed OBRA of Hydrolight-simulated spectra to identify
combinations of wavelengths that provide strong linear
relationships with depth and are robust to the potentially
confounding effects of suspended sediment concentration,
bottom reflectance, and water surface roughness. These results
were summarized using images organized with the numerator
wavelengths λ1 as rows, the denominator wavelengths λ2 as
columns, and colours representing the OBRA R2(λ1, λ2)
matrices. Light (red) tones in Figures 3–6 thus indicate
wavelength pairs for which the log-transformed band ratio X
is strongly related to depth. Conversely, dark (blue) tones
indicate combinations for which X is insensitive to variations
in d. The band ratio yielding the highest R2(λ1, λ2) value is
specified in the lower diagonal of each panel, along with the
regression equation, R2, and standard error. The residuals
from the optimal band ratio relationships are displayed on the
right side of each figure and illustrate how variations in each
factor might lead to systematic depth retrieval errors.

Suspended sediment concentration. The feasibility of
retrieving depth information from remotely sensed data
depends on the optical properties of the water column, which
we have parameterized in terms of cs using optical cross-
sections (Bukata et al., 1995). The spectra illustrated in Figure
3(c)–(h) are dominated by scattering by suspended sediment
at shorter wavelengths, where reflectance increases with
depth. For longer wavelengths, radiative transfer is dominated
by absorption by pure water and reflectance decreases as
depth increases. The transition between scattering- and
absorption-dominated regimes is thus marked by a crossover
wavelength at which reflectance is the same for all depths
(Figure 3(c)–(e)); the location of this crossover shifts toward
longer wavelengths with increasing cs. Figure 3(f )–(h) also
shows that the depth signal is obscured at shorter wavelengths
because, for a fixed depth, reflectance can vary significantly
due to differences in cs.

This effect is indicated in Figure 3(a) by very low R2(λ1, λ2)
values where both ratio bands are short, scattering-dominated
wavelengths. Longer-wavelength denominator bands, for
which absorption predominates over scattering, yield stronger
relationships with depth, and the vertically oriented swath of
high R2(λ1, λ2) values suggests that the numerator wavelength
has little effect on the strength of the X versus d relation. For
a constant depth, an increase in cs causes reflectance to
increase across the spectrum due to greater scattering, but the
NIR is less sensitive than shorter wavelengths (Figure 3(f)–(h)).
The optical properties of the water column are thus primarily
accounted for by the numerator band, and the wavelength
indicated by OBRA, λ1 = 594 nm, is aligned with the
reflectance peaks in Figure 3(c)–(h), the height of which is
determined by cs. Depth information is thus associated with
the denominator band through the rapid increase in pure
water absorption in the red and NIR (Figure 1(b)). Weaker
relations result for λ2 > 735 nm because relatively few
photons survive the trip through the water column to the
bottom due to very strong absorption, implying that a greater
proportion of the total radiance is associated with scattering
and thus sensitive to cs. The low R2(λ1, λ2) values centred
at (655 nm, 670 nm) are associated with a pronounced
chlorophyll absorption feature in the periphyton spectrum
used to parameterize Rb(λ).

Residuals from the optimal band ratio relationship
illustrated in Figure 3(b) provide some additional insight. The
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variance of the residuals increases with depth because the
effects of cs are more pronounced in deeper water: for a
given concentration, a thicker water column contains more
suspended sediment, resulting in greater scattering. Because
fewer photons are absorbed and a larger proportion
experience multiple scattering events, the classic exponential
relation between radiance and distance travelled through the
water column begins to break down and the X versus d
relation becomes slightly nonlinear. The residuals exhibit a
quadratic structure as a result, but the R2 value of 0·989
indicates that a linear approximation is reasonable for the
depths considered here; adding an X2 term to the regression
might be necessary for deeper water (Dierssen et al., 2003;
Mishra et al., 2007). In practice, this nonlinearity would be
less pronounced because depths would likely span a smaller
range and would not be evenly distributed over this range as
they were for our simulations.

Given this quadratic trend, considering the relative
positions of the residuals for a given depth is more
informative than their absolute magnitudes and indicates the

error that might be incurred due to variations in cs. For
shallow water (d < 0·2 m), depths are overpredicted for small
cs due to lower volume reflectance from the water column,
which reduces the total reflectance and thus makes the water
appear deeper. Conversely, depths tend to be underpredicted
for high cs because increased scattering results in greater
volume reflectance that is mistaken for a shallower depth. For
deeper water (d > 0·4 m), these relationships are reversed,
and d is underpredicted for relatively low cs values. As depth
increases, the denominator band becomes more sensitive to
cs because strong absorption reduces the amount of radiance
reflected from the bottom and allows radiance scattered within
the water column to make a relatively large contribution to
LT(λ2). As a result, the reduced scattering associated with a
low cs makes the water appear shallower. Conversely,
relatively high cs values lead to overpredictions of depth
because the increased volume reflectance produced by
higher sediment concentrations is confused with a thicker
water column. As depth approaches 1 m, residuals for the
highest cs considered approach those for clear water, multiple

 
 

  

 

Figure 3. OBRA of Hydrolight radiative transfer simulations isolating the effect of suspended sediment concentration cs; the substrate was
periphyton and the wind speed was constant at U = 0 m s−1. (a) R2(λ1, λ2) matrix from OBRA, (b) residuals from optimal band ratio relation, (c)–(e)
simulated spectra for fixed cs and a range of depths, and (f )–(h) simulated spectra for fixed depths and a range of cs. The vertical dashed lines in
(c)–(e) indicate the transition from scattering- to absorption-dominated radiative transfer; see text for details. This figure is available in colour
online at www.interscience.wiley.com/journal/espl
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Figure 4. OBRA of Hydrolight radiative transfer simulations isolating the effect of bottom reflectance Rb(λ) or substrate type; cs = 2 g m−3 and
U = 0 m s−1. (a) R2(λ1, λ2) matrix from OBRA, (b) residuals from optimal band ratio relation, (c) simulated spectra for periphyton substrates at a
range of depths, (d) simulated spectra for gravel substrates at the same range of depths, and (e) the difference in reflectance between periphyton
and gravel substrates at these depths. This figure is available in colour online at www.interscience.wiley.com/journal/espl

