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Ecological and land management applications would often benefit from maps of relative canopy cover of each
species present within a pixel, instead of traditional remote-sensing based maps of either dominant species or
percent canopy cover without regard to species composition. Widely used statistical models for remote sensing,
such as randomForest (RF), support vector machines (SVM), and generalized linear regression (GLM), are prob-
lematic for this purpose as they often fail to properly predict the absence of a target species, especially in areas of
high vegetation diversity, due to the relative abundance of absence observations (or zero values) in the reference
data used to train predictive models. Experience has shown that RF, SVM, and GLM models trained on such
reference data produce biased values of PCC, for example, in forested areas absent the target species, PCC is
overestimated, while in forested areas where a target species PCC is abundant, PCC tends to be underestimated.
We used zero-inflated regression modeling to reduce such bias and better predict PCC-by-species within each
pixel inmixed conifer forests. Zero-inflated regressionmodels use a two-step process tofirst predict the presence
or absence of the target species, and then topredict continuous levels of PCConlywhere the target species is pres-
ent.We compared the results of threewidely usedmethods (RF, SVM, and GLM) to nine zero-inflatedmodels for
their ability to predict continuous PCC for each of five different conifer species in heterogeneous forests of north-
westernMontana using Landsat TMandOLI imagery. Our best zero-inflatedmodels resulted in ameandifference
of−3.84% to 2.26%, 95% confidence interval of 6.22% to 13.09%, and RMSE of 11.26% to 22.98%, depending on the
species. The success of the zero-inflatedmodel was robust acrossmethods tested. Both the zero-inflated and tra-
ditional methods were successful in estimating continuous canopy cover, however, the traditional models
showed a substantial bias by never correctly predicting the absence of the target species, while the zero-
inflated models correctly predicted species absence 57% to 84% of the time, depending on the species. Visual in-
spection of the predictedmaps compared tohigh-resolution imagery demonstrated that the zero-inflatedmodels
alsomore closely matched the landscape, as traditional modelsmore often incorrectly predicted canopy cover in
non-forested areas. Using the zero-inflated process dramatically reduced the bias of the results, allowing end
users to make management decisions with increased confidence about where a target species is absent, some-
thing not possible with the traditional methods tested.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Forests are commonly mapped either continuously by percent
canopy cover (PCC) regardless of species or categorically by dominant
species. Canopy cover is defined as the “proportion of the forest floor
covered by the vertical projection of the tree crowns” (Jennings,
Brown, & Sheil, 1999). Total PCC is important when studying biophysi-
cal factors of vegetation such as leaf area index (LAI) or the total amount
of biomass available within an ecosystem and is widely used in forest
and agricultural management. Each plant species within a forest, how-
ever, has unique ecological functions. Species composition affects
.L. Savage).
ecological functionality and ecological stability within a community in
a profound way (Peterson, Allen, & Holling, 1998) and individual
species with different ecological roles can play an important part
in the health of an ecosystem. Keystone species – both animal and
plant – have strong ecological functions and structure the ecosystems
in which they exist (Holling, 1992; Peterson et al., 1998). The inherent
dynamic structure and nature of vegetation and ecological communities
and their response to disturbance regimes make accurate knowledge of
species composition within a forest mandatory for any type of manage-
ment activity (White, 1979). Foresters (or biologists or managers)
would greatly benefit from access to accurately mapped PCC-by-
species within large landscapes.

