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A B S T R A C T

Producers make the decision to adopt a particular agricultural practice within a range of social, economic,
environmental, and agronomic constraints. The semiarid regions of the US northern Great Plains are
dominated by dryland farming practices and the traditional practice has been to rotate small-grain
cereals with summer fallow; however, producers are moving away from this practice. The area of fallow
in northeastern Montana decreased by one-third and the area of pulse crops increased nearly six-fold
during 2001–2012. We previously identified two key practices that are indicative of regionally changing
agricultural practices: (1) the broad-scale adoption of cereal–pulse sequences, and (2) the conversion
from continuous strip-cropping to block managed cereal-based sequences. Here, we examined the
adoption of these two practices from a spatio-temporal perspective to determine if the observed patterns
were consistent with those expected from a priori processes: random occurrence, spread and adoption of
the practices due to social interaction as described in innovation diffusion theory, or adoption based on
environmental factors. Our results suggest that the adoption and spread of both practices were likely
constrained by the suitability of the physical environment. Available water, in particular, exerts a
fundamental control on the decision whether or not to adopt either practice. We also found evidence for
the expansion of these practices due, in part, to social factors, particularly during the early period of
adoption. We conclude that producers made the decision whether or not to adopt these practices
primarily as a function of environmental suitability and, to a lesser extent, within the context of social
interactions.
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1. Introduction

Innovations in technology and management practices are vital to
the sustainabilityand increased productivityof agricultural systems;
yet, the decisionsto adopt themare madeby individual farmersfaced
with incomplete information in terms of cost and price fluctuations,
variability in weather conditions, and changes in agricultural policy
(Schmit and Rounsevell, 2006). Crop rotation is a well-established
‘innovative’ practice with many benefits (see, e.g., Plourde et al.,
2013), but farmers do not necessarily adhere to strict rotations (Long
et al., 2014). The decision to growcrops in a specific sequence is made
within environmental, socio-economic, and agronomic constraints
(Castellazzi et al., 2007).
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Recent research (Long et al., 2014) identified several changes in
the frequency of specific cropping sequences between 2001 and
2012 that are indicative of changing agricultural practices in
northeast Montana. They concluded that regional producers: (1)
increased the total amount of cropland in active production; (2)
grew more cereal and reduced fallowed fields; (3) converted a
substantial number of fields managed by strip-cropping to block
management for cereal-based sequences; and (4) increased the
prevalence of cereal–pulse sequences. Adoption of alternative
cropping sequences, indicated by the last three findings, is
innovative in that they represent new, and presumably more
advantageous, practices. This previous work examined cropping
sequences from a temporal perspective. Our research reported in
this paper entailed the analysis of field-level changes in cropping
sequences in a spatio-temporal context by focusing on two of the
key changes – the adoption of cereal–pulse sequences and the
conversion from continuous strip-cropping to block managed
cereal-based sequences. Our goal was to determine if the observed
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spatio-temporal patterns of the changing practices were consistent
with those expected from specific a priori processes: random
occurrence, spread and adoption of the practices due to social
interaction as described in innovation diffusion theory, or adoption
based on environmental factors.

The mapped locations of objects or events can be analyzed as
spatial point processes in which the geographical locations are the
random element; the actual observed locations represent one of the
many possible realizations of a random spatial point process. Spatial
point pattern analysis is a common method to assess spatial
heterogeneity and detect patterns (e.g., Liu et al., 2007). The primary
purpose of spatial point pattern analysis is to determine if the
observed locations exhibit some form of systematic patterning over
an area and, if so, over what spatial scales does the patterning persist.
Spatial point patterns that exhibit complete spatial randomness
(CSR) are indicative of a purely stochastic process and imply the
absence of causal behavior. Spatial point patterns that do not exhibit
CSR possess structure, suggesting spatial dependency and the
potential existence of an underlying process, such as a response to
environmental heterogeneity (Perry et al., 2002).

CSR assumes that the locations follow a homogeneous Poisson
process and have constant intensity over the area, whereas
departures from CSR produce regularity or clustering. Regularity
exists in patterns that are more evenly distributed (dispersed) than
expected, while clustering indicates that the locations are closer
together than expected from a purely random process (e.g., Diggle,
2003). These patterns have been identified in agricultural settings
with a variety of established tests. Ripley’s K-function has been
used, for example, to detect clustering of agricultural areas affected
by soil constraints (Dang et al., 2011) and in the yields from cacao
stands (Ngo Bieng et al., 2013).

The adoption and spread of farming practices has long been
describedbyinnovationdiffusiontheory.Thediffusionof innovation,
in its basic form, refers to the spread and adoption of an idea,
technology, or behavior (e.g., Wejnert, 2002; Scholnick, 2012).
Foundational work (Tarde, 1903) suggested that sociological
imitation followed a characteristic S-shaped curve in which the
rate of diffusion could be deduced from the slope of the ‘S’. Steep
slopes indicated a rapid rate of diffusion, while more gradual slopes
were indicative of slower rates. The adoption of agricultural
innovations, such as new machinery, seed varieties, or management
practices, has provided the context for many advances in the theory.
It was demonstrated, for example, that the abundance of technolog-
ical improvements to the sulky plow, determined by the number of
patents, followed an S-shaped curve (Chapin,1928). An investigation
of the diffusion of hybrid seed corn–innovative because the new seed
substantially improved yields and produced plants with stronger
stalks, making mechanical pickers more effective, showed that
adoption by Iowa farmers followed an S-shaped curve with three
distinct phases: (1) an initial adoption period characterized by slow
growth; (2) a period in which the rate of adoption increased rapidly;
and (3) a period of declining growth as the resistant farmers adopted
the seed (Ryan and Gross,1943; Ryan and Gross,1950). Perhaps their
most influential claim was that diffusion was a social process in
which spread occurred from early to late adopters, rather than a
process of decisions based on economics (Valente, 1995).