  

 

 

 

Figure 5. OBRA of Hydrolight radiative transfer simulations isolating the effect of water surface roughness, parameterized in terms of wind speed
U using Equation (9); substrate is periphyton and cs = 2 g m−3. (a) R2(λ1, λ2) matrix from OBRA, (b) residuals from optimal band ratio relation, (c)
simulated spectra for a fixed depth of 0·3 m and the range of water surface states indicated in the legend, with the standard deviation of water
surface elevation ση corresponding to each value of U given in parentheses, and (d) surface-reflected radiance LS(λ) contribution, expressed as a
proportion of the total radiance LT(λ), for the same depth and range of water surface states as in (c). This figure is available in colour online at
www.interscience.wiley.com/journal/espl
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scattering become significant, and interpretation of depth
retrieval errors becomes difficult.

Bottom reflectance. Because Lb(λ) is a function of both d
and Rb, spatial variations in bottom reflectance could
adversely affect depth retrieval, and a pair of wavelengths
must be identified for which X is sensitive to d but unaffected
by substrate heterogeneity. We simulated reflectance spectra
for two common bottom types, gravel and periphyton, and
performed OBRA to examine spectral variation in the
predictive power of the X versus d relationship. Figure 4(a)
indicates that the range of wavelengths that provide strong
linear relations with depth in the presence of mixed
substrates is much narrower than was the case for variable cs.
The highest R2(λ1, λ2) values occur in two distinct regions:
one horizontally oriented in Figure 4(a), with λ1 centred
around 630 nm and λ2 extending from 590 to 655 nm, and
the other vertically oriented with λ2 more narrowly centered
on 675 nm and λ1 from 400 to 540 nm. The former region is
the site of the optimal band ratio, which yields an R2 value
of 0·996 using the wavelength at which the scattering–
absorption crossover occurs for the gravel spectra
(λ2 = 590 nm; Figure 4(d)) as the denominator and a
wavelength for which the spectra for the periphyton substrate
diverge for different depths (λ1 = 586 nm; Figure 4(c)) as the
numerator. Figure 4(e) also indicates that the difference in
reflectance between the two substrate types is fairly constant
across this range of wavelengths, which isolates the effect of
depth. The latter region of high R2(λ1, λ2) values is associated

with the pronounced chlorophyll absorption feature evident
in the periphyton spectra but absent from clean gravel. For
denominator bands within this 675 nm absorption feature,
the numerator experiences a ‘blue shift’ toward shorter
wavelengths (λ1 < 540 nm) for which the periphyton and
gravel spectra are similar and dominated by scattering within
the water column (cs was held constant at 2 g m−3 for these
simulations). These results illustrate how distinctive substrate
spectral characteristics can dictate which specific, potentially
quite narrow, ranges of wavelengths are most useful for depth
retrieval.

Residuals from the optimal band ratio relationship for both
substrate types are plotted against depth in Figure 4(b). For
d < 0·4 m, depth is underpredicted for periphyton because
the increased reflectance from this relatively bright bottom
type is confused with a shallower depth, whereas depth is
overestimated for the darker gravel substrate. Conversely, for
d > 0·4 m, depth is underpredicted for gravel because the
lower reflectance of this bottom type is mistaken for reduced
water column volume reflectance due to a shallower depth.
Increased reflectance from a brighter, periphyton-coated
streambed has the opposite effect and leads to overestimation
of d in deeper water. This interpretation of the residuals is
contingent upon the wavelength position of the scattering–
absorption crossover, which in this case coincides closely
with the bands identified via OBRA. Though suboptimal in
that the R2(λ1, λ2) values might be slightly lower, band
combinations from the second, vertically oriented region

  

 

 

 

 

 

Figure 6. OBRA of 100 Hydrolight radiative transfer simulations sampled at random from a database parameterized for our field area; see text
for details. Depth, substrate type, suspended sediment concentration cs, and water surface roughness (wind speed U) are all allowed to vary. (a)
R2(λ1, λ2) matrix from OBRA, (b) residuals from optimal band ratio relation grouped by cs, (c) residuals grouped by substrate type, and (d) residuals
grouped by U. This figure is available in colour online at www.interscience.wiley.com/journal/espl
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described above might yield relationships for which
interpretation of residuals would be less ambiguous because
the denominator band (~675 nm) is well within the absorption-
dominated regime while the numerator is subject to greater
scattering.

Water surface roughness. The effects of surface state,
parameterized in terms of wind speed U using Equation (9),
on depth retrieval are illustrated in Figure 5 for a range of
conditions from calm to highly irregular. Figure 5(a) indicates
that a broad range of wavelengths from 500 to 715 nm yield
very strong linear relations with depth, and spectra for a fixed
depth vary little over this range of U (Figure 5(c)). These
results suggest that the effects of surface roughness on depth
retrieval are less significant than those associated with water
column optical properties and substrate composition.

