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The utility of Enhanced Thematic Mapper Plus (ETM+) has been diminished since the
2003 scan-line corrector (SLC) failure. Uncorrected images have data gaps of approxi-
mately 22% and gap-filling schemes have been developed to improve their usability.
We present a method to classify a northeast Montana agricultural landscape using
ETM+ SLC-off imagery without gap-filling. We use multitemporal data analysis and
employ an object-oriented approach to define objects, agricultural fields, with cadastral
data. This approach was assessed by comparison to a pixel-based approach. Results
indicate that an ETM+ SLC-off image can be classified with better than 85% overall
accuracy without gap-filling.

Keywords: remote sensing; agriculture; classification; multitemporal; multispectral;
object-oriented; random forest; Enhanced Thematic Mapper Plus; Landsat

Introduction

The Landsat series of satellites have provided researchers with a 40+ year archive of
multispectral, moderate-resolution observations of the Earth. These observations comprise
the world’s longest continuously acquired collection and have been used by various
educational, governmental, and industrial organizations, both within the United States
and the international community (USGS 2012). Landsat-derived data are essential to
researchers in diverse fields such as land cover mapping (e.g., Fuller, Groom, and Jones
1994), ecosystem and vegetation dynamics (e.g., Savage and Lawrence 2010), biophysical
modeling (e.g., Cohen et al. 2003), and classification of urban landscapes (e.g., Lu and
Weng 2005).

The United States Geological Survey (USGS) ceased acquisition of Landsat 5
Thematic Mapper (TM) imagery in November 2011 after detecting a failing amplifier
in the satellite’s downlink (Clark 2011). The loss of Landsat 5 left Landsat 7 as the sole
operational Landsat satellite until May 2013 when Landsat 8 became operational.
Landsat 7 carries the Enhanced Thematic Mapper Plus (ETM+) sensor; however, its
scan-line corrector (SLC) failed permanently on 31 May 2003, leaving Landsat 7 with
degraded performance (Markham et al. 2004). The SLC compensates for the satellite’s
forward motion during the cross-track scanning of the ETM+ sensor, thereby keeping the
forward and reverse sweeps parallel to each other. The primary consequence of the SLC
failure is gaps in coverage that range from none at the center of a scene to 14 pixels at
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the scene’s lateral edges. In total, data gaps comprise approximately 22% of an image
(Markham et al. 2004). Images with these data gaps are known as SLC-off images,
whereas those acquired prior to the SLC failure are designated SLC-on images
(Arvidson et al. 2006). Data gaps are not identical for all spectral bands, and slight
shifts in the position of the gaps result in the occasional pixel with valid data for some
bands, but not others (Zhang 2007).

The radiometric performance and geometric characteristics of the ETM+ sensor have
not been affected by the SLC failure (Markham et al. 2004). Researchers have continued
to rely on SLC-off images, despite the availability of concurrent TM images, because of
the superior quality of the ETM+ sensor. Improvements in quality include enhanced
radiometric precision because of the addition of a two-gain state (low-gain and high-
gain) to optimize sensitivity without detector saturation. Other improvements include
better geodetic accuracy, reduced levels of spatial noise (e.g., banding and striping) due
to improved electronics and detector calibration, a more reliable radiometric calibration,
the addition of a panchromatic band, and substantial improvements in the spatial resolu-
tion of the thermal band (Masek et al. 2001). Research efforts that require Landsat
imagery from 2012 must use SLC-off imagery as there is no alternative. We emphasize
that complications arising from missing data are not restricted to ETM+ SLC-off imagery
and might occur in imagery from any sensor due to a variety of causes such as sensor
noise, clouds, or shadows. Consequently, recovering the missing data through various
gap-filling schemes has become an increasing important endeavor.

Gap-filling schemes can be divided into three general approaches: (1) direct predic-
tion of the missing data based on interpolation of the surrounding pixels; (2) predictions
based on multitemporal Landsat data; and (3) predictions based on data from other
sensors (Zeng, Shen, and Zhang 2013). Interpolation approaches attempt to infer
missing values by using the values from nearby pixels in conjunction with an empiri-
cally derived formula or by using a geostatistical interpolation scheme such as kriging
(Zhu, Liu, and Chen 2012). These approaches can improve the usability of SLC-off
imagery, but under restrictive conditions. Landscapes in which pixel values can poten-
tially change rapidly over a small distance, such as heterogeneous landscapes and
landscapes with small or linear features, are difficult to predict when using approaches
that rely on surrounding pixel values (Maxwell 2004; Zhu, Liu, and Chen 2012). Gap-
filling is most useful in homogeneous areas with little landscape structural changes
(Zeng, Shen, and Zhang 2013) or when the missing data represents small spatial gaps
(Pringle, Schmidt, and Muir 2009). It also is unclear if interpolation approaches based
on geostatistical methods meet the intrinsic stationarity assumption (Pringle, Schmidt,
and Muir 2009).

Missing values have also been filled with a multitemporal Landsat approach by using
an SLC-on image of the same area to fill the gaps in a SLC-off image (e.g., Storey et al.
2005; Maxwell, Schmidt, and Storey 2007); however, this method is unsuitable for
applications that require spectral data from closely spaced dates. A good example is the
classification of specific crops because dates more than 2 weeks apart might represent
different stages in phenological development. An alternative is a multi-sensor approach in
which data from a different sensor on the same, or nearly the same, day is used to predict
the missing data. The multi-sensor approach to filling ETM+ gaps has been partially
successful with a variety of auxiliary sensors. The Advanced Land Imager (ALI) aboard
the Earth Observer One (EO-1) satellite (Boloorani, Erasmi, and Kappas 2008), the
Moderate Resolution Imaging Spectroradiometer (MODIS) (Roy et al. 2008), the
Charge Coupled Device (CCD) camera aboard the China Brazil Earth Resources
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Satellite (CBERS-02B) (Chen, Tang, and Qiu 2010), and the Linear Imaging Self-
Scanning System aboard the Indian Remote Sensing Satellite (IRS/1D) (Reza and Ali
2008) have all been used. Nonetheless, concerns regarding spectral compatibility, spatial
resolution, clouds, and financial constraints remain (Zeng, Shen, and Zhang 2013).

Gap-filling approaches predict the missing values of individual pixels; however,
not all remote sensing tasks require pixel-level data. Classification algorithms, for
example, can operate on individual pixels (pixel-based classifiers) or on groups of
contiguous pixels (object-oriented (O-O) classifiers). Classification using an O-O
approach is most appropriate when the landscape consists of areas that can be deli-
neated into meaningful homogeneous regions, such as agricultural fields (e.g., Forster
et al. 2010). The O-O approach classifies at the object-level; the number of pixels in an
object is largely irrelevant if the object is reasonably homogeneous. An O-O approach
to classification, therefore, does not require estimation of the missing data in SLC-off
imagery provided there are a sufficient number of extant pixels in the objects (Turker
and Arikan 2005).

Classification of agricultural regions at the pixel level presents a challenge in that
monoculture fields are often classified as multiple classes. The Cropland Data Layer
(CDL), a geo-referenced, crop-specific data layer derived from a fusion of moderate-
resolution satellite imagery (USDA 2012), contains numerous examples. A number of
studies conclude that O-O approaches produce better results (e.g., Pedley and Curran
1991; Janssen and van Amsterdam 1996). There are several reasons why O-O methods
outperform pixel-based methods. A fundamental reason is that classification accuracy
decreases with increasing spectral variability (e.g., Ashish, McClendon, and Hoogenboom
2009). Variability is high in heterogeneous landscapes and lower in homogeneous land-
scapes, such as agricultural fields. One compelling reason supporting the O-O approach in
the classification of crops is that management decisions are generally made on a per-field
basis (Forster et al. 2010). The O-O approach can incorporate ancillary information such as
spatial relationships and management practices that, while not unique to the O-O approach,
can be advantageous. The use of agricultural field boundaries defines the spatial relation-
ship and identifies a particular object. Good results have resulted from merging images with
a suitable vector layer, such as cadastral data (e.g., Wu et al. 2007; Watts et al. 2009).