Total PCC has been successfully mapped using a variety of multi-
spectral data at different levels of spatial resolution and scales:
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coarse-resolution imagery such as MODIS (Moderate-Resolution Imag-
ing Spectroradiometer) (Hansen et al., 2003; Tottrup, Rasmussen,
Eklundh, & Jonsson, 2007), moderate-resolution imagery such as
Landsat (multispectral scanner (MSS), thematic mapper (TM),
enhanced thematicmapper plus (ETM+), andOperational Land Imager
(OLI)) (Ahmed, Franklin, & Wulder, 2014; Carreiras, Pereira, & Pereira,
2006; Coulston, Jacobs, King, & Elmore, 2013; Homer, Huang, Yang,
Wylie, & Coan, 2004) and ASTER (Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer) (Falkowski, Gessler, Morgan, Hudak, &
Smith, 2005), and high-resolution imagery such as IKONOS (Johansen &
Phinn, 2006), RapidEye (Ozdemir, 2014), and NAIP (National Agricul-
ture Imagery Program) (Coulston et al., 2013). Similarly, a variety of
data types and spatial resolutions have been applied in attempts to
assess cover for specific habitats. Landsat imagery was used in several
successful habitat and crown closure mapping studies: spectral
unmixing was used on Landsat TM to derive the spatial distribution of
fraction of oak crown closure in Tulare County, California (Pu, Xu, &
Gong, 2003); the habitat of an endangered deer species in Myanmar
was predicted with analysis of Landsat ETM+ data (Koy, McShea,
Leimgruber, Haack, & Aung, 2005); and Landsat ETM+ along with
IKONOS and LiDAR imagery was spectrally unmixed to identify shade
versus trees in the Black Hills Experimental Forest of western South
Dakota (Chen, Vierling, Rowell, & DeFelice, 2004). Airborne laser scan-
ning datawas used to compute fractional cover and LAI in Ofenpass Val-
ley of the Swiss National Park with R2 values of 0.73 and 0.69
respectively (Morsdorf, Kotz, Meier, Itten, & Allgower, 2006). LiDAR
data were found acceptably equivalent to field collected forest canopy
cover, while ASTER data were not (Smith et al., 2009). In Queensland,
Australia, crown cover was estimated with an R2 of 0.78 and RMSE of
9.25%when LiDAR vegetation returns were compared to fieldmeasure-
ments (Lee & Lucas, 2007). Most of these studies, however, either did
not use Landsat data or they classified canopy cover into discrete cate-
gories of ecosystems instead of predicting a continuous response for in-
dividual species.

Predicting continuous PCC-by-species over large areas using
moderate-resolution multispectral data such as Landsat has not been
accomplished to date. PCC-by-species can be an important factor in
studying habitat, sincemany animal species rely heavily on specific veg-
etation species for survival. The snowshoe hare (Lepus americanus) is an
excellent example: it prefers spruce/fir (Picea engelmannii/Abies
lasiocarpa) forests with high horizontal cover for survival from preda-
tion by the Canada lynx (Lynx canadensis) and other predators (Fuller
& Harrison, 2010; Hodges, 2000; Squires, DeCesare, Kolbe, & Ruggiero,
2010). The effects of global climate change on indicator species is also
a good example: whitebark pine (Pinus albicaulis) is a strong indicator
species for climate change, and the loss of this species from subalpine
regions in the rocky mountains of the USA has had dramatic
ecosystem-wide impacts, including on threatened grizzly bears (Hicke
& Logan, 2009; Jewett et al., 2011).

One factor complicating attempts at mapping PCC-by-species is that
reference data for PCC-by-species can be inherently zero-rich (i.e., many
plots will not have the target species present) andwill skew the predic-
tion output toward zero. Zero-rich data is common in count data stud-
ies, such as those concerning presence/absence or species distribution
(Barry & Welsh, 2002; Cunningham & Lindenmayer, 2005). The risk of
having many zeroes in the reference data is high when mapping PCC-
by-species, especially if said species is one of many in an area of high
diversity.

Zero-rich reference data (data that include a large number of zero
observations) can impact statistical models and produce inaccurate
results. These data result in models that potentially produce “good”
statistics (e.g., low p-values) by under-predicting non-zero observa-
tions (i.e., assigning low or zero values to locations with forest cover),
a problem when presence of a species is of high interest to the end
user, while over-predicting zero observations (assigning values other
than zero to locations with no forest cover), a problem when absence
of a species is of importance. Zero-inflated regression is one method
that has been developed to address this issue of under-prediction of
presence data and over-prediction of absence data. It is a two-step pro-
cesswhere,first, the presence or absence of a target species is predicted,
and then refined to predict a continuous value for “presence” (non-
zero) observations (Somers et al., 2012). Zero-inflated regression tech-
niques historically used logistic regression for the first step and a linear
model for the second. Existing zero-inflated regression methods, how-
ever, do not take advantage of modern machine learning techniques
that have been successful with remote sensing imagery, such as
randomForest (RF) and support vector machines (SVM) (Mountrakis,
Im, & Ogole, 2011; Pal, 2005).