Because cs was held constant and a single periphyton substrate
was used, there is little spectral variation in predictive power
and many combinations of wavelengths yield R2(λ1, λ2) values
nearly as high as the optimum band ratio identified through
OBRA. R2(λ1, λ2) is lower in the blue due to stronger Rayleigh
scattering by the atmosphere, which increases the diffuse sky
radiance for these shorter wavelengths. For a level water
surface, surface-reflected radiance LS(λ) is comprised entirely
of diffuse sky light, except for the special case of specular
reflection of the direct solar beam. For rougher surfaces, more
surface facets reflect light from the brighter, near-sun portion
of the sky and LS(λ) begins to resemble the solar spectrum
rather than the background sky (Mobley, 1999). These
different sources of LS(λ) are most distinct in the blue and
cause the spectra in Figure 5(c) to diverge for wavelengths
less than 500 nm, reducing the utility of this portion of the
spectrum for bathymetric mapping. Predictive power is also
low in the NIR because strong absorption by pure water
dictates that the amount of radiance leaving the water
column is relatively small and LS(λ) thus represents a larger
proportion of the total radiance LT(λ) (Figure 5(d)).

In general, although surface reflectance is spectrally flat,
implying that all wavelengths should be affected equally,
variations in water surface roughness will have the greatest
impact on bands for which LS(λ) is a large fraction of LT(λ).
Our results indicate that ratio-based depth retrieval is robust
to surface reflectance because this radiance component is
effectively cancelled in the ratio, although high LS(λ) could
saturate the remotely sensed signal and obscure the effect of
of depth. Figure 5(d) also suggests that approaches relying
on the absolute magnitude of LT(λ) for individual bands
or additive combinations of bands will be more sensitive
to surface roughness because much of the signal might be
composed of surface-reflected radiance that is independent of
depth.

Residuals from the optimal band ratio relationship are
grouped by wind speed and plotted against depth in Figure
5(b). These residuals exhibit a parabolic trend but are not as
heteroscedastic as the residuals from the optimal band ratio
relationships for variable cs and bottom type. Furthermore,
unlike these other two factors, the relative position of the
residuals for different values of U are consistent across the
full range of depths considered. Depth is underpredicted for
level or less rough water surfaces because reflectance from
the surface is relatively small, resulting in a lower total
reflectance that is mistaken for a greater depth. Conversely,
rougher water surfaces are characterized by greater surface
reflectance, which increases the total reflectance and leads
to underpredictions of depth because the greater overall
brightness is confused with shallower water.

Random sample from Hydrolight database. In practice,
water column optical properties, substrate type, and water

surface state all vary within a river system and could
complicate remote mapping of bathymetry. To obtain a more
realistic indication of the performance of ratio-based depth
retrieval under typical field conditions, and to determine
which wavelengths might be most useful in general, we
performed OBRA for 100 simulated spectra sampled at
random from a Hydrolight database parameterized for our
field area (Legleiter et al., 2004). These spectra represent cs

values from 0 to 8 g m−3, wind speeds up to 15 m s−1, and
four different substrate types for depths distributed between
0·05 and 1 m in proportion to their occurrence along Soda
Butte Creek.

Even with these broader, more representative ranges and
simultaneous variation of all three factors, OBRA yields a
strong (R2 = 0·945) relation with depth for the ratio of
reflectances at 586 and 614 nm. The numerator band is
aligned with reflectance peak associated with cs and thus
accounts for water column optical properties related to
scattering while the denominator is absorption-dominated for
all but the highest sediment concentrations and is not unduly
influenced by the high red and NIR reflectances of periphyton
and limestone substrates. Figure 6(a) also indicates a
horizontally oriented swath of high R2(λ1, λ2) values centred
on λ1 = 580 nm and denominator wavelengths from 590 to
660 nm. This region of high predictive power is interrupted
by a vertical swath of lower R2(λ1, λ2) values centred on the
chlorophyll absorption feature at λ2 = 675 nm, with a
narrower zone for which R2(λ1, λ2) > 0·9 at λ2 = 690 nm,
outside the chlorophyll absorption band. The vertically
oriented region of moderately high R2(λ1, λ2) values for
λ2 = 720–725 nm and λ1 = 400–650 nm is associated with a
rapid increase in the absorption coefficient of pure water in
the NIR, which makes these wavelengths relatively insensitive
to variations in cs or substrate type. For any λ2 < 710 nm,
shorter-wavelength numerator bands yield low R2(λ1, λ2)
values due to the effects of scattering by suspended sediment.
For example, the region of high predictive power aligned
with the chlorophyll absorption feature at λ2 = 675 nm and
extending throughout the green and blue portions of the
spectrum that was evident when substrate was variable but cs

was held constant (Figure 4(a)) is truncated at λ1 = 510 nm
when the optical properties of the water column are also
allowed to vary. These results illustrate the complex
interactions among depth, water column optical properties,
and bottom reflectance and suggest that successful spectrally
based depth retrieval might require narrow, carefully selected
bands.

To examine whether departures from the optimal band
ratio relationship were systematically associated with cs,
substrate type, or surface state, we plotted residuals against
depth for each factor in turn (Figure 6(b)–(d)). When all three
parameters are free to vary, residuals are larger but generally
remain unbiased, although depth tends to be underpredicted
in deeper water. This type of error is likely to be common in
practice due to saturation of the radiance signal for
absorption-dominated numerator bands (Figure 3(c)–(e)), and
because X versus d relations calibrated primarily on the basis
of observations from shallow depths might not perform as
well in deeper water due to the nonlinearity introduced by
scattering (Figure 3(b)). Positive residuals in Figure 6 tend
to be associated with clear water, particularly for greater
depths where reduced volume reflectance leads to under-
predictions of depth, but the strongest trends in the residuals
are related to substrate type. Bright limestone bottoms
lead to underpredictions of depth in shallow water, where
higher reflectance is confused with a smaller depth, and
overpredictions in deeper water, where the brighter substrate
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is mistaken for a thicker water column with higher volume
reflectance. Conversely, dark andesite substrates lead to
overpredictions of depth in shallow water, where the darker
bottom appears similar to deeper water, and underpredictions
for greater depths, where the presence of a dark substrate
appears similar to a shallower water column with reduced
volume reflectance.