The use of multitemporal imagery to classify vegetation is well-documented and has
improved crop classification accuracies by 6–9% (e.g., El-Magd and Tanton 2003; Conrad
et al. 2011). The main advantage is that this approach uses images from different dates
within a single growing season to better capture the spectral diversity in crops due to
differences in phenological stages (Gómez-Casero et al. 2010). The data are fused into a
single classification scheme for the growing season. Multitemporal analysis is particularly
attractive in crop classification for several reasons: (1) the spectral characteristics of a crop
varies with phenological stage; (2) agricultural areas are spatially dynamic in that adjacent
fields might be in different phenological stages, thereby increasing heterogeneity; and (3)
criteria based on phenological stage have ecological significance and are easier to general-
ize and more robust than statistical criteria derived from a specific dataset (Simonneaux
et al. 2008). The use of multitemporal imagery raises obvious questions regarding quantity
and seasonal timing. Research suggests that classification accuracy increases with the
number of images and that images acquired at peak growth are more useful than those
from low-growth periods (Pax-Lenney and Woodcock 1997). Others have presented
similar findings (e.g., Oetter et al. 2000). Multitemporal classifications have produced
accuracies exceeding 84% (e.g., Pax-Lenney and Woodcock 1997; Wardlow, Egbert, and
Kastens 2007; Simonneaux et al. 2008; Gómez-Casero et al. 2010).
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Random forest (RF) is a tree-based ensemble method useful for classification when
there are many weak explanatory variables (Breiman 2001) and is well-established in the
remote sensing literature. RF classification is often superior to standard classification
approaches, performing well with large numbers of classes (e.g., Rodrigues-Galiano et al.
2012), with difficult to classify data (e.g., Lawrence, Wood, and Sheley 2006), and
routinely achieving classification accuracies well above 90% (e.g., Chapman et al.
2010). It generates an internal accuracy assessment that has been shown to be equivalent
to an independed accuracy assessment (assuming no bias in the data), thereby, eliminating
the need for separate validation data (Lawrence, Wood, and Sheley 2006). One of the
advantages of RF is that it is that it can accommodate high dimensional and redundant
data, negating the need to reduce the dimensionality of the data or to transform the data to
orthogonal components (Brieman 2001). This property permits, for example, the use of
NDVI as a predictor simultaneously with bands 3 and 4. RF has been used in agricultural
studies to classify agricultural practices (e.g., Watts et al. 2009), species-specific crop
discrimination (e.g., Adam et al. 2012; Chapman et al. 2010), and multi-seasonal land
cover classification (e.g., Rodrigues-Galiano et al. 2012).

We present here a method to classify a northeast Montana agricultural landscape into
the region’s dominant classes using SLC-off ETM+ imagery from the 2012 growing
season – without using gap-filling schemes. Crops in the cereal class (Cereal) are
familiar grain crops and include spring wheat (Triticum aestivum), durum wheat (T.
durum), and oat (Avena sativa). The pulse crops (Pulse) are leguminous annual crops
that include dry pea (Pisum sativum) and lentil (Lens culinaris). The other class (Other)
refers to agricultural land that is either in fallow or is growing something other than
cereal or pulse crops. This method is part of a larger project that seeks to investigate the
spatio-temporal patterns of adoption for cereal-pulse crop rotation in northeast Montana
during 1994–2012 using geospatial techniques. Two images, one from mid-season and
one from late-season, are used to capture phenological variations. We employ an O-O
approach and define objects, agricultural fields, with regional cadastral data. Spectral
data are extracted from the extant pixels in an object and used in a random forest
classification to identify the class of crop in a particular field. The usefulness of the O-O
approach was assessed by comparison to a pixel-based approach, each with a random
forest classifier.

Methods

Study area

The study area is in northeast Montana and includes the counties of Daniels, Sheridan,
and Roosevelt, and the eastern portion of Valley (Figure 1). The region is bounded by
Canada to the north, North Dakota to the east, the Missouri River to the south, and public
lands such as the Bitter Creek Wilderness Study Area along much of the western border.
The area is in the Missouri Plateau (glaciated) region of the Great Plains Physiographic
Province and is characterized by low relief. The climate is semi-arid with low humidity.
Average total annual precipitation is just over 31 cm, which is primarily rain during April
to September (WRCC 2012). Average daily maximum temperatures in July are 31°C,
while January temperatures average –10°C (WRCC 2012). Agriculture and shortgrass
prairie are the dominant land cover types. Agricultural practices in the study area are
primarily dry land cropping systems (Tanaka et al. 2010). Regional agriculture is largely
cereal crops, primarily spring wheat, and increasingly substantial acreages of pulse crops
(NASS 2012).
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Data acquisition

The study area required three Landsat scenes: Path 36, Row 26 (36/26); Path 36, Row 27
(36/27); and Path 35, Row 26 (35/26). Due to the positions of these three overlapping
scenes relative to the study region, data loss due to SLC-off gaps was estimated at 15%–
18%. SLC-off ETM+ images from the 2012 growing season were obtained from the
USGS’s Earth Resources Observation and Science Center (EROS) and were used to create
two mosaics. The mid-season mosaic combined scenes from 11 July and 18 July, whereas
the late-season mosaic used scenes from 12 August and 19 August. The disparity in dates
for the mosaics was because the study area required imagery from two adjacent paths;
thus, an 8-day difference. We chose these dates because they were the only usable images
from the 2012 growing season; images from the remaining dates had excessive cloud
coverage. All images from Path 36 were cloud-free, whereas the images from Path 35 had
occasional cumulus clouds obscuring small portions of the study area.

Ancillary vector data were also used: the Montana cadastral framework and the
Montana land cover framework. The cadastral framework is a continuously updated
geodatabase of private (taxable) and public (exempt) lands (MSL 2012). The cadastral
data are maintained by the Montana Department of Revenue and are available from the
Montana State Library (MSL) Geographic Information Services as a vector layer. The
land cover framework is a geodatabase that consists of land cover classes at three levels of
detail. The definitions of the land cover classes follow those in the National Land Cover
Database 2001 (NLCD2001) and the Northwest Regional Gap Analysis Project
(NWGAP) (MSL 2010). The land cover data are maintained by the Montana Natural
Heritage Program and are available from the MSL as a vector layer. We used the June
2012 version of the cadastral framework and the May 2010 version of the land cover
framework.

Roosevelt

SheridanDanielsValley

Fort peck reservation

Study area subset

0 50 10025
km

Figure 1. The study area is located in northeastern Montana and consists of four counties: Daniels,
Roosevelt, Sheridan, and Valley; it also encompasses the Fort Peck Reservation. The study area
subset is located in northwest Sheridan County.
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Ground reference data were collected from 525 randomly chosen sites within the study
area during July 2012. Sites were required to be agricultural in nature and viewable from
public rights-of-way. We recorded the appropriate class (Cereal, Pulse, or Other) for each
site (some producers in the area manage fields by alternating strips of a crop and fallow;
these fields were classified as the appropriate crop – cereal or pulse). Some reference sites
were not used because they: (1) were not accessible; (2) were not actually agriculture; (3)
were duplicate observations of the same land parcel; or (4) had clouds in both the mid-
season and the late-season mosaics. The final analysis used data from 434 of the ground
reference sites; 278 (64%) were Cereal, 70 (16%) were Other, and Pulse comprised 86
sites (20%). These percentages are similar to those reported by the National Agricultural
Statistics Service for the region (NASS 2012).

