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a b s t r a c t

Biomass from land enrolled in the Conservation Reserve Program (CRP) is being considered

as a biofuel feedstock source. A quick, accurate and nondestructive method to estimate

biomass yield would be valuable for land managers to ensure sustainable production. The

purpose of this study was to compare the ability of regression models to estimate biomass

yields using data from satellite and ground based remote sensing platforms. Biomass yields

and plant spectral responses were obtained at different phenological stages over two

growing seasons (2011e2012) on an 8.1 ha CRP pasture in central Montana. Regression

models were constructed using the normalized difference vegetation index (NDVI) and

various band combinations from a hand held Crop Circle sensor and from Landsat satellite

images. All models showed reasonable accuracy in estimating biomass, with a difference of

<276 kg ha�1 or 8% of measured values. None of the models showed statistically significant

differences (p > 0.05) between actual and estimated biomass. Results suggest that the

usefulness of the spectral regions is a function of phenological growth stage. Red, red edge,

and the near-infrared bands are more responsive at boot and peak growth stages while

bands in the short-wave infrared increased the accuracy for the dormant stage biomass

estimations. Land managers may construct spectral models to more effectively manage

biomass resources.

ª 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The Biomass Research and Development Technical Advisory

Committee established national goals in 2003 that biomass

would supply 5% of the nation’s total power, 20% of trans-

portation fuels, and 25% of chemicals by 2030 [1]. Biomass
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derived from land enrolled in the CRP, a voluntary program in

which environmentally sensitive agricultural land is con-

verted to vegetative cover, is being evaluated as a potential

biofuel feedstock source tomeet these goals [1e3]. CRP land in

the United States totaled approximately 126,000 km2 in 2010

[3], from which an estimated 15.4e25.4 Tg of dry biomass

could be available for bioenergy production [2,4].
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CRP land is often environmentally fragile with a high de-

gree of spatial variation in vegetative cover and soil types. It is

critical, therefore, to developmethods that can accurately and

nondestructively measure biomass in order to ensure sus-

tainable production, harvesting, and soil protection. Remote

sensing of vegetation from ground or satellite-based sensors

might provide a tool to estimate biomass at management

relevant scales [5]. The spectral response of plants has been

found to change as they progress through different pheno-

logical growth stages [6,7]. Vegetation at different phenolog-

ical stages differs in chemical composition and inmorphology

[8]. As plants mature, for example, the stem to leaf ratio and

the amounts of lignin, cellulose, and hemicellulose all in-

crease. These increases are accompanied by a simultaneous

decrease in the amount of chlorophyll [8e10]. Plant phenology

or growth stage is affected by environmental factors, such as

photoperiod, temperature, and precipitation [11].

The Normalized Difference Vegetation Index (NDVI),

developed to take advantage of specific reflectance properties

of active photosynthetic plant tissue in the red and near-

infrared portions of the electromagnetic spectrum, is a com-

mon remote sensing index used in agricultural studies [12].

Studies have shown that NDVI is well-correlated with total

biomass [13], yields for specific crops, such as corn (Zea mays

L.) and winter wheat (Triticum aestivuum L.) [14,15], as well as

biomass in vineyards[16], perennial grassland [17], pasture-

land [18], and shortgrass steppes [7]. Despite these studies, the

strength of the relationship between NDVI and biomassmight

be reduced by the presence of dead or dormant plant material

[7,19,20], which is often present in CRP land.

Another common remote sensing technique is bandwise

regression e a specific case of stepwise multiple regression in

which the explanatory variables are measures of reflected

energy in sensor-specific spectral bands. It begins with a

regression model built using all available spectral bands, and

then the least significant bands are removed one at a time

until the fit of the model no longer improves (e.g. [13,21]).

Modeling biomass with bandwise regression was found to

explain more variability than models based solely on NDVI in

a highly disturbed landscape (R2 ¼ 0.75 versus 0.65) [21] and in

rangelands (R2 ¼ 0.66 versus 0.41) [13]. Consequently, band-

wise regression modeling is considered to be a more reliable

technique to estimate biomass across landscapes with a high

degree of variability in vegetative cover and soil types [13,21].