Field observations of substrate spectral variability

The preceding analyses suggest that substrate heterogeneity
influences the accuracy of image-derived depth estimates and
implies that spatial variations in streambed spectral properties
could complicate bathymetric mapping. Data on bottom
reflectance are also valuable because the bottom contrast
between the substrate and water column largely depends
on Rb(λ), and if, for a particular wavelength, Rb(λ) − Rc(λ) is
not of sufficient magnitude, depth cannot be estimated from
radiometric observations at that wavelength. Furthermore,
Rb(λ) plays an important role in determining whether the
bottom-reflected radiance is significantly greater than the
radiance scattered within the water column, one of the critical
assumptions leading to the simplified band ratio expression (8).

To investigate these issues, we made paired above-water,
field-based reflectance measurements of the natural streambed
and a low-albedo substrate control (black mat) at 139
locations along Soda Butte Creek. These data are summarized
in Figure 7, in which median reflectance values for each
wavelength indicate the central tendency of our measurements
and are represented by the thick white lines. Variability is
expressed using percentiles of the distribution of reflectance
values to define areas that bracket 25, 50, and 75% of the
data (Hochberg et al., 2003b).

Considering that the data span the full range of measured
depths and no attempt was made to account for the effect
of varying water depth on reflectance, the streambed spectra
in Figure 7(a) are remarkably similar. For example, the
chlorophyll absorption feature at 675 nm is clearly expressed
in not only the median reflectance spectrum but also the
various percentiles of the distribution, implying that substrates
throughout our study area are coated with periphyton during
late summer. These spectra are also characterized by

1. an increase in reflectance with wavelength up to 580 nm,
consistent with our radiative transfer modelling of the

effects of suspended sediment on water column optical
properties;

2. a plateau from 580 to 650 nm on the shoulder of the
chlorophyll absorption band;

3. a strong peak in reflectance at 700 nm on the opposite
limb of the chlorophyll feature, followed by a sharp
decrease due to strong absorption by pure water in the
NIR; and

4. a smaller reflectance peak at 810 nm due to a decrease in
the absorption coefficient of pure water at this wave-
length, documented by Kou et al. (1993) but not incorpo-
rated into Hydrolight, which only considers wavelengths
from 400 to 800 nm.

The consistency with which these features were observed
implies that substrate spectral characteristics are fairly
homogeneous within our study area. Although streambed
photographs typically included a range of grain sizes and
lithologies, these grain-to-grain differences in colour were
apparently not significant at the scale of our radiometric
observations, defined by the ASD’s 0·21 m field of view. This
result implies that the presence of different rock types does
not introduce appreciable spectral variability as long as the
lithologies are spatially well-mixed. Coating by periphyton
also acts to homogenize the bottom reflectance.

Spectra measured when the black mat was placed over the
streambed as a bottom reflectance control are relatively
featureless by comparison (Figure 7(b)), and the pronounced
difference between the bed and mat indicates that the
streambed is relatively bright, implying a positive bottom
contrast. The effects of depth are still present in the mat
spectra through the influence of a water column of varying
thickness, but the positive difference between the bed and
mat spectra (Figure 7(c)) suggests that the majority of the
total radiance measured above the river is reflected from
the bottom rather than scattered within the water column.
This result implies that, for most wavelengths, Equation (5)
is at least approximately valid under the field conditions
observed in our study area. The water column plays a greater
role at shorter wavelengths and explains why reflectance
above the black mat is greatest in the blue, exceeding the
reflectance measured above the natural streambed in
some cases. Because this portion of the spectrum is
dominated by scattering, Rb(λ) has relatively little influence
on the total reflectance, causing the bed and mat spectra to
converge.

   

Figure 7. Comparison of field spectra for all depths for (a) the streambed, (b) the black mat used as a bottom reflectance control, and (c) the
difference in reflectance between the bed and the mat. The thick white line in each panel represents the median spectrum and the solid areas
encompass the indicated percentage of the distribution of spectra for which reflectance measurements were made for both the bed and the mat
(n = 139). This figure is available in colour online at www.interscience.wiley.com/journal/espl
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Optimal band ratio analyses of field spectra

Our radiative transfer simulations suggest that, by selecting an
appropriate pair of bands, one can define a spectrally based
variable X that exhibits a strong, linear relationship with
water depth. To provide some empirical verification for this
result, we performed separate optimal band ratio analyses for
the individual datasets described in Table III, as well as the
composite of all 199 field spectra. The results are summarized
in Figure 8, which displays the R2(λ1, λ2) matrices as images
and reports the optimal band combinations, corresponding X
versus d relations, and regression statistics. Maximum R2(λ1,
λ2) values ranging from 0·792 to 0·976 indicate the potential
for highly accurate spectrally based depth retrieval under
field conditions, with standard errors of a few cm.

Many of the features described in the context of our
Hydrolight-generated spectra are evident in the field data as
well; this agreement lends some credibility to our modelling
efforts. For example, the R2(λ1, λ2) image for field data
collected on 19 August 2006 (Figure 8(e)) bears a striking
resemblance to the R2(λ1, λ2) image for the random sample
from the Hydrolight database (Figure 6(a)). The vertically
oriented swath of low R2(λ1, λ2) values centred on the
chlorophyll absorption feature at λ2 = 675 nm is present in all
datasets except that acquired on 2 August 2007 under
highly turbid conditions. Similarly, band combinations drawn
from shorter, scattering-dominated wavelengths provide
little predictive power, consistent with Figure 3 and our
interpretation thereof.