The Iowa study (Ryan and Gross, 1950) was framed in a
predominantly temporal context and was geographically con-
strained, as it only considered diffusion in two specific farming
regions in Iowa. An analysis of the adoption of various agricultural
practices and the acceptance of government subsidies in Sweden
more thoroughly considered the diffusion of innovations over
space (Hägerstrand, 1953). This research concluded that the
adoption of an innovation was a social process and spread outward
from an initial cluster of adopters, with declining frequency of
adoption as a function of distance and of physical barriers to
communication, such as rivers or mountains (Hägerstrand, 1953;
Johansen, 1971). Hägerstrand’s model is, in many respects, similar
to those used to describe the spread of a contagious disease (Clark,
1984). The model incorporates a set of six restrictive assumptions,
primarily concerning the nature and means of communication,
which diminishes its usefulness in modern applications. The
Hägerstrand model, for example, assumes that face-to-face
communication between farmers is the only mechanism by which
knowledge of the innovation spreads (see, e.g., Hahvey, 1966 for a
complete discussion). Later critics have re-analyzed Hägerstrand's
data with more sophisticated statistical techniques, arguing that:
(1) the initial cluster of adopters was not actually clustered (Cliff,
1968); (2) spatial autocorrelation was inadequately treated (Cliff
and Ord, 1974) and (3) the model has little explanatory or
predictive power if the socio-economic conditions are different
from those experienced in Hägerstrand's study (Clark, 1984).

Models grounded in the idea of ‘diffusion of innovation as a social
process’ persist in the literature, despite their shortcomings. The
diminishing role of distance and physical barriers as a spatial
constraint to the spread of information was recognized nearly
50 years ago (e.g., Hahvey,1966). Furthermore, the social network of
a twenty-first century farmer is unlikely to be well-characterized by
the Euclidian distance between farms as assumed by Hägerstrand
(Schmit and Rounsevell, 2006). Others (e.g., Beck,1992) have argued
that in a modern information society, traditional social networks are
becoming less and less influential. The spread of information, and
thus innovation, is no longer confined to a finite geographically-
constrained social network of neighbors and colleagues, but includes
all forms of modern communication and mass media. Information
regarding agricultural innovations is available to all farmers in
developed countries nearly simultaneously. Consequently, the
strength of social interactions as a function of distance between
farms is arguably a tenuous association at best. Research has
demonstrated that fields cultivated by farmers in close proximity are
statistically no more similar than fields cultivated by farmers who
live further away from one another and has concluded that farmer
imitation of their neighbors does not affect land use patterns directly
(Schmit and Rounsevell, 2006).

Alternative viewpoints assert that the diffusion of an innovation
over space is not strictly a function of social processes and include
environmental context as a fundamental element. The adoption of
an agricultural practice, in particular, depends on its suitability to
the physical and economic environment (Wejnert, 2002). Man-
agement decisions are fundamentally subject to personal prefer-
ences, opinions, experiences, and the physical characteristics of the
landscape. Observed differences in agricultural practices are
inherently affected by spatial heterogeneity in physical character-
istics (Rosenzweig et al., 2002; Rounsevell et al., 2003). Crop yields,
for example, are linked to temperature and precipitation (e.g.,
Rosenzweig et al., 2002; Lobell et al., 2007). Annual precipitation
varies and has a substantial effect on the decision to grow a specific
crop. Many regional producers were unable to seed fields in 2011,
for example, due to excessive precipitation; therefore, many fields
were unintentionally fallowed. Precipitation is well-known to vary
with northing (latitude), easting (longitude), and elevation.
Consequently, northing, easting, elevation, and precipitation are
geographic and environmental variables that might be correlated
with the adoption of cropping sequences.

The purpose of this work was to investigate changes in specific
cropping sequences in northeast Montana within a spatio-temporal
context. We focused on the adoption of cereal–pulse sequences and
the conversion from continuous strip-cropping to block managed
cereal-based sequences. These changes are indicative of shifting
agricultural practices and suggest that regional farmers are adopting
these ‘innovations’, because they provide some advantage over the
traditional practices. Specifically, we sought to answer the following



J.A. Long et al. / Agriculture, Ecosystems and Environment 197 (2014) 77–87 79
questions: (1) were the locations of the adopted practices randomly
distributed throughout the study area; (2) did the spatio-temporal
patterns of adoption resembled those expected under innovation
diffusion theory driven by social factors; and (3) were the spatio-
temporal patterns of adoption associated with specific environmen-
tal factors.

2. Material and methods

2.1. Study area

The study area is in northeastern Montana and includes Daniels,
Sheridan, Roosevelt, and Valley Counties (Fig. 1). The region
borders similar agricultural landscapes to the north and east,
Saskatchewan and North Dakota respectively. Lake Fort Peck and
the Missouri River form the southern boundary, while the western
border consists largely of federal and state land. The region is
characterized by low relief (Padbury et al., 2002) with the higher
elevations in northern Valley County. Lower elevations are more
common in the southeast portion of the study area, as well as along
primary drainages such as the Missouri River, Poplar River, and Big
Muddy Creek. The area has a semiarid climate with an average of
310 mm of annual precipitation, occurring primarily as rain
between April and September (WRCC, 2011). Maximum temper-
atures in July average 31 �C, while January temperatures average
�10 �C (WRCC, 2011). Shortgrass prairie and agriculture are the
dominant land cover types. Dryland farming practices are
dominant in the region (Tanaka et al., 2010), although center-
pivot irrigation is not uncommon for producers in close proximity
to the Missouri River. Agriculture consists largely of cereal crops,
primarily spring wheat, and an increasingly substantial area of
pulse crops; however, small amounts of other crops are grown
within the Missouri River corridor (NASS, 2012, 2013).