RF, SVM, and linear regression each have been widely used and are
well established in remote sensing for predicting vegetation. RF is a de-
cision tree classification and regression method that grows hundreds of
decision trees, where each tree is grown using a different bootstrapped
(resampledwith replacement) random subset of training data, and each
split within each tree is based on a different random subset of predictor
variables (Breiman, 2001; Lawrence, Wood, & Sheley, 2006). The “for-
est” of decision trees then votes to assign a class to each input data
point for classification (Breiman, 2001; Prasad, Iverson, & Liaw, 2006).
In regression mode, the average of the predictions of the “forest” of
trees is calculated (Breiman, 2001; Liaw & Wiener, 2002). SVM is a su-
pervised learningmechanism for nonlinear regression and classification
problems that identifies hyperplanes (or decision planes) that define
decision boundaries based on training data (Zhao, Popescu, Meng,
Pang, & Agca, 2011). The decision boundaries measure similarities be-
tween objects (kernels), i.e., data features are transformed into multi-
dimensional space where the hyperplanes can more easily separate
the features into optimal different predictions or classes whileminimiz-
ing error (StatSoft, Inc., 2013). Linear regression or generalized linear
models (referred to hereafter as “GLM”) is a straight-forward probabi-
listic approach to modeling that analyzes the relationship between a
predictor variable and one (simple regression) or more (multiple
regression) explanatory variables. GLMs can take multiple forms, thus
are useful for binary classification (logistic regression) as well as contin-
uous regression.

Our goal was to accurately predict PCC-by-species in highly hetero-
geneous coniferous forests of northwestern Montana using zero-
inflated RF, SVM, and GLM models and Landsat TM and OLI imagery.
This would, if successful, identify for each pixel the percentages of
each of the conifer species present in each pixel, effectively “unmixing”
the forest composition at the pixel level. To our knowledge, this is the
first documented attempt to map (1) continuous PCC-by-species in
western conifer forests (2) using zero-inflated statistical methods. We
focused on five dominant coniferous species within the region. Building
on the concept behind zero-inflated regression, we used a two stage
model to evaluate whether mixed models might be beneficial, where
one algorithmwas used to differentiate presence/absence observations,
while a different algorithmmight best model continuous levels of pres-
ence observations. Models were constructed based on forest canopy
cover plots measured in the field across the inference area. In addition,
we evaluated ourmodel's predictive ability by comparing forest canopy
estimates from the model to field data that we measured at indepen-
dent vegetation plots where canopy was most rigorously quantified.

2. Methods

2.1. Study area

Our study area covers approximately 3.6 million ha in northwestern
Montana (Fig. 1). Five United States Forest Service (USFS) forests are in-
cluded within the study area boundary: Flathead, Helena, Kootenai,
Lewis & Clark, and Lolo National Forests. It is a mountainous region
ranging from 549 to 3188 m in elevation with a variety of grassland,
brushland, and forest types. These complex forests were composed of



Fig. 1. Location map for the study area within Montana.
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mixed conifer species that varied from those dominated by dry
ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga
menziesii) stands at lower elevations to those dominated by
lodgepole pine (Pinus contorta), western larch (Larix occidentalis),
subalpine fir (A. lasiocarpa), and Engelmann spruce (P. engelmannii) at
high-elevation sites. The majority of the study area is covered by 4
Landsat WRS2 scenes (Fig. 1, Table 1).
2.2. Data acquisition

We downloaded mostly cloud-free Landsat TM images from sum-
mer and fall 2010 and 2011 from the USGS EROS Center for each of
these scenes (Table 1). The images were rectified by the USGS EROS
Center in UTM coordinate system, Zones 11 and 12, WGS84 datum.
We chose these images to cover the summer and fall seasons to ensure
that we had leaf-on and leaf-off for deciduous trees and there was no
snow to interfere with the forest canopy mapping. Seven of the images
are considered cloud free (less than 1% cloud cover), while the remain-
ing 3 have less than 14% cloud cover.

Wedownloadedmostly cloud-free Landsat OLI and Thermal Infrared
Sensor (TIRS) images from July 2013 from the USGS EROS Center in
Table 1
Landsat images used to predict PCC-by-species.

Scene path/row Acquisition date
(July TM)

Acquisition date
(September TM)

Acquisition date
(July OLI)

42/26 18 July 2011a 4 September 2011a 23 July 2013
41/26b 24 July 2010a 29 September 2011 16 July 2013
41/27 24 July 2010 29 September 2011a 16 July 2013
40/27b 4 July 2011 6 September 2011a 9 July 2013

a Images considered cloud free (b1% cloud cover).
b Scenes provided in UTM Zone 12, while all others were provided in UTM Zone 11.
UTM coordinate system, Zones 11 and 12, WGS84 datum (Table 1).
There were no cloud-free OLI images acquired by the satellite during
the entire summer and fall of 2013 for our study area. Clouds were
masked out of all of these images and filled with radiometrically
normalized data from a September image for one scene (through
no-change regression normalization (Yuan & Elvidge, 1996)), leaving
voids in the other three scenes for which no acceptable fill data was
available.