For the overall dataset of 199 field spectra, 28% of which
were collected during a period of high cs on 2 August 2007,
the optimal band ratio consisted of a green numerator
(λ1 = 570 nm), which primarily accounted for variations in
water column optical properties related to scattering by
suspended sediment, and a NIR denominator (λ2 = 716 nm),
which provided depth information across a broad range of
conditions due to the strong absorption by pure water at this
wavelength. The resulting X versus d relation had a high R2 of
0·799 and a regression standard error of 0·069 m, demonstrating
that the spectrally based depth retrieval algorithm we have
examined via radiative transfer simulations also performs well
when applied to real data collected from a natural setting.

One notable difference between OBRA results for simulated
and field spectra is the selection of longer-wavelength
denominator bands for the field data. Whereas OBRA of the
random sample of Hydrolight-generated spectra identified a
red band at λ2 = 614 nm, NIR denominator wavelengths were
optimal for all field datasets (λ2 = 694 nm for 13 July 2007,
but equally high R2 values were obtained for λ2 > 700 nm).
Figure 8 suggests that the NIR region of the spectrum is the
most valuable for depth retrieval, including the 810 nm band
highlighted by reflectance peaks in our field spectra (Figure 7(a)).
Strong absorption by pure water in the NIR dictates absorption-
dominated radiative transfer, one of the key requirements for
ratio-based depth retrieval (Equation (6)), but also implies that
the radiometric signal saturates at greater depths, as shown in
Figure 3(c)–(e). This saturation might account for the disparate
OBRA results for modelled and field spectra; because the
field data were generally obtained from shallower depths
than those modelled with Hydrolight, these data would have
been less susceptible to saturation in the NIR.

A salient feature of Figure 8 is the difference in OBRA
results among datasets. These differences are difficult to
examine quantitatively due to the limited ancillary data
available; additional measurements of cs, water column
optical properties, periphyton biomass, and flow velocity,
wind speed, or some other surrogate for water surface

topography would have been useful in this regard.
Nevertheless, we attempt to explain a few observations based
on our radiative transfer simulations and field experience. For
both the Round Prairie and Footbridge reaches, spectra
collected on successive days yield disparate optimal band
ratios and R2(λ1, λ2) matrices, particularly in the NIR (Figure
8(a)–(d)). Bottom reflectance and water column optical
properties did not vary from one day to the next, but closer
inspection of our field data indicated that the different OBRA
results might be a consequence of the distribution of depths
sampled on each date. On 27 July 2006, 33% of our data
were for d > 0·3 m whereas a greater proportion (42%) of the
observations from 28 July were for d > 0·3 m. Similarly, more
of the spectral data for the Footbridge reach were from
d > 0·3 m on 11 August (43%) than on 10 August (30%).
Although Kolmogorov–Smirnov tests indicated that depth
distributions were not significantly different for either pair of
dates, in general, a sample biased toward shallower water
could tend to favour NIR wavelengths where small changes in
depth correspond to large changes in radiance. Conversely, a
sample drawn from deeper water might tend to indicate less
predictive power in the NIR due to saturation at greater
depths. High R2(λ1, λ2) values were observed throughout the
NIR for the dataset (13 July 2007) with the greatest mean depth
(Table III, Figure 8(f)), however, suggesting that saturation was
not necessarily a problem. An alternative explanation for the
reduced utility of the NIR on these dates could be a greater
degree of water surface roughness, which would result in a
higher ratio of surface-reflected to total radiance in the NIR; the
greater LS(λ) might have overwhelmed the radiance signal
related to depth. Spectral data were collected under very
windy conditions on 11 August 2006 that presumably generated
greater surface roughness than was present on 10 August; our
field notes do not specifically indicate that 28 July 2006 was
significantly windier than the day before. In any case, this
day-to-day variability implies that variables other than depth
influence which wavelengths are useful for bathymetric
mapping and might affect depth retrieval accuracy.

The dataset collected in Round Prairie on 2 August 2007 is
distinctive due to much greater turbidity on this date. The
OBRA results in Figure 8(g) indicate that although the visible
portion of the spectrum was rendered useless for depth
retrieval by high concentrations of suspended sediment, a
strong (R2 = 0·792) relationship with water depth was still
obtained using a pair of NIR bands separated by only 5 nm.
Hydrolight simulations indicated that the transition from
scattering- to absorption-dominated radiative transfer shifts
toward longer wavelengths with increasing cs, and the order
of magnitude greater concentrations represented by this
dataset dictated that wavelengths up to 690 nm were not
useful band ratio denominators. Wavelengths as short as
520 nm yielded R2(λ1, λ2) > 0·6 when used in the numerator
with λ2 > 725 nm, however, and predictive power was
maximized when both ratio bands were from the NIR.
Because the scattering coefficient for suspended sediment
decreases steadily from 700 to 730 nm while the absorption
coefficient of pure water increases rapidly over this range,
this portion of the spectrum is responsive to changes in depth
but insensitive to cs, even for relatively high concentrations.
NIR bands thus extend the range of conditions under which
river bathymetry can be remotely mapped.

Effects of spectral resolution on depth retrieval

Optimal band ratio analyses of both radiative transfer
simulations and field spectra indicate significant spectral
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variation in the strength of the relationship between X and d,
implying that accurate depth retrieval might require specific,
fairly narrow ranges of wavelengths. These results suggest that
spectral resolution could be a significant constraint because,
whereas our reflectance measurements were essentially
continuous, remote sensing instruments provide data from
a smaller number of broader bands, which could obscure
important spectral variations. To investigate this issue, we
convolved the 199 spectra from our composite field dataset
to different spectral response functions, including Gaussian-
shaped bands with full-width half maxima (FWHM) ranging
from 5 to 100 nm as well as the AISA and Quickbird sensors.
We then performed OBRA of the degraded spectra, and the
resulting R2(λ1, λ2) matrices and regression equations are
presented in Figure 9.