2.2. Data

We previously reported cropping sequences for 13,076 agricul-
tural fields in the study area for 2001–2012, which were derived
Fig. 1. The study area in northeastern Montana included the counties of Daniels, Roos
from Landsat imagery in conjunction with the Cropland Data Layer,
cadastral data, ground reference data, and local producers’ records
(Long et al., 2014). Crops were identified by class: cereals (C), fallow
(F), pulse crops (P), cereal-fallow strip-cropping (S), or other (O).
Cereals included spring or winter wheat (Triticum aestivum L.),
durum (Triticum turgidum L.), or barley (Hordeum vulgare L.); pulse
crops included dry pea (Pisum sativum L.), lentil (Lens culinaris
Medik.), or chickpea (Cicer arietinum L.). Fallow identified
uncultivated agricultural land, while cereal-fallow strip-cropping
referred to the regionally common practice of alternating 50 or
100 m wide strips of cereal and fallow within a field. Non-
agricultural land and crops that were not cereals or pulses
comprised the ‘other’ class. The temporal structure of the data was
represented by a 12-character string (e.g., SCPCCPCCFCCC) for each
of the 13,076 fields that described the classification of that
particular field for each of the years 2001–2012.

These data were then used to identify 2-yr cropping sequences
via a 2-yr moving window (2001–2002, 2002–2003, . . . ,2011–
2012), and similarly structured windows to identify 3-yr sequen-
ces. A field with SCPCCPCCFCCC for its 12-yr sequence, for example,
has eleven 2-yr sequences: SC, CP, PC, CC, CP, PC, CC, CF, FC, CC, and
CC. This field also contains ten 3-yr sequences: SCP, CPC, PCC, CCP,
CPC, PCC, CCF, CFC, FCC, and CCC. Here we focus only on the 2-yr
sequences because the 3-yr sequences reached the same
conclusions in our previous work (Long et al., 2014). We did not
examine all 2-yr sequences – only those indicative of the two key
changes in agricultural practices: (1) the increase in cereal–pulse
sequences, and (2) the conversion from continuous strip-cropping
to block managed cereal-based sequences. The sequences of
interest, therefore, were CP/PC and SC.

The geographic and environmental factors considered includ-
ed: northing, easting, elevation, relative effective annual precipi-
tation (REAP), and annual precipitation. These variables were
extracted from existing, publicly available datasets. Spatial data
consisted of UTM coordinates (northing and easting) for the
centroid of each field. Field elevation was defined as the elevation
at the field’s centroid and was derived from the 1 arc-second
(�30 m) National Elevation Dataset (Gesch et al., 2002). Annual
evelt, Sheridan and Valley. The agricultural regions are shaded in the main map.
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precipitation data came from the precipitation distribution model
PRISM (Parameter-elevation Regressions on Independent Slopes
Model), which uses point data in conjunction with a variety of
datasets to produce spatially-gridded estimates of climatological
variables (Daly, 2006; Daly et al., 2002, 1994). We used annual
precipitation products (PRISM Climate Group, 2014) at a 4-km grid
cell resolution to create eleven 2-yr means corresponding to the
2-yr cropping sequences, such that the 2001–2002 cropping
sequence, for example, used the mean of the 2001 and 2002 PRISM
data. REAP is a gridded (10-m) estimate of available moisture,
accounting for precipitation, slope, aspect, and soil properties,
based on a 30-yr period (NRCS, 2014). Each field, therefore, had a
single REAP value over the study’s time frame, unlike the PRISM
data. REAP, therefore, better represents the general tendency over
time with respect to water availability, compared to precipitation,
which relates to water availability in a specific year. We used field
centroids to determine the REAP as fields potentially could have
more than one value.

2.3. Analyses

All analyses were performed in R, version 3.0.2 (R Core Team,
2013) and with the following packages: ‘spatstat’ (Baddeley and
Turner, 2005, 2013), ‘gmodels’ (Warnes, 2013), ‘HH’ (Heiberger,
2014), ‘MuMIn’ (Barton, 2013), and ‘effects’ (Fox, 2013a,b). Our first
objective was to determine if the locations of fields using the
adopted practices were randomly distributed within the study
area. We assessed the spatial dependency among fields in each of
the cropping sequences of interest by year to address this
objective: (1) visually after applying a smoothing operation to
show relative densities across the study area, and (2) quantitatively
with point pattern analysis. The location of an agricultural field is
not strictly a point, but an area. We used the centroid of each field
as ‘points’ and justify this usage by noting that the centroids are
point-like at the scale in this study (e.g., Baddeley, 2008).

We used kernel density estimators (KDE) to map the density f(s)
for each cropping sequence and year in order to visually assess the
spatial distributions. KDEs are common nonparametric density
estimators that estimate the distribution of f(s) from a finite set of
points by smoothing. They are weighting functions that smooth the
contribution of each observed data point over a local neighborhood
such that the weights decrease with distance. The intensity
function depends on kernel type and bandwidth; kernel type
determines the shape of the weighting function and bandwidth
determines the amount of smoothing (e.g., Waller and Gotway,
2004). The general consensus is that the choice of kernel is largely
irrelevant, while the choice of bandwidth is crucial (e.g., Taylor,
1989). We experimented with a variety of kernels and found no
discernible differences before settling on a Gaussian kernel.
Intensity was, however, responsive to bandwidth. We chose
bandwidths that maximized the point process likelihood cross-
validation criterion (LCV) (see e.g., Loader, 1999 for a complete
discussion). If s1, s2, . . . ,sn are locations in the study area,
estimated intensity at a given point s is given by

f sð Þ ¼ 1
nh

Xn
i¼1

s � si
h

� � 1ffiffiffiffiffiffiffi
2p

p e�
s�sið Þ2
h2

  !
(1)

where h is the bandwidth, n is the number of locations, s � si is the
Euclidean distance between s and si, and the last term on the right
hand right is the two-dimensional Gaussian kernel (Cai et al., 2013).