The purpose of this study was to compare the ability of

bandwise and NDVI-based regression models to estimate

biomass yields using data from satellite- and ground-based

remote sensing platforms. The goal is to develop a method

to quickly, accurately, and nondestructively estimate biomass

in CRP pastureland at different phenological stages across

multiple growing seasons in central Montana.
2. Methods

2.1. Study area

The study was conducted during the 2011 and 2012 growing

seasons on 8.1 ha of CRP pastureland in Benchland, Montana,

near the Montana State University Central Agricultural
Research Station (CARC) (Judith Basin County, 47�05ʹ2100 N,

110�00ʹ4400 W). The precipitation amounts during the 2011 and

2012 growing seasons (Fig. 1) were markedly different. In 2011

the study area received 8 cmmore precipitation than the long-

term (based on 103 yrs) annual average of 40 cm, while 2012

was substantially drier, receiving only 28 cm of precipitation

[22]. The soil is a fine clay-loam (fine-loamy, carbonatic, frigid

Typic Calciborolls) [23] and the dominant plant species are

intermediate wheatgrass (Thinopyrum intermedium (Host)

Barkworth & DR Dewey), pubescent wheatgrass (Agropyon

trichophorum (Link) Richter), tall wheatgrass (Thinopyrum

poticum (Podp.) Z.-W. Liu & R.-C. Wang) and alfalfa (Medicago

sativa L.).

2.2. Field data

The 8.1 ha CRP pasture was divided into nine 0.9 ha plots and

six sampling points were randomly selected within each plot.

We sampled at three phenological stages: boot, peak growth,

and dormancy. The boot stage was defined at the point at

which the inflorescence of grasswas enclosed by the sheath of

the uppermost part of the plant; peak growth was defined as

when the grass was 50% flowering and alfalfa had reached

7e8% bloom; and dormancy was when the study area had

received at least one week of temperature below 0 �C. When

the plants reached the appropriate growth stage (boot, peak

growth, and dormancy), a 1 m2 quadrat at each of the

randomly selected points was scanned by the active ground

based remote sensing unit Crop Circle (model ACS 470,

Holland Scientific) [24]. Then the biomass was hand clipped to

within 2.5 cm of the soil tomimic the effects from grazing. The

measurements were conducted in mid-May to early June, late

June to early July, and mid- to late October corresponding to

the phenological growth stages of boot, peak growth, and

dormancy, respectively. Quadrats were scanned and clipped

only once. We took 54 samples at the boot stage, 27 at peak

growth, and 27 at dormancy because one-half of the field plots

were harvested at the peak growth stage. This process was

repeated in each of the two years in 2011 and 2012, resulting in

a total of 216 samples. The biomass samples were dried at

40.6 �C for 72 h. Total dry biomass production per 1m2 quadrat

was then weighed, recorded, and used to determine dry

biomass production in kg ha�1.

2.3. Spectral data

The Crop Circle sensor is an active multichannel sensor that

records reflected energy in the red (0.66e0.68 mm), red edge

(0.72e0.74 mm), and near infrared (NIR) (0.76e0.81 mm) portions

of the spectrum [24]. NDVI from the Crop Circle sensor was

calculated from energy reflectance in the red and NIR bands

using the formula: NDVI ¼ (NIR � Red)/(NIR þ Red) [12]. The

sensor was operated from 1 m above the vegetation, and has

an instantaneous field-of-view that is approximately 30� by

14� [24]. Thus, we captured an area of 0.125 m2 (0.5 m by

0.25 m) simultaneously. We made two passes to completely

scan the 1 m2 quadrat. The Crop Circle sensor generates its

own source of illumination and is not affected by ambient

lighting conditions [24]; therefore, radiometric normalization

was not necessary.

http://dx.doi.org/10.1016/j.biombioe.2014.01.036
http://dx.doi.org/10.1016/j.biombioe.2014.01.036


Fig. 1 e Monthly precipitation for 2011 (white bars), 2012 (shaded bars) and the smoothed 103-year historical average (black

line) [22].
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Landsat 5 and 7 images were acquired from the United

States Geological Survey (USGS) [25] and were within 14 days

of the field collection date for the boot and peak growth stages,

and within 30 days for dormancy (Table 1). When directly

comparing images from different dates, exogenous factors,

such as differences in atmospheric conditions or solar zenith

angles affect the amount of reflected radiation [26]. To ac-

count for this variation, all images were radiometrically

normalized to the 4 June 2011 image using pseudo-invariant

features [26].