Image and vector data processing

All images were level-one terrain-corrected (L1T) products. Invalid pixels, caused by
slight shifts in the position of the data gaps per band, were removed by masking out
values less than 2. The mid-season mosaic was created in several steps. The two images
from Path 36 (36/26 and 36/27) were directly combined because they were from the same
day. This combined image is hereafter referred to as the “western” image. The third image
(35/26), hereafter the “eastern” image, could not be combined with the western image as it
was from 8 days earlier. We combined the eastern and western images as follows: (1)
cloud-free and shadow-free regions from the overlapping areas of both images were used
to derive a linear regression model with the western image as the reference; (2) the
coefficients from the regression model were used to normalize the eastern image to the
western image; (3) the western image and the normalized eastern image were combined
into a mosaic such that missing data pixels in the western image were automatically filled,
if available, by pixel values from the eastern image; (4) any remaining pixels in the final
mosaic with invalid data were masked out; and (5) the mosaic was clipped to agriculture-
only regions using the land cover vector data. The late-season mosaic was created using
the same procedure.

Small clouds and shadows were a persistent problem in both mosaics, primarily in the
southeastern corner of the study area. Clouds and shadows in each mosaic were classified
with a supervised algorithm and a binary (cloud/shadow or no cloud/shadow) mask
created from each mosaic. These binary masks were intersected to identify areas with
clouds or shadows in both mosaics and a final binary (clouds or shadows in both mosaics
or not) mask created. We used this final binary mask to eliminate pixels that had clouds or
shadows in both mosaics. Pixels with clouds or shadows in a single mosaic were not
removed as long as the corresponding pixels in the other mosaic were clear.

We sought a minimum field size of 16.2 ha (40 acres) to ensure that our analyses
focused on the region’s major producers – the median agricultural field in the study area is
approximately 64.7 ha (160 acres). The cadastral layer was consequently modified by
removing all land parcels less than 16.1 ha (39.8 acres) in area; this cutoff allowed for
small variations in minimum-sized fields. Finally, we examined the cadastral layer with
respect to SLC-off gaps. Some land parcels, particularly the smaller ones, were entirely in
a data gap, while others had only a portion of the parcel within a gap. We eliminated land
parcels with less than 40 pixels of data to obtain a large enough sample size from a field
that any statistical measures (e.g., mean spectral value of the blue band for the field)
would closely approximate the entire field. This resulted in 13,143 usable agricultural
fields in the study area.
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Image segmentation and data extraction

The O-O approach required aggregating the pixels into objects – agricultural fields in this
case. Both mosaics were segmented solely on the cadastral layer; land parcels were now
objects. Pixels without spectral data (the gaps) were defined as not valid. Finally, we
extracted the mean and standard deviation of each spectral band for each object using only
the valid pixels (e.g., if an object/field consisted of X pixels, of which Y pixels lacked data
because of data gaps, the mean and standard deviation was based on the X–Y valid
pixels). These values were exported to a spreadsheet for subsequent analysis. Data for the
pixel-based analysis were extracted from the mosaics using a shape file for each class as a
spatial filter and exported to a spreadsheet for analysis.

Classification

The default classification procedure used a RF classifier on multitemporal data for regions
of the study area that were free of clouds and shadows on both image dates. This was the
case for both the O-O and the pixel-based approach. Adjustments were necessary for areas
that were free of clouds or shadows only on a single date. We first describe the multi-
temporal procedure. RF models were developed from data extracted from the reference
fields from the mid- and late-season mosaics. The number of potential variables depended
on the approach. The multitemporal O-O approach had 45 potential variables: (1) the
mean value of each spectral band for each of the two dates (14 variables); (2) the standard
deviation of each spectral band for each date (14 variables); (3) the normalized difference
vegetation index (NDVI) for each date (2 variables); and (4) the date-wise change in all
variables, for example the difference between mid-season NDVI and late-season NDVI
(15 variables). Standard deviations are not applicable at the pixel-level. Consequently, a
separate RF model was developed for the multitemporal pixel-based approach. This model
used only 24 variables: (1) the mean value of each spectral band for each date (14 vari-
ables); (2) NDVI for each date (2 variables); and (3) the date-wise changes (8 variables).

Portions of the study area obscured by clouds or shadows on one date were classified with
RF models developed from the single clear image; areas obscured in the mid-season mosaic
used data from the late-season mosaic and vice versa. Consequently, the RF model for the
single-date O-O approach had 15 potential variables: 7 mean spectral values, 7 standard
deviations, and NDVI. The single-date pixel-based approach used only 8 variables: 7 mean
spectral values and NDVI. Summarizing, we developed a total of six RF models based on
approach and the status of clouds. We predicted class membership based on data from both
dates when possible; single-date classifications comprised less than 1.4% of the cases.

The data, regardless of approach or number of variables, were classified with a RF
model as cereal crops, pulse crops, or other. Adjustable parameters included the number of
trees, the number of variables to try at each split, and sample size for each class. We
developed RF models with 1000 trees, though error rates were asymptotic with substan-
tially fewer trees. Optimal values for the number of variables per split and class sample
sizes were found iteratively with the objective of minimizing the overall classification
error rate while maintaining approximately equal class error rates. We used the resultant
RF models to predict class membership for the entire study area. This gave predicted
classes for complete agricultural fields when using the O-O approach, despite data gaps in
the SLC-off imagery, whereas the pixel-based approach can only predict the portion with
extant data. Classification using the O-O approach produced vector-based maps, whereas
classification based on pixels yielded raster maps.
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We computed classification accuracy for all RF models via an error matrix (Congalton
and Green 2009). The RF algorithm uses a random subset of approximately two-thirds of
the data (sampling with replacement) to build multiple classification trees. The remaining
data, the out-of-bag (OOB) observations, are used to compute a classification accuracy for
each tree in the RF model, with the results from all trees combined to form the final OOB
accuracy assessment (Breiman 2001). Overall and class accuracies based on OOB esti-
mates have been shown to be reliable under the assumption that the reference data are
unbiased (Lawrence, Wood, and Sheley 2006). We guarded against bias by randomly
selecting our reference fields. Cohen’s kappa statistic (κ̂) was calculated for each model as
a measure of its predictive ability while accounting for correct classifications due to
chance agreement (e.g., Congalton and Green 2009). We also tested whether the differ-
ence in kappa statistics between the O-O approach and the pixel-based approach was
statistically significant. Finally, we extracted variable importance from each RF model to
identify which variables contributed most to decreasing the overall error rate.

Results

Object-oriented approach to classification

The multitemporal approach was able to classify the object-level data from SLC-off
ETM+ imagery, despite data gaps, and had an overall accuracy of 85.5% with a κ
statistic of 0.75 (Table 1). Producer’s accuracies (errors are due to omission) were

Table 1. Error matrices for object-oriented classifications.

Classified data

Reference data

Cereal Other Pulse User’s accuracya

Multitemporal
Cereal 187 4 8 94.0%
Other 21 54 5 67.5%
Pulse 7 5 59 81.9%
Producer’s accuracyb 87.0% 84.4% 81.9%
Overall accuracy 85.5%
Kappa 0.75

Mid-season only
Cereal 180 10 6 91.8%
Other 34 49 8 53.9%
Pulse 15 7 62 73.8%
Producer’s accuracyb 78.6% 74.2% 81.6%
Overall accuracy 78.4%
Kappa 0.63

Late-season only
Cereal 210 16 19 85.7%
Other 25 42 9 55.3%
Pulse 19 9 49 63.6%
Producer’s accuracyb 82.7% 62.7% 63.6%
Overall accuracy 75.6%
Kappa 0.55

Notes: aUser’s accuracy is measured with respect to errors of commission.
bUser’s accuracy is measured with respect to errors of omission.
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approximately equal for all classes, ranging from 81.9% to 87.0%. There was more
disparity in the user’s accuracies (errors are due to commission), which ranged from
67.5% for the Other class to 94.0% for the Cereal class. Confusion between Cereal and
Other accounted for slightly more than one-half of the errors, primarily where Cereal
fields were classified as Other.