Spatial randomness was assessed quantitatively with the
L-function, a normalized version of Ripley’s K-function (Besag,
1977; Ripley, 1977). The K-function evaluates the randomness of a
point pattern across a spatial domain at a specified distance r, by
comparing the expected number of points within a local
neighborhood of radius r of any point against the expected
intensity l, assuming CSR (Ripley, 1977). The discrete form of the
K-function (e.g., Streib and Davis, 2011) is defined as

K̂ ðrÞ ¼ 1
lN

XN
i¼1

XN
j¼1;i 6¼j

Ir dij
� �

(2)

where dij is the Euclidean distance between locations si and sj, l is
the intensity function (total number of points divided by area) and
Ir is an indicator function which takes the value of 1 if dij� r. Under
CSR, the expected value of K(r) is pr2 and deviations from this value
are indicative of clustering (K(r) > pr2) or dispersion (K(r) < pr2).
The L-function is a normalization of the K-function that gives a
more interpretable, linear expected value, and is defined as

L̂ rð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
K̂ rð Þ
p

s
(3)

The L-function assumes a homogeneous spatial process
(stationary and isotropic) across the entire domain, which is
problematic because this is unlikely in many applications (Gabriel
and Diggle, 2009). Points near the border of the domain are also
problematic because the local neighborhood of radius r may lie
partially outside of the domain. Consequently, we used the
inhomogenous version of the L-function, a generalization applica-
ble to non-stationary point processes (Baddeley et al., 2000), and
border-corrected estimates for K(r) to adjust for bias introduced by
edge effects (see e.g., Ripley, 1979, 1977). We tested for departures
from CSR by creating confidence envelopes for CSR based on Monte
Carlo simulations (n = 500). We also used chi-squared tests of
goodness-of-fit for point process models based on quadrat counts,
which determines whether a point pattern is more clustered than
would be expected by chance by comparing the observed number
of cropping sequences in quadrats of a given size with the
frequencies expected from a random process. If Oi is the observed
number of fields in the ith quadrat, Ei is the expected number of
fields in the ith quadrat under CSR, and k is the total number
quadrats, then the test statistic

X2 ¼
Xk
i¼1

ðOi � EiÞ2
Ei

(4)

is asymptotically distributed as a chi-squared distribution with
k � 2 degrees of freedom under the null hypothesis of CSR.

Our second objective was to establish whether or not spatio-
temporal patterns of adoption resembled those that would be
expected under innovation diffusion theory driven by social
factors. Spatial dependency among fields in each of the cropping
sequences suggests the possible existence of an underlying
process. If the spread of adoption for these cropping sequences
was a social process that spread outward from an initial cluster of
adopters, as suggested in much of the diffusion of innovation
literature, then we would expect clustering around the original
adopters, and more generally clustering in any year around
adopters in the previous year. The restrictive assumptions of the
Hägerstrand model and its variants were not met in our data;
therefore, we abandoned this method. Instead, we tested for
spatio-temporal clustering around the initial locations by consid-
ering a general contagion processes. A contagion process is a
spatial point process in which the occurrence of an event raises the
probability of observing subsequent events nearby (e.g., Waller and
Gotway, 2004) – for example, if the locations of fields in a cropping
sequence in the first year were geographically closer to fields in the
same cropping sequence in the second year than they were to a
randomly selected set of field locations from the second year.

For each field in a given cropping sequence at time tn + 1, we
computed the Euclidean distance between it and the nearest field



J.A. Long et al. / Agriculture, Ecosystems and Environment 197 (2014) 77–87 81
managed with the same cropping sequence at time tn. From these
values we found the average minimum distance, equivalent to
the average nearest neighbor distance, between fields in the same
cropping sequence during consecutive years. These were com-
pared to the equivalent metric from Monte Carlo simulations
(n = 100) of randomly selected fields. Let A be the set of field
centroids for a particular cropping sequence at time tn such that
A = {a1,a2, . . . ai}. Similarly, let B = {b1,b2, . . . bj} be the set of
centroids for fields at time tn + 1 that are in the same cropping
sequence as those in A, and let C = {c1,c2, . . . ci} be a set of j
randomly selected field centroids. We define Dmin(a, b) as the
vector of minimum Euclidean distances between each element of A
and each element of B, while Dmin(a, c) is defined as the vector of
minimum Euclidean distances between each element of A and each
element of C. A contagion process is suggested when

Dmin a; bð Þ < Dmin a; cð Þ (5)

We fit a linear model for each cropping sequence with distances
as the responses modeled as a function of time (years 2001–2002/
2002–2003 through 2010–2011/2011–2012) and type (observed or
random) and their interaction. Because of severe non-constant
variance and skew in the residuals for this model, all analyses were
performed on the log-distances, which alleviated concerns about
violations of normality and constant variance assumptions.
Fig. 2. Kernel density maps for the locations of fields that had adopted CP/PC sequences 

each year and cannot be used to compare maps from year to year.
Contrasts were used to test for differences in the mean of the
log-distances between types for each year.