The sensor aboard the Landsat 5 satellite was the Thematic

Mapper (TM), while Landsat 7 carries the Enhanced Thematic

Mapper Plus (ETMþ). Both sensors record reflected energy in

seven spectral bands. We refer hereafter to TM and ETMþ
spectral bands by band number: band 1 ¼ blue (0.45e0.52 mm),

band 2 ¼ green (0.52e0.60 mm), band 3 ¼ red (0.63e0.69 mm),

band 4 ¼ near infrared (0.75e0.90 mm), band 5 ¼ short-wave

infrared (1.55e1.75 mm), band 6 ¼ thermal (10.4e12.5 mm), and

band 7 ¼ short-wave infrared (2.09e2.35 mm) [27]. Reflectance

values for bands 1e7 were extracted from the pixels that
Table 1 e Differences in days between image acquisition
and biomass clipping.a

Year &
phenological
stage

Sensor Image
date

Clipping
date

Difference

2011 e Boot stage TM 4 Jun 2011 3 Jun 2011 1

2011 e Peak

growth

ETMþ 28 Jun 2011 1 Jul 2011 3

2011 e Dormancy TM 26 Sep 2011 27 Oct 2011 1

2012 e Boot stage ETMþ 13 May 2012 8 May 2012 5

2012 e Peak

growth

ETMþ 14 Jun 2012 28 Jun 2012 14

2012 e Dormancy ETMþ 18 Sep 2012 18 Oct 2012 30

a TM ¼ Thematic Mapper (Landsat 5 sensor), ETMþ ¼ Enhanced

Thematic Mapper Plus (Landsat 7 sensor).
contained a quadrat. NDVIwas calculated in the samemanner

as with the Crop Circle sensor. Dry biomass measurements

from the quadrats were used to represent the biomass pro-

duced in each pixel [13]. Since TM and ETMþ pixels are 900 m2

(30m� 30m) in area, the 1m2 quadrats represent the biomass

produced in a much larger area and we make the necessary

assumption that the quadrats are unbiased and representa-

tive of the larger area [13,27].
2.4. Analysis

Biomass was estimated with multiple linear regression

models in which the explanatory variables were either NDVI,

or spectral reflectance values and their two-way interactions.

The reflectance values from each spectral band were the

explanatory variables in the regression equations, and they

are often highly correlated, either high pair-wise correlations

or highmultiple-correlation between one variable and several

others. These relationships are indicative of potentially sig-

nificant interactions [28]; therefore, we used all possible two-

way interactions in the full model. We generated two NDVI

and two bandwise regression models from Crop Circle and

Landsat data, resulting in a total of four full models (Table 2).

Bandwise regression (forward and backward) was used on the

full models to remove non-significant bands, which produced

the set of reduced models (Table 3). We used indicator vari-

ables to denote the peak growth and dormancy phenological

stages (Ip and Id respectively)e the boot stage does not need an

indicator as it was the baseline.

The data from each year were pooled and one-half of the

observations from each growth stage was used to build the

models, while the remaining observations were used to test

the models’ ability to estimate actual biomass. Five observa-

tions were removed from the subset used to build the models

because the quadrats were located in Landsat 7 ETMþ data

gaps. These data gaps are caused by the failure of the scan line

corrector, which compensates for forward motion while the

http://dx.doi.org/10.1016/j.biombioe.2014.01.036
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Table 2 e Full biomass models.a

Bandwise regression models

Landsat b0 þ B1 þ B2 þ B3 þ B4 þ B5 þ B6 þ B7 þ Ip þ Id þ (B1$Ip) þ (B2$Ip) þ (B3$Ip) þ (B4$Ip) þ (B5$Ip) þ (B6$Ip) þ (B7$Ip) þ (B1$Id)

þ (B2$Id) þ (B3$Id) þ (B4$Id) þ (B5$Id) þ (B6$Id) þ (B7$Id) þ (B1$B2) þ (B1$B3) þ (B1$B4) þ (B1$B5) þ (B1$B6) þ (B1$B7) þ (B2$B3)

þ (B2$B4) þ (B2$B5) þ (B2$B6) þ (B2$B7) þ (B3$B4) þ (B3$B5) þ (B3$B6) þ (B3$B7) þ (B4$B5) þ (B4$B6) þ (B4$B7) þ (B5$B6)

þ (B5$B7) þ (B6$B7)

Crop circle b0 þ R þ NIR þ RE þ Ip þ Id þ (R$Ip) þ (R$Id) þ (NIR$Ip) þ (NIR$Id) þ (RE$Ip) þ (RE$Id) þ (R$NIR) þ (R$RE) þ (NIR$RE)