Several ancillary data sets were acquired for analysis and validation.
We acquired a 30-m digital elevation model (DEM) of the study
area from the USGS National Elevation Dataset (ned.usgs.gov). We
downloaded hydrology data from the USGS National Hydrology Dataset
(NHD, nhd.usgs.gov) and used them to mask water bodies from the
study area. Recent fire boundaries were provided by the USFS Rocky
Mountain Research Station and used to mask fire scars from the study
area. Finally, we acquired four-band, one-meter-pixel NAIP images
from 2011 from the Montana State Library Natural Resource Informa-
tion System (nris.mt.gov).

In 2013, we collected field reference data representing percent can-
opy cover (PCC) by species at 1276 points randomly located within
500 m of roads or trails throughout the study area (Fig. 2). Points
were reviewed to be spatially homogeneous so that geometricmisregis-
tration would have minimal effect. A moosehorn, a tool for vegetation
sampling, allowed field crews to accurately identify the presence or
absence of canopy cover by establishing a vertical projection at sample
points that was then used to estimate PCC in the field (Fiala, Garman,
& Gray, 2006). We established sample points on a 5-m by 5-m grid
oriented to the north. We then acquired a moosehorn reading every
meter within the 5 × 5 grid (25 readings per field data point), recording
if canopy cover existed and what species. The total percent canopy
cover for each species was calculated by counting the number of times
that a species was listed in the upper canopy within the 25-point grid
and multiplying that number by 4. Canopy species recorded at field
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Fig. 2. 2013 field data sites (black stars) randomly located near roads or trails throughout the study area.

Table 2
Imagery components used in the analysis.

Number Component name

1 July 2013 — Blue
2 July 2013 — Green
3 July 2013 — Red
4 July 2013 — NIR
5 July 2013 — MIR1
6 July 2013 — MIR2
7 July 2013 — TIR1
8 July 2013 — TIR2
9 September 2011 — Blue
10 September 2011 — Green
11 September 2011 — Red
12 September 2011 — NIR
13 September 2011 — MIR1
14 September 2011 — TIR
15 September 2011 — MIR2
16 July 2011 — Blue
17 July 2011 — Green
18 July 2011 — Red
19 July 2011 — NIR
20 July 2011 — MIR1
21 July 2011 — TIR
22 July 2011 — MIR2
23 DEM
24 Slope (degrees)
25 Aspect (17 categories)
26 NAIP texture mean
27 NAIP texture minimum
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plots included: subalpine fir, western larch, lodgepole pine, Engelmann
spruce, and Douglas-fir.

2.3. Data processing

We assumed that no change in canopy cover had occurred from
2011 to 2013 (unless from fire or clouds), because the scenes were
acquired from similar dates and the two scenes from the center path
are from the same date. We applied relative radiometric normalization
to adjacent scenes using band-specific regressions based on the group-
ing around the mean of the difference histogram of the overlapping
areas (similar to image regression and no-change regression normaliza-
tion (Singh, 1989; Yuan & Elvidge, 1996)). The regression was per-
formed on the data within one standard deviation of the mean of the
difference histogram for each band for each overlapping area within
one month. By removing the data in the histogram's tails - where
drastic changes such as fire or cloud cover occurred – we derived
the regression equation for normalization from pixels that were most
likely unchanged.

We geometrically corrected all Landsat scenes to a master scene as
needed, though most images were aligned without detectable error as
provided by the USGS EROS Center. The four scenes for each month
(July 2011, September 2011, and July 2013) were mosaicked and
clipped to the study area boundary. Water bodies and recent fire
scars (within 10 years of the image acquisition) were masked from
each mosaicked image, since canopy cover is not applicable in those
locations.

We derived ancillary datasets from the DEM and NAIP imagery, in-
cluding slope, aspect, and texture information for the study area. We
also used the 1-m NAIP imagery for checking field data for errors
(i.e., GPS coordinate mistakes and/or incorrect cover types). The image
texture mean and minimum values were derived from the standard
deviation of the first principal component of the 1-m NAIP data, then
resampled to 30-m pixels for analysis (Brown & Barber, 2012). Finally,
the three mosaicked Landsat images were combined with these ancil-
lary datasets to produce a 27-component image for analysis (Table 2).
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2.4. Zero-inflated models