Single-date classifications (which were applied to less than 1.4% of the study area) with
the mid-season data and the late-season data were less accurate than the multitemporal
classification. The mid-season model had an overall accuracy of 78.4% with a κ statistic of
0.63. Producer’s accuracies ranged from 74.2% to 81.6%, while user’s accuracies ranged
from 53.9% to 91.8%. The late-season data were slightly less accurate with overall accuracy
of 75.6% and a κ statistic of 0.55. Producer’s accuracies ranged from 62.7% to 82.6%, and
user’s accuracies ranged from 55.3% to 85.7%. Confusion between Cereal and Other
continued to represent the majority of errors. Testing the significance of the differences in
kappa statistics suggests that the multitemporal approach gives a statistically better classi-
fication (α = 0.05) than either of the single-date classifications (Table 3).

The variables that contributed most to decreasing the overall error rate differed
according to the specific RF model (Figure 2 and Table 4). We refer hereafter to the
following ETM+ spectral bands by band number: 1 = blue (0.45–0.515 μm), 2 = green
(0.525–0.605 μm), 3 = red (0.63–0.69 μm), 4 = near infrared (0.75–0.90 μm), 5 = middle
infrared (1.55–1.75 μm), 6 = thermal (10.4–12.5 μm), 7 = middle infrared (2.09–2.35
μm). The multitemporal O-O classification relied most on mid-season values from bands 2
and 4 for overall classification. Differences between mid-season and late-season values
were very important as 6 of the top 8 variables as ranked by importance were differenced
values, while standard deviation variables appeared only once among the top 8 variables.
The single-date O-O classifications, in contrast, did not have differenced variables avail-
able and relied primarily on mean spectral band values rather than the standard deviations.
NDVI and data from band 6 tended to be less important and were not among the top 8
most important variables.

The variables contributing the most to decreasing the error rate for specific classes
also varied according to model, as well as class. The most important variables in the O-O
multitemporal model (Table 4) for the Cereal and Pulse classes, as in the overall

Multi-temporal

3.0 3.5 4.0 4.5

Band 2 (M)

Band 4 (M)

Band 7 (D)

Band 4 (D)

Band 5 (D)

Band 4 (D) SD

Band 3 (D)

Band 2 (D)

Increase in accuracy (%)

Mid-season

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Band 2 (M)

Band 4 (M)

Band 5 (M)

Band 7 (M)

Band 4 (M) SD

Band 3 (M)

Band 1 (M)

Band 6 (M)

Increase in accuracy (%)

Late-season

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Band 7 (L)

Band 3 (L)

Band 1 (L)

Band 4 (L)

Band 5 (L)

Band 2 (L)

Band 4 (L) SD

Band 5 (L) SD

Increase in accuracy (%)

Figure 2. The top 8 variables in the O-O classification as ranked by order of importance. Band 1–7
refers to the appropriate ETM+ spectral band: 1 = blue (0.45–0.515 μm), 2 = green (0.525–0.605
μm), 3 = red (0.63–0.69 μm), 4 = near infrared (0.75–0.90 μm), 5 = middle infrared (1.55–1.75 μm),
6 = thermal (10.4–12.5 μm), 7 = middle infrared (2.09–2.35 μm). Parenthetical annotations
indicate the source: mid = values from the mid-season mosaic, late = values from the late-season
mosaic, D = differenced values. SD = standard deviation.
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classification, were bands 2 and 4. Discrimination between Cereal and Pulse was based, in
part, on differenced values from bands 2 and 7. The Other class relied most on differenced
values from bands 5 and 7, while contributions from the mid-season band 2 dropped
substantially in importance.

The most important variables for overall accuracy of the mid-season O-O classifica-
tion (Table 5) were bands 2, 4, 5, and 7. The same variables contributed the most to
classifying the Cereal and the Other classes, but with slight changes in order. The most
important variables for the Pulse class were bands 2 and 4, while the standard deviation of
bands 3 and 4 were ranked higher than in either of the other classes or in the overall
classification. In contrast, none of the late-season O-O classifications (Table 6) were
especially dependent on bands 2 and 4. The most important variables in the late-season
classifications were instead bands 1, 3, and 7. These were the top three variables for the
overall classification and each class with the exception of Pulse, in which band 3 was of
lesser importance and band 1 was not among the top 8 variables.

Pixel-based approach to classification

The multitemporal approach was able to classify the pixel-level data, except where data
were missing due to SLC-off issues, and had an overall accuracy of 89.4% with a κ
statistic of 0.81 (Table 2). These accuracies were approximately 5% higher than the
corresponding O-O models. Producer’s accuracies were nearly equal for all classes,

Table 2. Error matrices for pixel-based classifications.

Classified data

Reference data

Cereal Other Pulse User’s accuracya

Multitemporal
Cereal 206615 5286 5183 95.2%
Other 16257 57308 3171 74.7%
Pulse 7540 1267 63232 87.8%
Producer’s accuracyb 89.7% 89.7% 88.3%
Overall Accuracy 89.4%
Kappa 0.81

Mid-season only
Cereal 193927 7348 9183 92.2%
Other 22991 54114 3877 66.8
Pulse 13494 2399 58526 78.6
Producer’s accuracyb 84.2% 84.7% 81.8%
Overall accuracy 83.8%
Kappa 0.71

Late-season only
Cereal 188841 7090 8745 92.3%
Other 20317 52609 5473 67.1%
Pulse 21254 4162 57368 69.3%
Producer’s accuracyb 82.0% 82.4% 80.1%
Overall accuracy 81.7%
Kappa 0.68

Notes: aUser’s accuracy is measured with respect to errors of commission.
bUser’s accuracy is measured with respect to errors of omission.
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ranging from 88.3% to 89.7%; the user’s accuracies ranged from 74.7% to 95.2%.
Confusion between Cereal and Other, as found in models using the object-level data,
comprised over one-half of the errors.

Single-date classifications with the mid-season and late-season data were less accurate
than the multitemporal classification, the same pattern found with the O-O data. The mid-
seasonmodel had an overall accuracy of 83.8%with a κ statistic of 0.71. Producer’s accuracies
ranged from 81.8% to 84.7%, and user’s accuracies ranged from 66.8% to 92.2%. The late-
seasonmodel had an overall accuracy of 81.7% and a κ statistic of 0.68, slightly lower than the
mid-season model. Producer’s and user’s accuracies were similar to mid-season values with
the exception that the user’s accuracy for Pulse was substantially lower in the late-season
model than in the mid-season model. Confusion between Cereal and Other comprised the
majority of errors. The pixel-based multitemporal approach produced a statistically better
classification (α = 0.05) than either of the single-date classifications, and the pixel-based
approaches produced statistically better classifications than corresponding O-O approaches
(Table 3).

The most important variables (Figure 3 and Table 4) for the overall accuracy of the
pixel-based classifications differed by model, and were generally not the same variables
important in the O-O classifications. Pixel-based multitemporal classifications relied most
on values from bands 4 and 6. This is in direct contrast to the O-O classifications in which

Table 3. Tests for statistically significant differences between kappa statistics.

Models compareda Test statistic (Z) p-value

O-O multitemporal vs. O-O mid-season 2.43 <0.01
O-O multitemporal vs. O-O late-season 4.00 <0.01
Pixel-based multitemporal vs. Pixel-based mid-season 68.79 <0.01
Pixel-based multitemporal vs. Pixel-based late-season 91.04 <0.01
O-O multitemporal vs. Pixel-based multitemporal 1.83 0.03
O-O mid-season vs. Pixel-based mid-season 2.21 0.01
O-O late-season vs. Pixel-based late-season 3.36 <0.01

Note: aThe models in bold are those with the larger kappa statistic.