NDVI-based models

Landsat b0 þ NDVI þ Ip þ Id þ (NDVI$Ip) þ (NDVI$Id)

Crop circle b0 þ NDVI þ Ip þ Id þ (NDVI$Ip) þ (NDVI$Id)

a The intercept is b0, the undetermined coefficients (bi) have been eliminated from all other variables for simplicity. Ip and Id are indicator

variables for peak growth and dormancy (there is no indicator for the boot stage as this was the baseline). The boot stage was the point at which

the inflorescence was enclosed by the sheath of the uppermost part of the plant; peak growth was when the alfalfa had reached 7e8% bloom;

and dormancy was when the study area had received at least one week of temperature below 0 �C. NDVI ¼ normalized difference vegetation

index. R, NIR and RE refer to the red, near-infrared, and red-edge bands of the crop circle sensor. B1eB7 indicate Landsat bands 1e7. Two-way

interactions are in parentheses.
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sensor scans back and forth; the result is diagonal bands of no

data on ETMþ images [27]. For the same reason, 12 observa-

tions were removed from the validation subset, which

reduced the number of observations from 108 to 96. Co-

efficients of determination (R2) were used to estimate the

amount of explained variance in each model and provide a

measure of goodness-of-fit [13,21].

Actual biomass values were regressed against the esti-

mated biomass values from each regression model to assess

model accuracy. We also used two-sample t-tests to deter-

mine if a statistically significant difference (a ¼ 0.05) in means

existed between actual and estimated biomass values. Results

from these t-tests suggested whether or not the models were

predicting within the bounds of uncertainty and supple-

mented the model accuracy assessments. Averages for actual

and estimated biomass, as well as their differences, standard

errors and confidence intervals were calculated for each

model. Finally, actual biomass values were regressed against

estimated biomass by growth stage.
3. Results and discussion

The reduced models fit the calibration data reasonably well

withmoderate to high R2 values (Table 3; Fig. 2). The bandwise

regression models from each sensor explained more variance
Table 3 e Reduced (final) biomass models.a

Bandwise regression models

Landsat �129,400.0 þ 1242.0 * B1 þ 418.1 * B2 � 132.5 * B3 þ 999.

þ 40,050.0 * Id � 247.2 * (B1$Ip) þ 379 * (B3$Ip) þ 190.2 * (B

þ 682.7 * (B2$Id) þ 718.6 * (B3$Id) þ 515.4*(B5$Id) þ 251.5*(

� 5.0*(B1$B6) þ 42.2*(B1$B7) � 12.5*(B2$B4) þ 10.9*(B2$B5

Crop circle �967.3 � 3795.2*R þ 4916.4*NIR þ 13,215.6*RE þ 1471.6*I

� 49,525.0*(RE$Id) � 27,093.9*(R$RE)

NDVI-based models

Landsat 628.2 þ 1514.5*NDVI þ 799.3*Ip � 3804.6*Id þ 3458.1*(ND

Crop circle �444.8 þ 6918.6 * NDVI � 125.8*Ip þ 7462.4*Id þ 6345.9*(N

a As in Table 2, but the undetermined coefficients (bi) were added and no
than theNDVI-based sensors; 0.84 versus 0.65 for Landsat, and

0.73 versus 0.69 for the Crop Circle sensor. This is likely due to

the larger number of explanatory variables and, for Landsat,

the inclusion of the short-wave infrared bands. The reduced

Landsat bandwise regressionmodel had a total 28 explanatory

variables. In contrast, the reduced Crop Circle bandwise

regression model used nine explanatory variables, whereas

the reduced NDVI-based models, from either sensor, used

only five explanatory variables. Bandwise regression with the

Landsat data was the only model that incorporated data from

the short-wave infrared bands (bands 5 and 7), which are

associated with the water content within a plant such that

higher reflectance values indicate drier vegetation.