We utilized the 27 data components created for the forest cover
mapping process (Table 2) and reference data extracted using the
2013 field data points for model creation. A zero-inflated model is a
two-step process that we applied to each target species on an individual
basis, so that each species was analyzed independently through a series
of models with a separate output map for each species of percent cano-
py cover per pixel for that species (Fig. 3). The prediction models were
based on combinations of three specific methods: (1) RF, (2) SVM,
and (3) GLM. All reference data (input (a) in Fig. 3) are identified first
as either zero (absence) data or non-zero (presence) data and given
values of 0 or 1. A binary classification (using one of the prediction
models listed above; e.g.: GLM in Fig. 3) is then performed on the entire
study area to identify whether canopy cover for the species being
analyzed is present or absent for each pixel (process (b), Fig. 3) and a
binary map is predicted (output (c), Fig. 3). Second, only non-zero
(presence) reference data are utilized in a continuous regression
model (e.g.: SVM in Fig. 3) to predict PCCwhere canopy cover is present
for the species being analyzed within the entire study area (processes
(d) and (f), Fig. 3) and a continuous map is predicted (output (g),
Fig. 3). We produced the final study-area-wide zero-inflated prediction
map for each species (e.g.: GLM.SVM in Fig. 3) by combining the binary
classification map with the continuous prediction map (process (h),
Fig. 3).Weassigned a value of zero to any pixel thatwas identified as ab-
sence or zero data in the binary map, while the pixels that we identified
as presence or non-zero data in the binary map were assigned the PCC
value from the continuous prediction (output (i), Fig. 3). By separating
out the zero data, the zero-rich nature of the full dataset does not bias
the continuous regression model toward zero, nor does the non-zero
data result in overestimation of the zero data.

For the RF and SVMbinary analyses (process (b), Fig. 3), we used the
models in classification mode, while for the GLM binary analyses, we
applied a logistic regression with variable selection based on a stepwise
process evaluated using AIC (Akaike Information Criteria). For the RF
and SVM continuous analyses (process (f), Fig. 3), we used the models
Fig. 3. Flowchart of the two-step zero-inflated process. Light shaded boxes represent data input
binary classification (Step 1) and SVM used for the continuous regression (Step 2) (indicated w
in regression mode, while for the GLM continuous analysis, we used a
stepwise generalized linear model based on AIC.

We used a 10-fold cross-validation process to compare models
(i.e., each model was executed 10 times while withholding a random
25% of the data each time). We evaluated nine zero-inflated models
for each species. The first 3 zero-inflated models were combinations of
the same type of model used for both the binary and continuous analy-
ses, for example, we used a binary RF classification to model zero data
and a continuous RF-based regression to model non-zero data (zero-in-
flated randomForest, or RF.RF). The rest of the zero-inflated models
were combinations of the threemethods and notated as “binary contin-
uous”, e.g., amodel using logistic regression tomodel zero data and SVM
tomodel non-zero datawas designated GLM.SVM (Fig. 3).We also eval-
uated three single-step (non-zero-inflated) models for each species
(i.e., we applied only RF, SVM, or GLM continuous regression models)
in order to determine whether or not zero-inflated models predict
PCC more accurately than traditional methods.

We performed a Wilcoxon's signed rank test on predictions for the
combined withheld data for each of the 10-fold cross-validations in
order to produce a p-value, the 95% confidence interval (CI), and the
mean of the differences. Of the nine zero-inflated models created for
each species, we chose the model combination with the smallest aver-
age CI (as long as the p-value was greater than 0.05, indicating the dif-
ference was not statistically significantly different from zero) as the
final model with which to predict the PCC for that species. This allowed
us to select the most precise model (smallest CI) having acceptable
accuracy (mean difference not significantly different from zero). It is
possible that a dataset might have a low mean difference due to a
balancing of extreme over- and underestimates, so we calculated a
rootmean squared error (RMSE, a statistic that penalizes extreme errors
(Chai & Draxler, 2014)) to identify the existence of possible extreme
errors not indicated by the Wilcoxon's statistics. We also calculated
the number of over or underestimates for each model to see if the
single-step models were overestimating zeroes, as we expected. For
each best/final model, in addition to a predicted map based on the
zero-inflated model, we also applied single-step models to the same
and output, dark shaded ovals represent processes. Example shownwith GLM used for the
ith an asterisk(*)). The full process is performed independently on each target species.
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data based on themethods used for binary classification and continuous
prediction in the zero-inflated model. Ultimately, we produced up to 3
predicted maps of PCC-by-species for each species (for example, if the
best zero-inflated model was a combination of GLM.SVM, we produced
three predicted maps: (1) GLM.SVM, (2) single-step GLM, and
(3) single-step SVM; or if the best model was SVM.SVM, we produced
two predicted maps: (1) SVM.SVM and (2) single-step SVM) and we
compared the zero-inflated prediction maps visually to the single-step
predicted maps.