Our final objective was to determine if the spatial patterns of
cropping sequences were associated with certain environmental
factors. We examined potential associations between cropping
sequences and the environmental variables (easting, northing,
elevation, REAP, and mean annual precipitation) with graphical
explorations of the data. Then, we fit two suites of logistic
regression models with cropping sequence as the binary response
variable (CP/PC or not CP/PC; SC or not SC). All possible models
with the predictor variables and an easting-northing interaction
were considered; the top-ranked models based on AICc (Akaike
Information Criterion, corrected for finite sample size) are
reported. Here, the log-odds of adopting the practice (CP/PC or
SC) relative to a baseline of not adopting the practice were modeled
as linear combinations of the environmental predictor variables for
each cropping sequence. The baseline model gives the log-odds of a
success,

log
p̂

1 � p̂

� �
¼ b0 þ b1X1 þ b2X2 . . . þ bKXK (6)

where p̂ is the odds of adopting the practice,1 � p̂ is the odds of not
adopting the practice, b0 is the model intercept, and b1, . . . ,bk are
the coefficients for the X1, . . . Xk predictor variables.
by year. Note that the probability scale next to each map is scaled independently for
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3. Results

3.1. Point pattern analysis

We used point pattern analysis to assess the spatial dependency
among fields by cropping sequence and year to determine if the
locations were randomly distributed throughout the study area.
None of the cropping sequences were randomly distributed during
any of the 2-yr periods. This was evident visually in the density
maps (Figs. 2 and 3) and statistically from both the analysis of
quadrat counts and the border-corrected inhomogeneous
L-functions. Assessment of CSR based on quadrat counts consis-
tently indicated clustering for both cropping sequences during
2001–2012 (p < 0.01 in all cases). These results were robust to
quadrat size and clustering was indicated with quadrats as large as
25 � 25 km and as small as 2.5 � 2.5 km. Assessment of CSR based
on L-functions also indicated clustering for both sequences at
similar ranges, typically 10–20 km (Table 1).

3.2. Adoption of cropping sequences as a contagion process

Spatio-temporal patterns of cropping sequence adoption driven
by social factors suggests that fields in the adopted practice in a
given year should be closer on average to locations that previously
adopted the practice than would be expected from random
Fig. 3. Kernel density maps for the locations of fields that had adopted block-managed
probability scale next to each map is scaled independently for each year and cannot b
locations. This was the case for CP/PC sequences from 2001–2004
(Fig. 4a); they were farther than expected, however, for the
remainder of the study. There was strong evidence for different
changes over time between the mean minimum log-distance
between fields in CP/PC cropping sequences and the mean
minimum log-distance between fields under random field selec-
tion (F(9, 16,820) = 3.9, p < 0.0001). The main effects in the model
with an interaction also showed strong evidence of differences
(Type: F(1, 16,820) = 59.4, p < 0.0001; time periods: F(9,
16,820) = 180.2, p < 0.0001). Pairwise contrasts, adjusted for
multiple comparisons with a Bonferroni correction, showed strong
evidence of differences between the observed and random fields in
five of the ten time periods (Fig. 4a).

We also found that SC fields were closer on average to locations
that previously adopted the practice than expected from random
locations for all time periods except one (Fig. 4b). There was
evidence of changes over time between the mean minimum log-
distance between fields in SC sequences and the mean minimum
log-distance between fields under random field selection (F(9,
4623) = 2.15, p = 0.0023). The main effects in the model with an
interaction showed strong evidence of differences (Type: F(1,
4623) = 10.48, p = 0.0001; Time periods: F(9, 4623) = 7.27, p
< 0.0001). Bonferroni adjusted pairwise contrasts indicated that
observed and random fields were significantly different in only one
of the ten time periods (Fig. 4a).
 cereal-based sequences in lieu of continuous strip-cropping by year. Note that the
e used to compare maps from year to year.



Table 1
Maximum clustering range by cropping sequence and time perioda.

Time Period

Sequence 2001–2002 2002–2003 2003–2004 2004–2005 2005–2006 2006–2007 2007–08 2008–2009 2009–2010 2010–2011 2011–2012

CP/PC 3.0 18.5 20.6 20.5 25.5 14.7 15.4 15.8 14.9 17.4 16.8
SC 11.9 9.8 10.3 16.8 11.3 12.5 16.1 12.0 17.1 5.0 5.2

a Approximate maximum range (km) for clustering based on the 95% confidence envelope from a border-corrected inhomogeneous L-Function. CP/PC: cereal–pulse,
SC: conversion from strip-cropping to cereal-based sequences.
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3.3. Adoption of cropping sequences as a function of the environment

As an observational study, inferences are limited to the
observations at hand,. The preliminary exploration of the data
suggested that fields in CP/PC sequences were potentially
associated with locations that: (1) were farther north and east;
(2) were at lower elevations; and (3) had higher REAP. The
adoption of block-managed cereal-based sequences, in lieu of
continuous strip-cropping, showed the same tendencies. The
northing and easting trends are visually evident in the density
plots (Figs. 2 and 3), particularly for the CP/PC sequences.

Logistic regression models were initially fit with all environ-
mental variables and an interaction between easting and northing
for each cropping sequence by time period; final models were
selected based on AICc (Table 2). The logistic models were fit such
that the baseline category was fields that had not adopted the
cropping sequence; therefore, positive coefficients indicated
variables that were associated with an increase in the likelihood
that a field used the adopted practice and negative coefficients
indicated variables that decreased the likelihood. We focused
primarily on the direction of the association for the selected
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Fig. 4. Plots of the mean minimum log-distance between fields (+/� 1 SE) in (a) CP/PC se
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tion of the references to color in this figure legend, the reader is referred to the web v
models, because we were more interested in identifying associ-
ations rather than predictive modeling.