Themean value for actual biomass across all growth stages

for 2011 and 2012 was 2476 � 169 kg ha�1 and each of the four

models performed well at estimating this value (Table 4). All

estimates were within 276 kg ha�1 of the actual value. The

Landsat-derived NDVImodel gave themost accurate estimate

with a difference of only 22 � 96 kg ha�1. The next best esti-

mates were from the Landsat bandwise regression model

(83 � 90 kg ha�1), Crop Circle bandwise regression

(155 � 90 kg ha�1), and the Crop Circle NDVI model

(182 � 94 kg ha�1). Nonetheless, estimated biomass from the

‘worst’ performing model (Crop Circle e NDVI) was within 8%

of the actual measured value, while the ‘best’ model (Landsat

e NDVI) produced estimates within 1%. Both Landsat-derived
Adj. R2

5 * B4 � 300.0 * B5 þ 736.0 * B6 � 129.7 * B7 þ 3979.0 * Ip
4$Ip) � 490.9 * (B5$Ip) þ (B6$Ip) þ 786.7 * (B7$Ip)

B6$Id) þ 1064*(B7$Id) � 7.3*(B1$B3) � 18.5*(B1$B5)

) þ 38.7*(B3$B5) � 89.4*(B3$B7) � 4.4*(B4$B6)

0.84

p � 3619.1*Id þ 127,054.3*(R$Id) � 58,598.6*(NIR$Id) 0.73

VI$Ip) þ 49,391.0*(NDVI$Id) 0.65

DVI$Ip) � 80,776.7*(NDVI$Id) 0.69

n-significant variables dropped.
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Fig. 2 e Plots of actual biomass (y-axis) versus estimated biomass (x-axis) from the reduced models for all data (column 1)

and by phenological stage (columns 2e4). Actual and estimated biomass are measured in kg haL1. LS [ Landsat, CC [ crop

circle. NDVI [ normalized difference vegetation index. The white circles indicate 2011 and the black circles are 2012. The

boot stage was the point at which the inflorescence of grass was enclosed by the sheaf of the uppermost part of the plant;

peak growth was when grass had reached 50% flowering and the alfalfa had reached 7e8% bloom; and dormancy was when

the study area had received at least one week of temperature below 0 �C. For all slopes, p < 0.01.
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models produced better estimates than the corresponding

models from the Crop Circle sensor, further supporting the

value of additional bands. The spatial resolution of Landsat,

900 m2, was substantially larger than the 1 m2 quadrats.

Consequently, some samples had the same values for bands

1e7, as well as NDVI, because their quadrats were located in

the same Landsat pixel. This reduced the amount of variability

in the Landsat-based models. In contrast, the Crop Circle

sensor had a spatial resolution less than 1m, which gave each

quadrat a unique set of spectral measurements and increased

variability in the Crop Circle-based models. Results from two-

sample t-tests suggest that all models were predicting within

the bounds of uncertainty as there were no statistically sig-

nificant differences between estimated and actual biomass for

any of the final models (Table 4).
Spectral values, and therefore NDVI, vary with phenolog-

ical stage. As plants mature and progress through the

different phenological stages of development, plant morpho-

logical features change [10,11], causing changes in spectral

response. Consequently, we also examined the effect of

phenology on biomass estimation models by regressing esti-

mated and actual biomass against one another, grouped by

phenological stage (Fig. 2). The models were not equally suc-

cessful at estimating biomass when comparisons aremade by

phenological growth stage, suggesting that there are prefer-

able times to estimate biomass depending on the available

sensor. Overall, the best results came from bandwise regres-

sion with Landsat data at the dormancy stage (R2 ¼ 0.80);

however, it gave the poorest model estimates when applied to

the boot stage (R2 ¼ 0.02) because of the differences in

http://dx.doi.org/10.1016/j.biombioe.2014.01.036
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Table 4 e Comparison of the reduced (final) models’ ability to estimate biomass.a

Reduced model Actual biomass Estimated biomass Difference 95% CI df p-Value

Bandwise regression (Landsat) 2476 � 169 2392 � 157 83 � 90 (�95, 261) 189 0.72

Bandwise regression (crop circle) 2476 � 169 2321 � 144 155 � 90 (�23,333) 185 0.49

NDVI (Landsat) 2476 � 169 2454 � 149 22 � 96 (�169, 212) 187 0.93

NDVI (crop circle) 2476 � 169 2294 � 131 182 � 94 (�4, 368) 179 0.40

a All biomass values (kg ha�1) aremean� SE with a sample size of 96. SE¼ standard error, CI¼ confidence interval and df¼ degrees of freedom.

Difference refers to the absolute value of the difference between the actual and estimated values. The p-values are from two-sample t-testse no

model indicated a statistically significant difference between the actual and estimated biomass. NDVI ¼ normalized difference vegetation

index.
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chlorophyll, plant water content, and vegetative canopy be-

tween boot and dormancy stages.