2.5. Independent accuracy assessment

In 2014, we quantified a second sample (N = 113 plots) of canopy
cover plots to provide an independent assessment of model perfor-
mance. We established a 20-m by 20-m grid in which technicians sam-
pled canopy by species with moosehorn readings taken every meter
(400 readings per field data point). We then calculated PCC for each
species by adding up all occurrences of the species within the 400-m2

grid and dividing that total by 4. The intent of this intensive sampling
regime at independent points represented our best attempt to establish
estimates of “true” canopy composition by tree species for model com-
parison. We believed this comparison with independent data provided
a valid estimate of model performance as would be expected during
actual field application. Sample plots for independent data were ran-
domly established with VMap polygons (a region-wide USFS geospatial
database with lifeform and dominant tree canopy cover information;
Brown& Barber, 2012) to sample forest patches (N1.6 ha) that were rel-
atively homogeneous for comparison to model outputs. We restricted
sample points to within 200 m of open forest roads to facilitate sam-
pling, but plots were located outside of edge-effects from the road sur-
face. We applied the Wilcoxon's signed rank test with p-value, CI, and
mean of the differences to the predicted maps and these independent
field data points to check the accuracy of our methods.

3. Results

3.1. Prediction accuracies from 10-fold cross-validation

The forests of northwestern Montana are diverse and highly hetero-
geneous at fine (sub-Landsat pixel) scales, which makes accurately
mapping PCC-by-species with Landsat data a difficult process — and
Fig. 4. 2013 field sample observations of percent canopy
up to this point, rarely, if ever, done (and documented). Our intensive
field sampling in 2013 (N = 1276) showed that the forests in our
study area are composed of no less than 18 different tree species with
a wide range of PCC. On average, our five species of interest (subalpine
fir, western larch, lodgepole pine, Engelmann spruce, and Douglas-fir)
had PCC values ranging from 18.58% for subalpine fir to 25.02% for
Douglas-fir, while the average total PCC of the field sites was 60.81%.
Subalpine fir, western larch, and Engelmann spruce were observed in
less than half of the field points, while lodgepole pine and Douglas-fir
were observed in just over half of the field points, demonstrating the
zero-inflated nature of these reference data. Maximum values of the
field observations of PCC ranged from 72% for subalpine fir to 100% for
lodgepole pine. After accounting for the zeroes in these observations,
we seemost observations have low values and very few have the higher
values (Fig. 4).

We evaluated 3 different statistical methods for our zero-inflated
models: RF, SVM, and GLM. We chose the best/final PCC-by-species
model for each of our species of interest by identifying the model
with the smallest average confidence interval in the 10-fold cross-
validation results. All of the final models included SVM for continu-
ous modeling of the non-zero data. All three statistical methods
were used, depending on species, for the final binary classification of
absence, or zero, data (See Appendix, Table S1).

None of the single-step models were able to predict absence – not a
single observation of zero was accurately predicted as zero – and in
many cases these models had a larger mean difference than the zero-
inflated models (Table 3). The zero-inflated models, on the other
hand, accurately predicted absence on average 74% of the time (57% to
84% of the time depending on species). In all cases, the single-step
models overestimated more often than underestimated. The zero-
inflated models over- or underestimated PCC equally: subalpine fir
and Engelmann spruce were underestimated, while western larch,
lodgepole pine, and Douglas-fir were overestimated though not as
strongly as the single-step models.

Overall mean differences (predicted minus observed) for the
best/final zero-inflated models ranged from −1.81% to −0.54%
with CI widths ranging from 4.81% to 6.33% and RMSE values ranging
from 11.07% to 18.99.% (See Appendix, Table S2). The zero-inflated
models predicting PCC-by-species for subalpine fir and Douglas-fir
had the best results overall based on the CI width. The p-value of nearly
all of the zero-inflated models (with the exception of many of the
cover for five conifer species of interest (N = 1276).



Table 3
Comparison of over- and underestimates and accurately predicted zero observations for the final zero-inflated model and the associated single-step model(s) for each species. Each val-
idation consisted of 318 observations.