Multi-temporal

0.0508 0.0512 0.0516 0.0520

Band 6 (M)

Band 6 (D)

Band 6 (L)

NDVI (L)

Band 4 (L)

Band 4 (D)

Band 7 (M)

Band 7 (D)

Increase in accuracy (%)

Mid-season

0.0526 0.0528 0.0530

Band 4 (M)

Band 6 (M)

Band 2 (M)

Band 5 (M)

Band 7 (M)

Band 1 (M)

Band 3 (M)

NDVI (M)

Increase in accuracy (%)

Late-season

0.0520 0.0525 0.0530

Band 6 (L)

Band 7 (L)

Band 5 (L)

Band 3 (L)

Band 1 (L)

NDVI (L)

Band 4 (L)

Band 2 (L)

Increase in accuracy (%)

Figure 3. The top 8 variables in the pixel-based classification as ranked by order of importance.
Band 1–7 refers to the appropriate ETM+ spectral band: 1 = blue (0.45–0.515 μm), 2 = green
(0.525–0.605 μm), 3 = red (0.63–0.69 μm), 4 = near infrared (0.75–0.90 μm), 5 = middle infrared
(1.55–1.75 μm), 6 = thermal (10.4–12.5 μm), 7 = middle infrared (2.09–2.35 μm). Parenthetical
annotations indicate the source: mid = values from the mid-season mosaic, late = values from the
late-season mosaic, D = differenced values. SD = standard deviation.
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band 6 was much less important. Differenced values were less important than they were in
the O-O approach, only 2 of the top 8 variables ranked by importance were differenced
values. Pixel-based single-date classifications, with only 8 potential variables, relied
primarily on the spectral band values, while NDVI ranked low in importance.

Variable importance was also class-dependent. In the pixel-based multitemporal clas-
sification (Table 5), contributions from the mid-season, late-season, and differenced
values of band 6 remained strong for all classes. They accounted for 3 of the top 4
variables for all but the Pulse class, in which bands 4 and 7 were substantially more
important. Mid-season band 4 values were especially useful for distinguishing the Other
class, while band 4 differenced values were most important for the Pulse class.

Table 4. The top 8 variables for multitemporal classification as ranked by importancea.

O-O multitemporal Pixel-based multitemporal

Rank Overall Cereal Other Pulse Overall Cereal Other Pulse

1 B2 (M) B2 (M) B7 (D) B2 (M) B6 (M) B6 (M) B4 (M) B4 (D)
2 B4 (M) B4 (M) B5 (D) B4 (M) B6 (L) B6 (L) B6 (L) B7 (D)
3 B7 (D) B4 (D) B4 (M) B7 (D) B6 (D) B6 (D) B6 (D) B6 (M)
4 B4 (D) B2 (D) B3 (D) B4 (D) B4 (L) B2 (M) B6 (M) B6 (L)
5 B5 (D) B7 (L) B4 (D) SD B7 (L) NDVI (L) B4 (L) B4 (D) B7 (M)
6 B4 (D) SD B1 (M) NDVI (D) B4 (D) SD B4 (D) NDVI (L) B7 (D) B6 (D)
7 B3 (D) B5 (D) B4 (D) B2 (D) B7 (M) B4 (M) B7 (L) B7 (L)
8 B2 (D) B5 (L) B1 (D) B5 (L) B4 (M) B4 (D) B5 (M) B4 (L)

Notes: aB1–7 refers to the appropriate ETM+ spectral band: 1 = blue (0.45–0.515 μm), 2 = green (0.525–0.605
μm), 3 = red (0.63–0.69 μm), 4 = near infrared (0.75–0.90 μm), 5 = middle infrared (1.55–1.75 μm), 6 =
thermal (10.4–12.5 μm), 7 = middle infrared (2.09–2.35 μm). Parenthetical annotations indicate the source:
M = values from the mid-season, L = values from the late-season mosaic, D = differenced values. SD =
standard deviation.

Table 5. The top 8 variables for mid-season classification as ranked by importancea.

O-O mid-season Pixel-based mid-season

Rank Overall Cereal Other Pulse Overall Cereal Other Pulse

1 B2 (M) B2 (M) B4 (M) B4 (M) B4 (M) B2 (M) B6 (M) B4 (M)
2 B4 (M) B5 (M) B7 (M) B2 (M) B2 (M) B6 (M) B4 (M) B2 (M)
3 B5 (M) B7 (M) B5 (M) B4 (M)

SD
B6 (M) B4 (M) B7 (M) B6 (M)

4 B7 (M) B4 (M) B2 (M) B3 (M) B5 (M) B5 (M) B2 (M) B5 (M)
5 B4 (M) SD B3 (M) B1 (M) B3 (M)

SD
B7 (M) B7 (M) B3 (M) B1 (M)

6 B3 (M) B1 (M) B4 (M)
SD

B7 (M) B1 (M) NDVI
(M)

B1 (M) B3 (M)

7 B1 (M) B4 (M)
SD

B7 (M)
SD

NDVI
(M)

NDVI
(M)

B1 (M) NDVI
(M)

B7 (M)

8 B3 (M) SD B6 (M) NDVI
(M)

B5 (M) B3 (M) B3 (M) B5 (M) NDVI
(M)

Notes: aB1–7 refers to the appropriate ETM+ spectral band: 1 = blue (0.45–0.515 μm), 2 = green (0.525–0.605
μm), 3 = red (0.63–0.69 μm), 4 = near infrared (0.75–0.90 μm), 5 = middle infrared (1.55–1.75 μm), 6 = thermal
(10.4–12.5 μm), 7 = middle infrared (2.09–2.35 μm). Parenthetical annotations indicate the source: M = values
from the mid-season, L = values from the late-season mosaic, D = differenced values. SD = standard deviation.
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The most important variables for the overall accuracy of the pixel-based mid-season
classification (Table 5) were bands 2, 4, 5, and 6; results similar to the O-O classifications.
These bands were the top 4 variables for all but the Other class, in which band 7 was more
important and band 5 decidedly less so. The most important variable for overall accuracy
of the pixel-based late-season classification (Table 6) was band 6; this was the case for all
classes as well. Bands 1 and 7 provided the distinctions between classes. Band 1 was of
high importance for the Cereal class, intermediate for Other, and low for Pulse; band 7
showed the opposite pattern.

A comparison of the predicted maps with respect to the spatial distribution of the
classes would provide a means to assess methodology independent of statistical measures.
This comparison, however, requires knowledge of the true spatial distribution, which is
not known. Nonetheless, a qualitative assessment was made by conferring with agricul-
tural researchers active in the region (Personal communication with J. Long in June 2012
[Miller 2012]). We found that our predicted maps, both the object-level and the pixel-
level, conformed well to the spatial distribution of the classes in the study area; pulse
crops were predominant in Sheridan County while non-pulse or cereal crops tended to be
located near the Missouri River.

Discussion

Data gaps in ETM+ imagery have prompted a variety of approaches to fill the gaps
with data interpolated from nearby pixels or to fill the gaps with data derived from a
different date or a different sensor. Single-date images in which gaps are filled with
data from a different date or sensor are unsatisfactory in crop mapping, which requires
spectral data from the same or nearly the same day. Furthermore, interpolation schemes
encounter predictive difficulties in heterogeneous landscapes or landscapes linear
features (e.g., Maxwell 2004). Agricultural landscapes are often considered homoge-
neous, but this is a within-field condition. These landscapes can be heterogeneous at

Table 6. The top 8 variables for late-season classification as ranked by importancea.