The environmental variables that were associated with an
increased likelihood that a field had adopted CP/PC sequences
varied temporally (Table 2). Positive coefficients for easting and
northing in the first half of the study gave way to negative ones by
2007–2008. The coefficient of the easting–northing interaction
was always opposite in sign from those of the main effects and
therefore served to mediate the main effects. The effect of
northing, because of the interaction, ranged from positive to
negative depending on the easting value and the time frame; it was
generally positive with the exception of the most western eastings
from 2007 to 2008 onwards. The coefficients for elevation were
negative early on, but changed to positive in 2005. Coefficients for
precipitation and REAP were typically negative, when present in
the final model, with few exceptions. This seemingly incongruous
result is examined in the Section 4. When interpreting the
coefficients in Table 2, we note that we used UTM coordinates for
northing and easting; the units are in meters.

The environmental variables associated with an increased
likelihood that a field had converted from strip-cropping to block
7.8

8.0

8.2

8.4

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Time Period

Lo
g 

(D
is

ta
nc

e)

(b)  SC Sequences

*

Blue

Pink

quences and (b) SC sequences, and the mean minimum log-distance between fields
 are between observed and random selection. Time periods with asterisks indicate
bly different (Bonferroni corrected p-values < 0.05). Time periods represent the
–2004; T2 = 2003–2004/2004–2005; T3 = 2004–2005/2005–2006; T4 = 2005–2006/
009–2010; T8 = 2009–2010/2010–2011; T9 = 2010–2011/2011–2012. (For interpreta-
ersion of this article.)



Table 2
Coefficients for the top-ranked logistic regression modelsa.

Sequence Time period df n Easting Northing Easting:Northing Elevation REAP Precipitation

CP/PC 2001–2002 5 6338 7.05e-04 6.41e-05 �1.29e-10 �4.24e-03 – –

2002–2003 4 6445 7.64e-04 7.53e-05 �1.39e-10 – – –

2003–2004 7 6097 7.94e-04 7.99e-05 �1.46e-10 �3.93e-03 �7.60e-02 �1.79e-02
2004–2005 6 5681 5.51e-04 5.72e-05 �1.01e-10 – �5.78e-02 �1.09e-02
2005–2006 6 5763 5.43e-04 5.93e-05 �9.61e-11 4.50e-03 – �6.44e-03
2006–2007 6 6044 2.95e-04 3.76e-05 �5.02e-11 3.19e-03 – �8.23e-03
2007–2008 7 7037 �8.34e-04 �6.00e-05 1.57e-10 4.87e-03 �1.56e-01 8.60e-03
2008–2009 7 7509 �1.33e-03 �1.05e-04 2.49e-10 4.95e-03 �1.13e-01 �4.77e-03
2009–2010 6 7659 �1.41e-03 �1.13e-04 2.65e-10 3.41e-03 – �1.26e-02
2010–2011 6 7516 �1.52e-03 �1.19e-04 2.85e-10 3.27e-03 – �1.58e-02
2011–2012 6 7542 �1.07e-03 �8.12e-05 2.01e-10 2.36e-03 �6.64e-02 –

SC 2001–2002 6 6338 �8.28e-04 �8.49e-05 1.55e-10 7.40e-03 – �2.29e-02
2002–2003 4 6445 3.58e-06 – – 3.19e-03 – �1.92e-02
2003–2004 3 6097 – �7.19e-06 – 1.65e-03 – –

2004–2005 3 5681 – – – 1.43e-03 – 8.71e-03
2005–2006 3 5763 �2.46e-06 – – 3.33e-03 – –

2006–2007 4 6044 �7.04e-06 �6.36e-06 – 1.50e-03 – –

2007–2008 5 7037 5.81e-04 5.19e-05 �1.09e-10 �2.94e-03 – –

2008–2009 5 7509 1.27e-03 1.14e-04 �2.37e-10 �5.01e-03 – –

2009–2010 6 7659 9.48e-04 9.15e-05 �1.76e-10 – �2.20e-01 1.26e-02
2010–2011 5 7516 1.09e-03 9.52e-05 �2.01e-10 – �2.03e-01 –

2011–2012 4 7542 8.62e-04 6.86e-05 �1.61e-10 – – –

a Coefficients for the top-ranked logistic regression models by sequence and time period. Coefficients with p-values < 0.05 are in bold; df: degrees of freedom, n: sample
size.
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management also varied temporally (Table 2). Northing and
easting, when retained in the model, tended to be negative during
2001–2007 and positive afterwards. The easting–northing inter-
action was generally not retained prior to 2007, but had a negative
sign in the succeeding years. Coefficients for elevation had mixed
directions of estimated effects in the models, but they tended to be
positive in the first half of the study. The coefficients for REAP and
annual precipitation were typically negative, but were seldom
selected in the final models.

4. Discussion

4.1. Key indicators of changing agricultural practices

Agricultural practices in northeast Montana are changing with
respect to the management of cropping sequences. Two practices
in particular have emerged as key indicators of changing
agricultural practices in the region: (1) producers have adopted
cereal–pulse sequences at a substantial rate – a six-fold increase
within a decade; and (2) producers have simultaneously adopted
block-managed cereal-based sequences in lieu of continuous
strip-cropping such that the number of fields managed by
continuous strip-cropping decreased four-fold (Long et al.,
2014). Producers that converted from strip-cropping to cereal-
based sequences adopted continuous cereal cropping sequences
49% of the time on average, block-managed cereal-fallow
sequences 35% of the time, while cereal–pulse sequences were
adopted 16% of the time (see Table 3). We examined the spatial
Table 3
Conversions from continuous strip-cropping to cereal-based sequences as a percentage

Time Period

2001–03 2002–04 2003–05 2004–06 2005–0

SCC 65.4 72.2 35.4 31.1 36.4 

SCF/SFC 25.3 23.1 45.1 32.9 36.7 

SCP/SPC 9.3 4.7 19.5 36.0 26.9 

a The percentage of conversions from strip-cropping to cereal-based rotations by the t
fallow, SCP/SPC: conversion to cereal–pulse.
distribution of the adoption of these practices to see if they were
non-random and, if so, were they consistent with patterns
expected from the spread and adoption of the practices due to
social interaction or adoption based on environmental factors.