The optimal band ratio for the full-resolution field spectra
(λ1 = 570 nm, λ2 = 716 nm) produced an X versus d regression
R2 value of 0·799, and for convolved spectra with FWHM up
to 20 nm, typical of hyperspectral instruments, the optimal
wavelengths remained consistent and R2 was reduced by only
0·01. For broader-band multispectral sensors, shorter-wavelength
numerators were identified as optimal, but R2 values were only
slightly lower: 0·760 and 0·735 for FWHM of 50 and 100 nm,
respectively. Figure 9 indicates that reducing spectral resolution
from our 1 nm-sampled field data to 100 nm multispectral
bands did not significantly decrease the predictive power of
the optimal band ratio – regression standard errors increased
by only 0·01 m over this range. These results indicate that
because variations in water depth exert a first-order control
on the radiance signal, accurate bathymetric mapping does
not necessarily require high-spectral-resolution data.

Although the results presented in Figure 9(a)–(f) represent
hypothetical sensors with idealized Gaussian spectral
response functions, convolution of our field spectra to the
known band passes of AISA and Quickbird corroborated

these findings. For the AISA hyperspectral sensor, the optimal
wavelength combination was slightly different than that
of the original field spectra due to the specific locations of the
instrument’s bands, but the R2 and standard error were
virtually identical (Figure 9(g)). For the Quickbird multispectral
satellite, OBRA of convolved field data indicated that the
ratio of the blue to the NIR band would be optimal, but with
a lower R2 value of 0·704. Because Quickbird’s bands are
not significantly wider than the hypothetical 100 nm-FWHM
sensor considered in Figure 9(f), the selection of different
optimal wavelengths and lower R2 value for Quickbird are a
consequence of the locations of the sensor’s bands rather
than their widths, implying that wavelength position is more
important than spectral resolution per se.

Application to remotely sensed data

AISA hyperspectral image data from the Lamar River and
Soda Butte Creek were used to evaluate how effectively
remote sensing might allow us to extend these modelling-
and field-based results to larger, more geomorphologically
relevant scales. First, we assessed whether pairs of
wavelengths found to be strongly related to depth through
OBRA of field spectra would also be useful for mapping
bathymetry from remotely sensed data. X was defined using
reflectance values for the band combination identified as
optimal via OBRA of convolved field spectra (Figure 9(g)) and
related to in situ depth data collected during the flight to
obtain the following regression equation:

(10)

Figure 9. OBRA of field spectra convolved to different sensor band passes; the composite dataset was used for this analysis. OBRA results for the
original, full-resolution field spectra are shown in (a), and (b)–(f) represent OBRA results for hypothetical sensors with Gaussian-shaped bands
with the specified widths. OBRA results for the hyperspectral AISA and multispectral Quickbird sensors are illustrated in (g) and (h), respectively.
This figure is available in colour online at www.interscience.wiley.com/journal/espl
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where R577 and R711 denote reflectances measured by AISA at
the specified wavelengths and d is in m. The predictive power
of this expression indicates that wavelengths selected via field
spectroscopy perform well when applied to airborne image
data and, more importantly, that bathymetry can be accurately
mapped via remote sensing. An example is presented in
Figure 10, generated by applying Equation (10) to AISA data
from the Lamar River. The resulting patterns are spatially
coherent and hydraulically reasonable, with greater depth in
zones of flow convergence, along the outer bank of the bend,
and in backwater areas. The image also captures shallower
riffles and shoaling over the point bar and onto the mid-
channel bar near the top of Figure 10.

In addition to their realistic spatial structure, the absolute
magnitudes of the image-derived depth estimates are plausible,
with a reach-averaged mean depth of 0·38 m and pools up to
0·8 m deep. No field measurements were collected from this
area during the flight, but a subsequent cross-sectional survey
provides some qualified support. Although depth estimates
from 2002 cannot be related to topographic data from 2007 due
to channel migration in the interim, extracting a bathymetric
profile from a position along the bend analogous to the location
of our 2007 survey allows for an indirect comparison, and
Figure 10 indicates that the remotely sensed data and field survey
yield similar point bar slopes. Depths are also comparable –
the mean and maximum depths derived from the image were
0·50 m and 0·86 m, as opposed to 0·45 m and 0·66 m for the
field data. The agreement is quite strong considering that the
discharge recorded at a nearby gauge was 37% lower during
the field survey than during the AISA flight; this decrease in
discharge affected the maximum depth more than the mean
depth due to the asymmetry of the cross-section.

In practice, field spectra might not be available to guide
wavelength selection for depth retrieval, and appropriate
band combinations must be identified from the image data
itself. To assess whether the OBRA procedure would be
useful in this situation, we used spectra from the image pixels
for which depths were measured in the field as input to
OBRA. The results presented in Figure 11(a) indicate that the
optimal wavelengths (624 nm, 693 nm) differ from those
identified through OBRA of the convolved field spectra
(Figure 9(g)), but the image-derived relation also yields a
higher R2 (0·806) and smaller standard error (0·0872 m) than
the equation (10) based on field spectra. This result implies
that a strong, linear relationship between a radiometric
quantity and depth can be developed directly from image
data, provided in situ depth measurements are also available.