O-O late-season Pixel-based late-season

Rank Overall Cereal Other Pulse Overall Cereal Other Pulse

1 B7 (L) B7 (L) B3 (L) B7 (L) B6 (L) B6 (L) B6 (L) B6 (L)
2 B3 (L) B1 (L) B7 (L) B4 (L)

SD
B7 (L) B1 (L) B3 (L) B7 (L)

3 B1 (L) B3 (L) B1 (L) B5 (L) B1 (L) B5 (L) B1 (L) B5 (L)
4 B4 (L) B4 (L) NDVI (L) B3 (L) B5 (L) B3 (L) B4 (L) B3 (L)
5 B5 (L) B5 (L) B4 (L) B4 (L) B3 (L) NDVI

(L)
B7 (L) B4 (L)

6 B2 (L) B2 (L) B7 (L)
SD

B7 (L)
SD

NDVI (L) B4 (L) B5 (L) NDVI
(L)

7 B4 (L) SD B4 (L)
SD

B2 (L) B4 (L)
SD

B4 (L) B7 (L) NDVI
(L)

B1(L)

8 B7 (L) SD B6 (L) B6 (L)
SD

B2 (L) B2 (L) B2 (L) B2 (L) B2 (L)

Notes: aB1–7 refers to the appropriate ETM+ spectral band: 1 = blue (0.45–0.515 μm), 2 = green (0.525–0.605
μm), 3 = red (0.63–0.69 μm), 4 = near infrared (0.75–0.90 μm), 5 = middle infrared (1.55–1.75 μm), 6 = thermal
(10.4–12.5 μm), 7 = middle infrared (2.09–2.35 μm). Parenthetical annotations indicate the source: M = values
from the mid-season, L = values from the late-season mosaic, D = differenced values. SD = standard deviation.
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field boundaries in which sharp changes in spectral characteristics might exist; for
example, the border between adjoining wheat and fallow fields. Furthermore, linear
features are characteristic features in agricultural landscapes. Gap-filling schemes,
therefore, are unsuitable for crop mapping.

A number of studies have suggested that O-O approaches yield better classifica-
tion accuracies for crops than classifications using traditional pixel-based approaches
(e.g., Pedley and Curran 1991). Results from this study, however, indicate that
models from the pixel-based approach produced overall classifications that were
generally 5% better than equivalent models using the O-O approach. These differ-
ences in accuracy are significant at the 95% confidence level. We note that
there was a considerable difference in the sample size of the training data between
the O-O and the pixel-based approaches; 182 fields versus 15,000 pixels. The better
classification accuracies of the pixel-based approach are obviated, however, by the
inability to classify data gaps, potential errors in spatial pattern, location of field
boundaries, and area.

A pixel-based model only classifies the extant pixels in an image, limiting its useful-
ness in a spatial context with ETM+ SLC-off imagery or in other cases where data is
missing at the sub-field scale, despite higher accuracies. This was evident when we
examined results at the field level (Figure 4). The classification based on object-level
data is easily interpretable and the field boundaries are clear – even for fields in which
data gaps obscure the boundaries. The O-O approach assumes that crop management
decisions are made on a per-field basis. This is generally the case, yet some producer’s in
the study area continue to manage fields by strip cropping (typically alternating strips of

Figure 4. The study area subset is located in northwest Daniels County. The top-left portion of the
figure is the subset as classified with the object-level data, while the bottom-left is the same area
classified with pixel-level data. Locations A, B, and C are discussed in the text.
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cereal and fallow). Fields managed by strip cropping include two classes, yet receive only
one classification. This is an obvious disadvantage to the O-O approach; however, the
number of fields managed by strip-cropping in the study area is quite small and was
estimated at less than 4% of the productive agricultural land. We found no difference in
the error rates of strip-cropped fields and monoculture fields. The classification based on
the pixel-level data, in contrast, was distinctly different. Data gaps are obvious, and there
are numerous fields with mixed classes in both the interior (e.g., fields A, B, and C in
Figure 4) and along field boundaries (e.g., the southern and eastern boundaries of field B).
Furthermore, the locations of many field boundaries are unknown. This is the case when
the boundary is in a data gap and when adjoining fields are the same class (e.g., the
western boundary of field C). Classification of the pixel-level data identified fields
managed by strip-cropping very well; however, if the goal is to identify the crop growing
in a field regardless of fallow or sparsely vegetated areas, as was the case for our study,
the pixel-level data essentially failed in fallow areas of strip cropped fields to reflect the
crops growing in those fields.

A logical consideration is to use the cadastral layer in a post-classification process,
thereby capitalizing on the advantages of both approaches. This is certainly a viable
option, but incorporating the cadastral layer post-classification does not allow object-level
variables to be used in the classification process itself. Object-level variables, such as
various shape attributes or relationships of the object to super- and sub-objects, can
improve the reliability of classification if they are included a priori (Turker and Arikan
2005). We used the standard deviation of the spectral bands for each field as a measure of
variability in the O-O approach.

Multitemporal models are reported to produce better classification accuracies than
single-date models, because they can capture spectral diversity due to phenological
differences. We reached the same conclusion. The overall accuracies from the analysis
of the multitemporal data were higher than accuracies from the single-date data and were
significant at the 95% confidence level. This conclusion is robust with respect to
approach, O-O or pixel-based.

The largest source of errors is confusion between the Cereal and the Other classes.
This is not surprising given the nature of these classes. As discussed earlier, discriminat-
ing between Cereal and Other was a challenging task. This was partially because each
class in the study comprised several different crops and, therefore, had higher class
variability than would have been expected in a class consisting of a single crop.
Furthermore, the Cereal and Other classes had considerable overlap in spectral character-
istics as some of the crops in the Other class are quite similar to the Cereal crops. Two
notable examples are hay and fields in the Conservation Reserve Program (CRP) that have
largely reverted to shortgrass prairie. We also note that much of the confusion between the
Pulse and Other classes is likely due to similarities between alfalfa (Other), which is a
member of the pea family, and peas (Pulse). Nonetheless, the RF classifier was largely
successful by creating multiple paths, via differing variable choices, to the same class. For
example, the spectral characteristics of an object consisting of mid-season wheat, late-
season wheat, and wheat in a strip-cropped field are very different, but the random forest
algorithm creates multiple paths to the correct classification.

Variable importance measures from a RF model are instructive, but a strict interpreta-
tion of those measures is not feasible and results should be considered speculative as
currently available measures of variable importance have been shown to be problematic
(Strobl and Zeileis 2008). Variable importance is not a particular focus of this paper;
nonetheless, we present a brief discussion.
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The usefulness of phenological differences, derived from multitemporal data, for crop
classification is suggested by noting that in the multitemporal O-O model, 6 of the top 8
most important variables were differenced values. Only 2 of the top 8 variables are
differenced values with the pixel-level data. Object-level data are based on a field’s
mean spectral values, which tends to smooth local (pixel-level) variations.
Consequently, differenced values are more meaningful for fields than for individual
pixels. The multitemporal model also relied heavily on mid-season variables, particularly
bands 2 and 4, whereas only two of the late-season variables, bands 5 and 7, were
important. Bands 2 and 4 are highly characteristic of green vegetation and the importance
of these bands from the mid-season, when crops are close to maturity but are likely
maturing at different rates, is reasonable. Bands 5 and 7 are associated with the amount of
water in vegetation and the importance of these bands from the late-season, when crops
are potentially water stressed, senescent, or have already been harvested, but again at
phenologically different times, is likewise reasonable. Standard deviations of the spectral
bands, applicable only to the object-level data, were infrequently among the most
important variables, regardless of model or class. Standard deviation captures within-
field variability, and to some extent texture. The lack of importance in classification for
standard deviation suggests minimal differences in variability among classes.

The reliance of the mid-season O-O classification on bands 2, 4, 5, and 7 suggests
that there are some key differences in crops that are not based on phenology (reflected
only in multitemporal data) but on the crop themselves. These include differences in: (1)
greenness (band 2); (2) leaf structure (band 4); and (3) the amount of plant-held water
(bands 5 and 7). The Pulse class, for example, is distinguished by high importance for
bands 2 and 4, while bands 5 and 7 are relatively low in importance. In contrast, these
bands are the top four most important variables in classifying the Cereals and Other
classes. Accordingly, plant-held water is an essential variable in separating the Cereal
and Other classes from the Pulse class. We note that the importance of bands 5 and 7 for
this particular separation does not necessarily imply that the Cereal and the Other classes
have high amounts of plant-held water, only that the amounts differ in some important
way. It is possible, and more likely, that the Pulse class has greater amounts of plant-
held water. Bands 2, 4, 5, and 7 remained important for late-season O-O classification,
in different relative orders, but bands 1 and 3 were of higher importance. The impor-
tance of band 1 is likely associated with harvesting (which does not typically occur for
the Other class) since band 1 is associated with soil reflectance. Band 3 is crucial to
distinguishing between green vegetation and senescent (or yellow) vegetation; mature
cereal crops are yellow.