4.2. The adoption of cereal–pulse cropping sequences

The locations of fields that adopted cereal–pulse sequences
were not randomly distributed at any time during the study, which
suggests an underlying rationale for the adoption. All tests of
spatial randomness indicated that these sequences were clustered
on the landscape within a local neighborhood, typically 15–20 km.
This is visually evident in the density plots (Fig. 2), where we can
distinguish regions with higher concentrations of CP/PC sequences,
particularly for the early portion of the study. We caution the
reader that the density plots in Fig. 2 are not scaled equally, but are
independently scaled with respect to the maximum probability for
each year. Consequently, the colors do not reflect the same density
across all plots and Fig. 2 cannot be used to compare maps from
year to year.

We tested whether the observed patterns of adoption tended to
cluster geographically around the fields that had originally adopted
the practice. We defined ‘original’ to be those fields using the practice
in 2001–2002, the first 2-yr sequence in our study. We see in Fig. 2
that the original adopters were in the eastern portion of the region,
primarily in the vicinity of Medicine Lake. Clustering around the
original adopters would suggest a contagion process – one in which
the occurrence of a field in a CP/PC sequence raises the probability of
 of all conversions a

7 2006–08 2007–09 2008–10 2009–11 2010–12

55.7 60.0 54.1 50.0 28.3
29.3 27.7 32.9 36.4 57.1
15.0 12.3 13.0 13.6 14.6

ype of rotation. SCC: conversion to continuous cereal, SCF/SFC: conversion to cereal-
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observing nearby fields in CP/PC sequences in subsequent years.
There was some evidence that the adoption of cereal–pulse
sequences in the region initially spread through a contagion process
as fields in successive years were closer together than expected from
a random process during 2001–2004, while the results for 2005–
2012 indicated that successive CP/PC sequences were farther apart
than would be expected from a random process. These differences
were generally small inpractical terms – the statistical significance is
largely a result of the substantial sample sizes. For example, the
largest difference, between the 2008–2009 and the 2009–
2010 sequences, indicated that the median for the observed
distances was between 1.10 and 1.21 times the median for the
random distances, or, equivalently, the median for the observed
distances was 140–300 m farther than the median for random
distances. The differences in all other time frames were smaller.

The observed spatial patterns of CP/PC adoption are not
consistent with those expected given a strong contagion process.
Collectively, we take the results to suggest that a weak contagion
process might have operated during the early stages of cereal–
pulse adoption, potentially driven by social processes, and within a
radius of no more than 20 km. Additional clusters formed during
2005–2012 at distances farther than the local clustering neighbor-
hoods via nucleation (e.g., Yarranton and Morrison,1974), and were
not contagion processes.

Adoption of a cropping sequence depends on its suitability to
the physical environment; therefore, we looked at the association
between a suite of environmental variables and whether or not a
field had adopted CP/PC cropping sequences. Modeling of the
environmental variables (northing, easting, elevation, REAP, and
annual precipitation) generally indicated that geography was
strongly associated with the likelihood that a field had adopted CP/
PC sequences. Soil type has the potential to be an important
environmental variable in agricultural studies. We considered this
early in the study, but all analyses indicated that soil type had no
effect on whether or not a producer adopted either practice. The
collective effect of easting, northing, and their interaction over
time suggest that the adoption of CP/PC sequences grew primarily
in the northeastern portion of the study area between 2001 and
2007, and then expanded toward the southwest.

The models indicate that fields in CP/PC sequences were
initially associated with lower elevations, with the exception of the
Missouri River corridor, but had begun to move upslope by 2005–
2006. Some of the lowest elevations in the study area are in the
vicinity of Medicine Lake – the location of the original clusters. The
upslope expansion in the latter portion of the study was congruent
with results from easting, as the terrain generally increases in
elevation from east to west.

REAP was retained in the models only occasionally and, when
present, had negative coefficients; precipitation was likewise
negative. Thus, locations with higher REAP or precipitation were
less likely to have adopted CP/PC sequences, after controlling for
easting and northing effects in the models. These findings contradict
the exploratory data analysis, which indicated that adoption of these
sequences was associated with locations with high REAP and
precipitation. REAP, by definition, does not vary over time and it has a
conspicuous northeast–southwest trend in the study area such that
higher values are in the northeast. REAP also had a very strong
positive relationship with easting (r = � 0.79 depending on time
frame) and a strong positive relationship with northing (r = � 0.57).
Similarly, annual precipitation had strong positive relationships
with easting (r = 0.39–0.89 depending on time frame). This suggests
that multi-collinearity was present in the predictor variables and
that all interpretations must be made with caution because of this
shared information.

The importance of the geographic variables requires interpre-
tation, as geographic position does not inherently explain anything
ecological, but functions as a surrogate for other environmental
variables (e.g., Pereira and Fonseca, 2003). We conclude that the
strong effect of geographic position is actually driven by water
availability. This suggests that the adoption of the CP/PC sequences
began in locations with high REAP values, typically greater than
330 mm, and gradually spread to locations with REAP values as low
as 270 mm. The same general pattern of spread from higher to
lower water availability was true for annual precipitation. The
environmental variables, collectively, implied that the adoption of
CP/PC sequences were initially located in the eastern portion of the
study area and expanded, first to the northwest and then towards
the southwest (see also Fig. 2). This relationship is consistent with
a pattern in which adoption occurred in more favorable locations
initially and expanded into marginal environments.