A comparison of the R2(λ1, λ2) matrices derived from field
spectra and AISA image data, illustrated in Figures 9(g) and
11(a), respectively, reveals some notable similarities and
differences. Both datasets indicate that the 711 nm band
is a useful denominator in combination with most visible
wavelengths, with the vertically oriented swath of high
predictive power extending farther into the green for the
image data than for the field spectra, which include
reflectance measurements from high cs conditions under
which visible bands were of little value (Figure 8(g)).
Similarly, both R2(λ1, λ2) matrices reveal areas of reduced
predictive power associated with the chlorophyll absorption
feature at 675 nm and where both λ1 and λ2 < 530 nm. This
latter region, in the upper-left corner of these diagrams, is
presumably less extensive for the image data due to lower
scattering than was observed in the high-turbidity field
spectra. The most pronounced disparity between the two

  

 

Figure 10.  (a) Spectrally based bathymetric map of the Lamar River, derived using the bands identified via OBRA of convolved field spectra
(Figure 9(g)) and Equation (10). (b) compares image-derived depth estimates to data from a subsequent topographic survey; see text for details.
This figure is available in colour online at www.interscience.wiley.com/journal/espl
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matrices is in the NIR, where the field data indicate fairly
strong relationships with depth for λ2 up to 820 nm and very
low predictive power when λ1 > 734 nm, presumably due to
a low signal-to-noise ratio at longer wavelengths where
water-leaving radiance is minimal. In contrast, the AISA data
are weakly related to depth for λ2 > 720 nm, which might be
attributed to saturation of the radiance signal or possibly to
atmospheric effects.

Another important difference between field spectra and
image data is spatial resolution, which represents a fundamental
constraint on remote mapping of small streams. For example,
application of the optimal band ratio relation from Figure
11(a) to AISA data from the Footbridge reach suggests that
reliable depth estimates might be difficult to obtain in very
shallow water and along channel margins where pixels are
mixed. The bathymetric map in Figure 11(b) features
hydraulically reasonable spatial patterns consistent with our
field experience at this site, and a thalweg profile indicates
that useful information on pool-riffle morphology can be
derived from image data. For this 20 m-wide channel, however,
an important limitation of image-derived bathymetry becomes
evident: depth estimates are negative along the margins of the
point bar and, most notably, on the upstream end of the large
mid-channel bar toward the top of the reach. As suggested by
earlier work based on radiative transfer modelling (Legleiter
and Roberts, 2005), channel banks present a challenging

remote sensing problem due to the juxtaposition of terrestrial
and aquatic features with very different spectral characteristics;
these issues are most pronounced when the image pixel size
is an appreciable fraction of the wetted channel width.

In this case, the river is spanned by as few as four 2·5 m
pixels, and the spectral transect in Figure 11(c) indicates
that contamination of the water-leaving radiance signal by
adjacent terrestrial features can be significant. These spectra,
extracted from eight sequential pixels across the channel,
include unusually high NIR reflectances on both sides of the
channel, influenced by exposed gravel toward the left bank
and a vegetated cutbank on the right. The presence of
vegetation within a pixel, such as that closest to the right
bank (spectrum 8 in Figure 11(c)), causes reflectance to
increase with wavelength through the NIR, whereas water has
an opposite trend. Spectrum 7, extracted from the second
pixel from the right bank, also bears the imprint of vegetation,
suggesting that NIR radiance can be scattered into a pixel
from nearby – these adjacency affects might be inevitable where
bright vegetation and dark water are in close proximity. For
the point bar on the left side of the transect, gravel has a less
distinctive spectral shape than does vegetation and is
expressed as an overall increase in brightness for spectra 1 and
2. In the middle of the channel, away from the influence of
the banks, spectra are similar to both radiative transfer
simulations and field-based measurements, with a pronounced

 

 

 

Figure 11. Application of the ratio-based depth retrieval algorithm to the Footbridge reach of Soda Butte Creek. (a) shows the OBRA of spectra
derived from the AISA image and depth measurements collected during the flight and (b) is the resulting bathymetric map, with thalweg profile
shown as an inset; flow is toward the bottom of the image. (c) shows image spectra extracted from the transect near the bed apex together with
associated depth estimates; see text for details. This figure is available in colour online at www.interscience.wiley.com/journal/espl
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chlorophyll absorption feature at 675 nm, a peak around
700 nm, and low reflectances through the NIR except for a
smaller peak at 810 nm. Shallower areas (spectra 3 and 6)
are brighter than deeper pixels from the thalweg (spectra 4
and 5), with the greatest difference at 693 nm, the optimal
denominator band from OBRA.

For the mixed spectra near the margins of the channel,
relatively high reflectances at longer wavelengths translate
into large negative values of the log-transformed band ratio X
and result in negative depth estimates for two pixels on either
side of the eight-pixel transect (lower panel of Figure 11(c)).
In general, because the underlying premise of the ratio-based
depth retrieval algorithm is that reflectance for λ2 is lower
than for λ1 due to stronger absorption in the denominator
band, any spectrum for which R(λ2) > R(λ1) is likely to yield a
negative depth estimate. The extensive pale (orange/red) hues
in Figure 11(b) suggest that this condition holds in shallow
areas throughout the reach. These negative estimates do not
necessarily preclude interpretation of bathymetric maps,
however, and depth retrieval is more reliable in deeper areas
not subject to adjacency effects. Nevertheless, the difficulty
of obtaining accurate bathymetry in shallow water and along
channel banks might limit the utility of spectrally based depth
retrieval for some applications.

Summary and Conclusion

The prospect of measuring channel morphology with an
unprecedented combination of resolution and extent has
stimulated considerable interest in remote sensing of rivers.
The potential for more accurate, more efficient mapping and
monitoring clearly exists, but achieving the kinds of advances
envisioned by Marcus and Fonstad (2008) will require a high
degree of confidence in remotely sensed information. This
confidence must first be justified. Establishing the reliability
of image-derived data thus constitutes a critical research
objective and has motivated this study.