Patterns in variable importance for the pixel-based classification were generally
similar to those found in the O-O classification. There was one key difference; band 6,
unimportant with the object-level data, was important at the pixel-level. There were
substantial differences among the classes with respect to mid-season band 6 values,
suggesting different thermal characteristics among the classes at this time of the year.

The RF classifier is well-known and generally found to be superior to standard
classification approaches (e.g., Lawrence, Wood, and Sheley 2006). The method per-
formed well in this study and was able to classify the object-level data as well as pixel-
level data with acceptable accuracies. One of the advantages of RF models is their ability
to handle large datasets and missing values (Breiman 1996). We used RF to classify nearly
23 million pixels with 24 explanatory variables, and 13,143 fields using 45 variables;
neither presented difficulties. The ability of RF to determine variable importance is
beneficial, but not unique to RF. Variable importance facilitates an understanding of
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which variables contribute the most to classification; but, current measures are proble-
matic and results are speculative.

We sought a method to classify a northeast Montana agricultural landscape into the
region’s dominant classes: cereal crops, pulse crops, and other, using SLC-off ETM+
imagery – without using gap-filling schemes. Although the pixel-based approach gave
higher overall classification accuracies than the O-O approach, it was unable to classify
areas within data gaps and produced fields with mixed classifications. The O-O approach,
in contrast, enabled the classification of fields partially located within data gaps; we were,
of course, unable to classify fields completely within data gaps. The multitemporal
approach encapsulated class-wise phenological variations and provided a statistically
significant contribution to overall classification accuracies. RF modeling produced accep-
table overall classification accuracies with approximately equal class error rates.

We did not investigate the minimum number of pixels required to classify an object.
We used a minimum of 40 pixels under the supposition that this sample size was
sufficiently large, according to the Law of Large Numbers (LLN), to obtain representative
means and standard deviations. Research concerning the minimum number of pixels
required to classify an object would be an appropriate next step.

Acknowledgments
This article is based upon work supported by the U.S. Department of Energy and the National
Energy Technology Laboratory under Award Number DE-FC26-05NT42587. This report was
prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof. We thank the anonymous reviewers for the thorough and
thoughtful comments.

References
Adam, E. M., O. Mutanga, D. Rugege, and R. Ismail. 2012. “Discriminating the Papyrus Vegetation

(Cyperus papyrus L.) and its Co-Existent Species using Random Forest and Hyperspectral Data
Resampled to HYMAP.” International Journal of Remote Sensing 33 (2): 552–569.

Arvidson, T., S. Goward, J. Gasch, and D. Williams. 2006. “Landsat 7 Long-Term Acquisition Plan:
Development and Validation.” Photogrammetric Engineering and Remote Sensing 72 (10):
1137–1146.

Ashish, D., R. W. McClendon, and G. Hoogenboom. 2009. “Land-Use Classification of
Multispectral Aerial Images Using Artificial Neural Networks.” International Journal of
Remote Sensing 30 (8): 1989–2004.

Boloorani, A. D., S. Erasmi, and M. Kappas. 2008. “Multi-Source Image Reconstruction:
Exploitation of EO-1/ALI in Landsat 7/ETM+ SLC-Off Gap Filling.” In Proceedings of
SPIE-IS&T: Image Processing: Algorithms and Systems VI, edited by J. T. Astola, K. O
Egiazarian, and E. R. Dougherty, March 31, 6812: 681219-1–681219-12. Bellingham, WA:
SPIE Press.

Breiman, L. 1996. “Bagging Predictors.” Machine Learning 24: 123–140.
Breiman, L. 2001. “Random Forests.” Machine Learning 45: 5–32.

434 J.A. Long et al.

D
ow

nl
oa

de
d 

by
 [

M
on

ta
na

 S
ta

te
 U

ni
ve

rs
ity

 B
oz

em
an

],
 [

Jo
hn

 A
. L

on
g]

 a
t 1

5:
04

 2
5 

A
ug

us
t 2

01
3 



Chapman, D. S., A. Bonn, W. E. Kunin, and S. J. Cornell. 2010. “Random Forest Characterization
of Upland Vegetation and Management Burning from Aerial Imagery.” Journal of
Biogeography 37: 37–46.

Chen, F., L. Tang, and Q. Qiu. 2010. “Exploitation of CBERS-02B as Auxiliary Data in Recovering
the Landsat 7 ETM+ SLC-Off Image.” In Proceedings of the 18th International Conference on
Geoinformatics, edited by Y. Liu, and A. Chen, Piscataway, NJ, June 18–20, 6 pp. Beijing:
Institute of Electical and Electronics Engineers.

Clark, S. 2011. “Veteran Landsat 5 Satellite on the Brink of Failure.” Accessed February 20, 2012.
http://www.spaceflightnow.com/news/n1111/18landsat5/

Cohen, W. B., T. K. Maiersperger, S. T. Gower, and D. P. Turner. 2003. “An Improved Strategy for
Regression of Biophysical Variables and Landsat ETM+ Data.” Remote Sensing of Environment
84: 561–571.

Congalton, R. G., and K. Green. 2009. Assessing the Accuracy of Remotely Sensed Data: Principles
and Practices. 2nd ed. Boca Raton, FL: CRC Press.

Conrad, C., R. R. Colditz, S. Dech, D. Klein, and P. L. G. Vlek. 2011. “Temporal Segmentation of
MODIS Time Series for Improving Crop Classification in Central Asian Irrigation Systems.”
International Journal of Remote Sensing 32 (23): 8763–8778.

El-Magd, I. A., and T. W. Tanton. 2003. “Improvements in Land Use Mapping for Irrigated
Agriculture from Satellite Sensor Data Using a Multi-Stage Maximum Likelihood
Classification.” International Journal of Remote Sensing 24 (21): 4197–4206.

Forster, D., T. W. Kellenberger, Y. Buehler, and B. Lennartz. 2010. “Mapping Diversified Peri-
Urban Agriculture – Potential of Object-Based Versus Per-Field Land Cover/Land Use
Classification.” Geocarto International 25 (3): 171–186.

Fuller, R. M., G. B. Groom, and A. R. Jones. 1994. “The Land-Cover Map of Great-Britain – An
automated Classification of Landsat Thematic Mapper data.” Photogrammetric Engineering and
Remote Sensing 60: 553–562.

Gómez-Casero, M. T., I. L. Castillejo-González, A. García-Ferrer, J. M. Peña-Barragán, M. Jurado-
Expósito, L. Garciá-Torres, and F. López-Granados. 2010. “Spectral Discrimination of Wild Oat
and Canary Grass in Wheat Fields for Less Herbicide Application.” Agronomy for Sustainable
Development 30: 689–699.

Janssen, L. L. F., and J. D. van Amsterdam. 1996. “An Object-Based Approach to the Classification
of Remotely Sensed Images.” In Proceedings of the International Geoscience and Remote
Sensing Symposium (IGARSS ‘91), edited by J. Putkonen, 2192–2195. New York: IEEE.

Lawrence, R. L., S. D. Wood, and R. L. Sheley. 2006. “Mapping Invasive Plants Using
Hyperspectral Imagery and Breiman Cutler Classifications (RandomForest).” Remote Sensing
of Environment 100: 356–362.

Lu, D., and Q. Weng. 2005. “Urban Classification Using Full Spectral Information of Landsat ETM
+ Imagery in Marion County, Indiana.” Photogrammetric Engineering and Remote Sensing 71
(11): 1275–1284.