The more favorable locations for the adoption of CP/PC sequences
were those with greater levels of available water, i.e., locations with
higher annual precipitation and higher REAP. We see this association
with water play out as the original adopters were in locations with
higher REAP (north and east) and expansion was progressively into
locations with lower REAP. Fields using center-pivot irrigation to
growpulsecrops were not commonin the study regionduring 2001–
2012; however, they were occasionally present in the west (Valley
County) where REAP and annual precipitation were lowest. The
evidence suggests that the adoption of CP/PC sequences possibly
expanded via a contagion process during 2001–2003 and expansion
via nucleation during 2004–2012, but this is inconclusive. A possible
explanation is that the practice originally spread from the initial
adopters to their neighbors, not all of whom continued with the
practice; while producers farther away, initiated new clusters.
Regardless of mechanism, expansion is likely related to the Farm
Security and Rural Investment Act of 2002 (i.e., the 2002 ‘Farm Bill’),
which provided meaningful protection in the form of marketing
loans and payments if market prices fall too low for producers of
pulse crops (Hauser, 2002).

4.3. The adoption of block-managed cereal-based sequences in lieu of
strip-cropping

Fields that abandoned continuous strip-cropping and adopted
block-managed cereal-based sequences were, like the CP/PC
sequences, not randomly distributed at any time. Tests for spatial
randomness indicated clustering within local neighborhoods of 5–
17 km, approximately one-third smaller than the neighborhoods
for the CP/PC sequences. This is visually evident in the density
plots (Fig. 3), where regions with higher concentrations of SC
sequences are readily visible. We caution the reader again with
respect to scaling in the density plots.

As before, we tested whether the observed patterns of adoption
of block-managed cereal-based sequences tended to cluster
around the fields that had adopted the practice. This was true
for the majority of the study and there was evidence of differences
in two of the ten comparisons (see Fig. 4b). We see in Fig. 3 that the
original adopters were primarily located in two clusters: one near
the center of the study region and another just north of Medicine
Lake. The cluster north of Medicine Lake was coincident with an
original cluster of CP/PC adoption. These data suggest that
adoption of block-managed cereal-based sequences might have
propagated as a contagion process; however, the distances
between fields were not consistently significant. These distances
were, as with the CP/PC sequences, small from a practical
viewpoint – the largest corresponded to a 320–400 m difference
between the observed and random distances on the original scale.
We concluded that a weak socially-driven contagion and nucle-
ation processes for the conversion from continuous strip-cropping
to block-managed cereal-based sequences might have operated
throughout the duration of the study.



86 J.A. Long et al. / Agriculture, Ecosystems and Environment 197 (2014) 77–87
Modeling the environmental variables indicated that geograph-
ic position was associated with the likelihood that a field had
adopted block-managed sequences in lieu of continuous strip
cropping, but not as strongly nor as consistently as in the adoption
of CP/PC sequences. Locations farther east and north were more
likely to have adopted block-management. The northern and
eastern locations were more likely to have adopted either
continuous cropping of cereals or cereal–pulse sequences, while
locations farther south and west favored the adoption of block-
managed cereal-fallow sequences. Elevation generally indicated
that the adoption of block-managed cereal-based sequences, like
the adoption of CP/PC sequences, tended to move upslope –

toward the west. REAP and annual precipitation were rarely
retained in the models, but were strongly correlated with easting
and northing as we found in the CP/PC sequences. Therefore, we
believe it is likely that, similar to the SC sequences, geographic
position acted as a proxy for water. Together, the environmental
variables suggest that adoption of block-managed cereal-based
sequences initially occurred in the central and eastern portions of
the study area and expanded first to the north and then toward the
southwest (see also Fig. 3).

The principal driving factor for the adoption of block-managed
cereal-based sequences, or alternatively the abandonment of
continuous strip-cropping, during 2001–2012 was water. These
conversions happened in locations with consistently higher levels
of moisture, while the decision to continue managing fields via
strip-cropping was confined to locations where the availability of
water was less consistent. This pattern is logical given that strip-
cropping entered widespread use in regions where rainfall is a
limiting resource as a means to better manage soil water and to
reduce losses due to Aeolian erosion. While environmental
variables explained the locations of conversions, we cannot rule
out the possibility that the decision to adopt block-management or
to continue strip-cropping also occurred within a social context.
Adoption of block-management, in regions where it is feasible,
seemed to happen more frequently than not amongst neighbors
within 20 km of one another.

5. Conclusion

We investigated changes in two common cropping sequences in
northeast Montana: (1) adoption of cereal–pulse cropping
sequences; and (2) adoption of block managed cereal-based
sequences in lieu of continuous strip-cropping. These sequences
are key indicators of shifting agricultural practices in the region.
Dryland farming has a history of developing and adopting
management practices to capture and conserve rainfall, and to
better manage soil moisture. Water efficiency is essential in the
semiarid portions of the Northern Great Plains and, not surpris-
ingly, water exerts a fundamental control on the decision whether
or not to adopt either of these practices. Traditional cereal-fallow
sequences are inefficient and producers in northeast Montana are
moving away from strip-cropping, a form of cereal-fallow
sequences, to block-management of cereal-based sequences,
including those with pulse crops in locations where the environ-
ment is suitable. It is possible that the expansion of these practices
was due, in part, to social factors, particularly during the early
periods of adoption. This suggests a process in which the
‘neighbors’ of the original adopters emulated nearby practices.
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