Species Model Mean difference # Overestimates # Underestimates Total # zeroes accurately
predicted/observed

Subalpine fir GLM.SVM −1.18 65 83 169/201
GLM⁎ 0.10 206 112 0/201
SVM −2.75 184 134 0/201

Western larch SVM.SVM −0.54 89 84 145/188
SVM −3.46 171 147 0/188

Lodgepole pine SVM.SVM −1.81 113 105 100/155
SVM⁎ −5.81 168 150 0/155

Engelmann spruce GLM.SVM −1.14 79 82 157/192
GLM⁎ −0.12 198 120 0/192
SVM −2.70 180 138 0/192

Douglas-fir RF.SVM −0.56 132 113 73/129
RF⁎ 0.37 207 111 0/129
SVM −3.44 165 154 0/129

⁎ Models with a p-value less than 0.05 (i.e., the difference between predicted and observed was statistically significantly different from zero).
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Douglas-fir models) was greater than 0.05, indicating that the model
differences were not statistically significantly different from zero and
supporting the use of these models for prediction of PCC-by-species.
While each final model was identified based on CIwidth, it is important
to note that there were no major differences in model performance
among the zero-inflated models (See Appendix, Table S1) (less than
2% difference in CI width and mean differences, and from just over 1%
to just under 3% differences in RMSE). Also, there is no clear evidence
that zero-inflatedGLMmethods (i.e., non-machine learning) performed
consistentlyworse than those that used RF or SVM, since even theworst
models (those with the widest CI for each species) included RF or SVM
combined with GLM. All of the single-step RF models and all but one of
the single-step GLMmodels had p-values less than 0.05with very small
CI widths and mean differences. The single-step SVM models had p-
values greater than 0.05, but demonstrably larger mean differences
than the zero-inflated models. The RMSE values of the single-step
models were only slightly larger than the zero-inflated models of west-
ern larch, lodgepole pine, and Engelmann spruce.

3.2. Independent accuracy assessment

The CI widths and mean differences from the independent accuracy
assessment were all less than 13% and 4% respectively, although in all
cases larger than the results of the 10-fold cross-validation (Table 4).
The CI widths from the independent accuracy assessment ranged from
6.22% for Engelmann spruce to 13.09% for lodgepole pine andmean dif-
ferences ranged from 2.26% for Engelmann spruce to −3.84% for
lodgepole pine. Western larch, lodgepole pine, and Douglas-fir all had
p-values greater than 0.05, while subalpine fir and Engelmann spruce
had p-values that indicate that statistically there was a difference
Table 4
Comparison of independent accuracy assessment (IAA) and 10-fold cross-validation (C-V)
error rates. The IAA compares percent canopy cover at 113 test plots to the final zero-
inflated model predictions for each species.

Species Model Mean differences CI lower/upper RMSE

Subalpine fir GLM.SVM (IAA)⁎ −2.86 −9.02/−0.38 12.29
GLM.SVM (C-V) −1.18 −4.53/0.91 11.07

Western larch SVM.SVM (IAA) −1.27 −3.75/3.81 16.74
SVM.SVM (C-V) −0.54 −3.01/2.97 13.81

Lodgepole pine SVM.SVM (IAA) −3.84 −9.74/3.35 22.98
SVM.SVM (C-V) −1.81 −3.92/2.41 18.99

Engelmann spruce GLM.SVM (IAA)⁎ 2.26 1.85/8.07 11.26
GLM.SVM (C-V) −1.14 −3.52/1.92 11.76

Douglas-fir RF.SVM (IAA) −3.02 −5.83/2.28 18.69
RF.SVM (C-V) −0.56 −1.94/2.87 16.85

⁎ Models with a p-value less than 0.05 (i.e., the difference between predicted and
observed was statistically significantly different from zero).
between predicted and observed for these species. RMSEs were smaller
for the 10-fold cross-validation for all species, except for Engelmann
spruce, where the RMSE differed by merely half a percent.

4. Discussion

Our objective was to develop a method that combined zero-inflated
models and Landsat imagery to accuratelymap PCC-by-species in conif-
erous forests of northwesternMontana.We found that our zero-inflated
models were successful in estimating canopy cover by species. This
novel application of zero-inflated regression along with RF, SVM, and
GLM resulted in accurate predictions of PCC-by-species (all mean
differences between predicted and observed b4%). Meanwhile, the
single-step (or more traditional) RF, SVM, and GLM models showed a
bias issue that indicated they were more error-prone, especially when
the end user is most interested in presence data. In other words, the
single-step models did not successfully predict absence, but rather
predicted low values where the species did not actually exist. We dem-
onstrated that with proper reference data, Landsat imagery and zero-
inflated methods provided accurate and useful predictive models of
forest canopy (with mean differences of −3.84% to 2.26%) despite the
inherent zero-richness of species-specific canopy cover data within
highly heterogeneous coniferous forests (Fig. 5).