Markham, B. L., J. C. Storey, D. L. Williams, and J. R. Irons. 2004. “Landsat Sensor Performance:
History and Current Status.” IEEE Transactions on Geoscience and Remote Sensing 42 (12):
2691–2694.

Masek, J. G., M. Honzak, S. N. Goward, P. Liu, and E. Pak. 2001. “Landsat ETM+ as an
Observatory for Land Cover: Initial Radiometric and Geometric Comparisons with Landsat 5
Thematic Mapper.” Remote Sensing of Environment 78: 118–130.

Maxwell, S. 2004. “Filling Landsat ETM+ SLC-Off Gaps Using a Segmentation Model Approach.”
Photogrammetric Engineering and Remote Sensing 70 (10): 1109–1111.

Maxwell, S. K., G. L. Schmidt, and J. S. Storey. 2007. “A Multi-Scale Segmentation Approach to
Filling Gaps in Landsat ETM+ SLC-Off Images.” International Journal of Remote Sensing 28
(10): 5339–5356.

MSL (Montana State Library). 2012. “Montana Geographic Information Clearinghouse.” Accessed
October 12, 2011. http://nris.mt.gov/gis/default.asp

NASS (National Agricultural Statistics Service). 2012. Montana Agricultural Statistics, Volume
XLIX. Washington, DC: United States Department of Agriculture.

Oetter, D. R., W. B. Cohen, M. Berterretche, T. K. Maiersperger, and R. E. Kennedy. 2000. “Land
Cover Mapping in an Agricultural Setting using Multi-Seasonal Thematic Mapper data.”
Remote Sensing of Environment 76 (2): 139–155.

GIScience & Remote Sensing 435

D
ow

nl
oa

de
d 

by
 [

M
on

ta
na

 S
ta

te
 U

ni
ve

rs
ity

 B
oz

em
an

],
 [

Jo
hn

 A
. L

on
g]

 a
t 1

5:
04

 2
5 

A
ug

us
t 2

01
3 

http://www.spaceflightnow.com/news/n1111/18landsat5/
http://nris.mt.gov/gis/default.asp


Pax-Lenney, M., and C. E. Woodcock. 1997. “Monitoring Agricultural Lands in Egypt with
Multitemporal Landsat TM Imagery: How many Images are Needed?” Remote Sensing of
Environment 59: 522–529.

Pedley, M. I., and P. J. Curran. 1991. “Per-Field Classification: An Example Using SPOT HRV
Imagery.” International Journal of Remote Sensing 12 (11): 2182–2192.

Pringle, M. J., M. Schmidt, and J. S. Muir. 2009. “Geostatistical Interpolation of SLC-Off Landsat
ETM+ Images.” ISPRS Journal of Photogrammetry and Remote Sensing 64: 654–664.

Reza, M. M., and S. N. Ali. 2008. “Using IRS Products to Recover 7ETM+ Defective Images.”
American Journal of Applied Sciences 5: 618–625.

Rodriguez-Galiano, V. F., B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez. 2012.
“An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover
Classification.” ISPRS Journal of Photogrammetry and Remote Sensing 67: 93–104.

Roy, D. P., J. Ju, P. Lewis, C. Schaaf, F. Gao, M. Hansen, and E. Lindquist. 2008. “Multitemporal
MODIS-Landsat Data Fusion for Relative Radiometric Normalization, Gap Filling, and
Prediction of Landsat Data.” Remote Sensing of Environment 112: 3112–3130.

Savage, S. L., and R. L. Lawrence. 2010. “Vegetation Dynamics in Yellowstone’s Northern Range:
1885–1999.” Photogrammetric Engineering and Remote Sensing 76 (5): 547–556.

Simonneaux, V., B. Duchemin, D. Helson, S. Er-Raki, A. Olioso, and A. G. Chehbouni. 2008. “The
Use of High-Resolution Image Time Series for Crop Classification and Evapotranspiration
Estimate over an Irrigated Area in Central Morocco.” International Journal of Remote
Sensing 29 (1): 95–116.

Storey, J., P. Scaramuzza, G. Schmidt, and J. Barsi. 2005. “Landsat 7 Scan Line Corrector-Off Gap-
Filled Product Development.” In ASPRS 2005 – Pecora 16 Conference Proceedings. Sioux
Falls, SD: American Society of Photogrammetry and Remote Sensing.

Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn. 2007. “Bias in Random Forest Variable
Importance Measures: Illustrations, Sources and a Solution.” BMC Bioinformatics 8: 25.

Strobl, C., and A. Zeileis. 2008. “Danger: High power! – Exploring the Statistical Properties of a
Test for Random Forest Variable Importance.” Proceedings of the 18th International Conference
on Computational Statistics, Porto, August 24–28.

Tanaka, D. L., D. J. Lyon, P. R. Miller, S. D. Merrill, and B. G. McConkey. 2010. “Soil and Water
Conservation in the Semiarid Northern Great Plains.” In Soil and Water Conservation Advances
in the United States, edited by T. M. Zobeck, and W. F. Schillinger, 81–102. Madison, WI:
American Society of Agronomy.

Turker, M., and M. Arikan. 2005. “Sequential Masking Classification of Multitemporal Landsat
ETM+ Images for Field-Based Crop Mapping in Karacabey, Turkey.” International Journal of
Remote Sensing 26 (17): 3813–3830.

USDA (United States Department of Agriculture). 2012. “USDA National Agricultural Statistics
Service Cropland Data Layer (2012).” Accessed June 11, 2013. http://nassgeodata.gmu.edu/
CropScape/

USGS (United States Geological Survey). 2012. Landsat: A Global Land-Imaging Mission. Reston,
VA: U.S. Geological Survey Fact Sheet 2012–3072.

Wardlow, B. D., S. L. Egbert, and J. H. Kastens. 2007. “Analysis of Time-Series MODIS 250 m
Vegetation Index Data for Crop Classification in the U.S. Central Great Plains.” Remote Sensing
of Environment 108 (3): 290–310.

Watts, J. D., R. L. Lawrence, P. R. Miller, and C. Montagne. 2009. “Monitoring of Cropland
Practices for Carbon Sequestration Purposes in North Central Montana by Landsat Remote
Sensing.” Remote Sensing of Environment 113 (9): 1843–1852.

WRCC (Western Regional Climate Center). 2012. “Local Climate Summary for Glasgow,
Montana.” Accessed October 18, 2011. http://www.wrcc.dri.edu/summary/ggw.mt.html

Wu, S., J. Silván-Cárdenas, and L. Wang. 2007. “Per-Field Urban Land Use Classification Based on
Tax Parcel Boundaries.” International Journal of Remote Sensing 28 (12): 2777–2800.

Zeng, C., H. Shen, and L. Zhang. 2013. “Recovering Missing Pixels for Landsat ETM+ SLC-Off
Imagery Using Multitemporal Regression Analysis and a Regularization Method.” Remote
Sensing of Environment 131: 182–194.

Zhang, C., W. Li, and D. Travis. 2007. “Gaps-Fill of SLC-Off Landsat ETM+ Satellite Image Using
a Geostatistical Approach.” International Journal of Remote Sensing 28 (22): 5103–5122.

Zhu, X., D. Liu, and J. Chen. 2012. “A New Geostatistical Approach for Filling Gaps in Landsat
ETM+ SLC-Off Images.” Remote sensing of Environment 124: 49–60.

436 J.A. Long et al.

D
ow

nl
oa

de
d 

by
 [

M
on

ta
na

 S
ta

te
 U

ni
ve

rs
ity

 B
oz

em
an

],
 [

Jo
hn

 A
. L

on
g]

 a
t 1

5:
04

 2
5 

A
ug

us
t 2

01
3 

http://nassgeodata.gmu.edu/CropScape/
http://nassgeodata.gmu.edu/CropScape/
http://www.wrcc.dri.edu/summary/ggw.mt.html