Our results indicate that passive optical remote sensing of
bathymetry is not only feasible but highly accurate under
conditions typical of shallow river channels, supporting
earlier experimental (Gilvear et al., 2007) and modelling
(Legleiter et al., 2004; Legleiter and Roberts, 2005) studies. In
this paper, we have more closely examined the theoretical
basis for spectrally based depth retrieval, considered the
relative magnitudes of various radiance components, and
outlined the range of conditions under which this approach
to bathymetric mapping would be appropriate. Depths
estimated from band ratios are most reliable when the
remotely sensed signal is comprised primarily of bottom-
reflected radiance Lb(λ). This component will tend to be
dominant when depths are shallow, the water is clear and
dominated by absorption rather than scattering, the
reflectance of the substrate is high relative to that of the water
column itself, and little radiance is reflected from the water
surface or scattered into the sensor’s field of view by the
atmosphere.

Because the radiometric quantities involved depend on
wavelength, these conditions might hold for some portions of
the spectrum but not for others. To examine these spectral
variations, we developed a simple procedure, called Optimal
Band Ratio Analysis (OBRA), for identifying pairs of
wavelengths that yield strong, linear relations between the log
band ratio X (Equation (8)) and flow depth d. Applying this
technique to spectra simulated with the Hydrolight radiative
transfer model allowed us to systematically examine the
effects of water column optical properties, bottom reflectance,

and water surface roughness. Key results from this analysis
include the following:

1. The spectrum can be divided into a scattering-dominated
regime at shorter wavelengths, which are thus sensitive
to suspended sediment concentration cs, and a longer-
wavelength regime dominated by pure water absorption,
which is more responsive to changes in depth.

2. The optical properties of the water column are primarily
accounted for by the numerator band, which is aligned
with reflectance peaks related to cs, while depth information
is provided by a longer-wavelength, absorption-dominated
denominator band.

3. The range of wavelengths yielding strong relations with
depth can be limited by the presence of spectrally distinctive
substrates, such as periphyton with chlorophyll absorption
features.

4. The effects of water surface roughness are minor relative
to those of cs and bottom reflectance, but radiance reflected
from the surface constitutes a large proportion of the total
for blue and NIR wavelengths and can thus limit the utility
of these bands for depth retrieval.

5. When cs, Rb(λ), and water surface state were varied simul-
taneously, the ratio of reflectances at 586 and 614 nm
was strongly related to depth (R2 = 0·945). Residuals were
generally unbiased with respect to these three factors but
depth was underpredicted in deeper water.

The complex interactions among depth, water column optical
properties, and bottom reflectance revealed by OBRA illustrate
the value of spectral information and imply that collecting
data from specific, fairly narrow ranges of wavelengths could
facilitate remote mapping of river bathymetry.

The analyses presented here were substantiated not only by
radiative transfer modelling but also by a large number of
field-based spectral measurements from a gravel-bed river in
Yellowstone National Park. Field spectra were collected from
above the water surface for both the natural streambed and a
low-albedo bottom reflectance control. These data indicate
that substrate spectral characteristics are fairly homogeneous
within our study area, which facilitates bathymetric mapping
by isolating the effect of depth on the bottom-reflected
radiance; this homogeneity is largely due to the ubiquitous
presence of periphyton during late summer. Comparison with
the black mat used as a control suggests that natural
substrates are relatively bright, supporting the assumption that
a significantly greater proportion of the at-sensor radiance is
reflected from the bottom than is scattered within the water
column. Application of the OBRA procedure to our field
data yielded X versus d relations with R2 values from 0·792
to 0·976, even for spectra collected under highly turbid
conditions (cs = 61 g m−3). The high predictive power of these
relationships demonstrates that ratio-based depth retrieval is
effective in a natural setting, validating previous modeling
work and implying that the assumptions leading to the
simplified band ratio expression (8) are reasonable. The
similarity of OBRA results derived from field spectra and
Hydrolight simulations further corroborates our modeling
efforts, although some notable differences were observed,
particularly in the NIR. Disparate OBRA results for individual
field datasets suggest that additional factors could influence
which bands are most useful for depth retrieval and might
affect bathymetric accuracy.

Although results from radiative transfer modelling and field
spectroscopy were encouraging, the utility of spectrally based
depth retrieval depends on how well this approach can be
applied to remotely sensed data. We examined the effects of
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spectral resolution by degrading our field spectra to mimic
hypothetical sensors with a range of band widths and real
multi- and hyper-spectral instruments. OBRA of convolved
spectra indicated that reduced spectral resolution did not
significantly decrease the predictive power of the optimal
band ratio and that the position of a sensor’s bands might be
more important than their widths. We also used hyperspectral
image data and ground-based depth measurements to
demonstrate that wavelengths identified via field spectroscopy
are useful for remote sensing of bathymetry (R2 = 0·747). An
image-derived depth map of the Lamar River exhibited
coherent, hydraulically reasonable spatial patterns, and
comparison with a subsequent topographic survey suggested
that depth estimates were of realistic magnitude. A separate X
versus d relation developed by extracting spectra directly
from the image achieved greater predictive power (R2 =
0·806) using a different pair of bands, but yielded negative
depth estimates along shallow channel margins. Inspection
of spectra from a transect across this image indicated that mixed
pixels along channel banks contaminated by vegetation and/
or gravel have higher red and NIR reflectances that translate
into large negative values of X and hence negative depth
estimates; this issue becomes more important as the ratio of
wetted channel width to image pixel size decreases.

Limitations of this kind will always be present and have
been discussed extensively elsewhere (e.g. Legleiter et al.,
2004: Marcus and Fonstad, 2008). Nevertheless, through a
combination of theoretical arguments, numerical modelling,
field spectroscopy, and image processing of remotely sensed
data, this study confirmed the potential for spectrally based
depth retrieval in shallow rivers. Whether this approach will
ultimately advance our understanding of fluvial systems is
another question, the answer to which depends on the ability
of remotely sensed data to satisfy the information requirements
of specific geomorphic investigations. Addressing this issue
will require careful consideration of the physical principles
that both enable and limit remote sensing of rivers.
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