The peak growth stage showed moderately strong re-

lationships (R2 ¼ 0.63e0.64) between actual and estimated

biomass (Table 5; Fig. 2) in all models except bandwise

regression with Landsat data (R2 ¼ 0.34). The peak growth

stage was characterized by photosynthetically active (green)

plants. Green vegetation at peak growth contains high levels

of chlorophyll and displays a distinctive inverse relationship

between reflectance in the red and NIR portions of the spec-

trum [6]. NDVI was designed specifically to take advantage of

this relationship [12]; consequently, NDVI-based models per-

formed reasonably well at this stage.

Relationships between actual and estimated biomass were

moderate in the dormancy stage with R2 values between 0.34

and 0.44 (Table 5; Fig. 2) for all models except bandwise

regression with the Landsat data, which had a strong rela-

tionship (R2 ¼ 0.80). The study area in the dormancy stage

consisted of a mixture of dormant (senescent) vegetation and

bare soil, which are more reflective in the visible and short-

wave infrared regions [7]. As discussed earlier, Landsat in-

corporates two short-wave infrared bands that are associated

with the water content of plants and, therefore, senescence.

Models without the short-wave infrared bands had weaker

relationships at this stage.

Relationships for the boot stage were typically poor to

moderate with R2 values as low as 0.02 (Table 5; Fig. 2). The

Crop Circle models showed the strongest relationships
Table 5 e Reduced (final) model performance (adjusted R2)
of estimating biomass by growth stage.a

Reduced model R2

Boot
stage

Peak
growth

Dormancy

Bandwise regression

(Landsat)

0.02 0.34 0.80

Bandwise regression

(crop circle)

0.32 0.64 0.44

NDVI (Landsat) 0.18 0.64 0.39

NDVI (crop circle) 0.42 0.63 0.34

a NDVI ¼ normalized difference vegetation index. The boot stage

was the point at which the inflorescence was enclosed by the

sheath of the uppermost part of the plant; peak growth was when

the alfalfa had reached 7e8% bloom; and dormancy was when the

study area had received at least one week of temperature below

0 �C..
between actual and estimated biomass (R2 ¼ 0.32 and 0.42) at

the boot stage. The Landsat models performed poorly at this

stage (R2 ¼ 0.02 and 0.18). The superior performance of the

Crop Circle models at the boot stage is likely due to its finer

spectral and spatial resolution. Spectrally, the Crop Circle

sensor has a red edge band in the near infrared that corre-

sponds to the point of maximum slope in vegetation reflec-

tance spectra and it is sensitive to chlorophyll concentration

[29]. The red edge (0.72e0.74 mm) is more narrowly defined

than the broader Landsat near infrared band (0.75e0.90 mm).

Furthermore, the much smaller sensor footprint of the Crop

Circle sensor minimizes reflections from regions that might

not yet be in the boot stage.
4. Summary

Regression, both NDVI and bandwise regression models, was

successfully constructed to estimate biomass in a CRP

pasture. Regardless of the model or sensor, estimated values

were within 8% of the measured biomass values; the best es-

timates were within 1%. Biomass estimation, at boot and peak

growth stages, was most accurate with models using the red,

red edge and NIR. Estimation at dormancy was most suc-

cessful when models incorporated the short-wave infrared

portion of the spectrum. Results demonstrated that models

constructed from remotely sensed data can accurately esti-

mate biomass over two consecutive growing seasons.

These techniques can be useful tools for land resource

managers; however, the choice of an appropriate sensor re-

mains. We only tested two sensors; there are many other

satellite-based and hand-held options. The choice depends on

several factors including the size of the land area, time of year,

the sensor’s spectral capabilities, and the cost of acquiring the

data. We offer the following guidelines to help managers

make an informed decision: (1) managers interested in

assessing large areas should opt for satellite-based imagery

such as Landsat, while small areas are likely better sensed

with hand-held sensors; (2) the time of year for the assess-

ment is important because NDVI only works well as long as

plant chlorophyll is present (the early growing season through

summer); autumn assessments are less reliable; (3) sensors

withmore bands (e.g., Landsat) tend to outperform those with

fewer bands (e.g., many hand-held sensors), and fewer bands

make it more likely that a manager will have to rely on NDVI

rather than bandwise regression; and (4) satellite-based im-

agery is typically freely available, whereas hand-held sensors

http://dx.doi.org/10.1016/j.biombioe.2014.01.036
http://dx.doi.org/10.1016/j.biombioe.2014.01.036
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must be purchased. We note that more research is needed to

determine the spatial and temporal robustness of our

findings.
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