The five species we focused on in this study were from five different
genera rather than five different species within a genus. We believe it is
likely that distinguishing species within a genera (e.g., distinguishing
among true firs) generally would be more difficult, although there
are likely exceptions, such as where species are spatially distinguish-
able (for example, a species might be distinguishable because it is
constrained by elevation). We were, however, unable to evaluate this
question with the data from our study.

Zero-inflated models that incorporated RF worked well, as expected
from the literature (Coulston et al., 2013; Fassnacht et al., 2014; Hoet al.,
2014). SVM- and GLM-based models, however, worked as well, and in
many cases better (SVM was consistently used in all 5 of the best
species-specific zero-inflated models), indicating that the zero-inflated
modeling approach is robust across the methods tested. We expected
the most accurate results to be from models that utilized RF and SVM
based on literature review of machine learning algorithms, however,
the models that utilized GLM performed nearly as well as the RF and
SVM. Although the GLM.SVM model was established as best for subal-
pinefir and Engelmann spruce in the10-fold cross-validation, the statis-
tics were not markedly better than those of the RF.SVM or SVM.SVM
models, as they were less than a quarter-percent smaller in the CI
width (See Appendix, Table S1.A and S1.D). In fact, the statistics for
nearly all the models were similar enough to make choosing a best
model decidedly data dependent. Based on our results, a user might



Fig. 5. Percent canopy cover by species. Areas in gray represent 0% canopy cover. Areas in red represent the highest PCC values. Ranges of PCCdiffer for each species: (a) subalpinefir— 0 to
42%, (b)western larch— 0 to 52%, (c) lodgepole pine— 0 to 64%, (d) Engelmann spruce— 0 to 41%, and (e)Douglas-fir— 0 to 75%. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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choose to either (1) select anymethod and expect satisfactory results or
(2) be advised to compare all methods to achieve optimal results.

From a forest management standpoint, the 10-fold cross-validation
statistics suggest that the model combinations chosen for our zero-
inflated modeling produced accurate and precise predictions of PCC-
by-species for all five species, as all of the models had a p-value greater
than 0.05. Additionally, the mean differences were quite small and the
spread of the CIs around themean showhigh precision andwere, there-
fore, potentially within the bounds of acceptability for land managers
and biologists. The RMSE values, however, were higher than the mean
differences and indicated there were some large over- and underesti-
mations, meaning care should be taken when using the resulting
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maps for pixel-level analyses. Thesemodels successfully predicted PCC-
by-species out of the zero-rich reference data (at an alpha of 0.05, the
predicted versus observed is not significantly different from zero),
i.e., where there is forest on the ground, the models were on average
underestimating PCC-by-species by 0.54% to 1.81% and we are 95%
Fig. 6. Examples of twowestern larch predictionmaps: (a) zero-inflated SVM.SVM and (b) sing
gle-stepRF.Maps are displayedoverNAIP imagery. The blue ovals indicate areas of non-forest. (F
web version of this article.)
certain that the truemean error with respect to the population is within
2.41% to 3.17% of that estimate.

Our accuracy assessments demonstrate that zero-inflated methods
have distinct advantages over single-step methods to develop accurate
and useful models of PCC-by-species. The 10-fold cross-validation
le-step SVM; and two Douglas-fir predictionmodels: (c) zero-inflated RF.SVM and (d) sin-
or interpretation of the references to color in thisfigure legend, the reader is referred to the
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showed that the single-step models had very similar and in some
cases slightly better results than the zero-inflated models for the
complete dataset when evaluated solely on p-values and CIs. The in-
dependent accuracy assessment showed that with small CI widths
andmean differences, the best/final zero-inflatedmodels were success-
ful at predicting PCC-by-species. Where there is forest on the ground,
these models were on average underestimating PCC for subalpine fir
by 2.86%, for western larch by 1.27%, for lodgepole pine by 3.84%, and
for Douglas-fir by 3.02%. The models were overestimating PCC for
Engelmann spruce by 2.26%. We are 95% certain that the true mean
error with respect to each population is within 3.11% to 6.54% of those
estimates. We believe our independent accuracy assessment best
describes what land managers should expect when using these
models to estimate the canopy composition of western conifer
forests.

The greatest shortcoming of the single-step models was that they
had substantially more errors than the zero-inflated models, and in all
cases the majority of the errors were overestimates of PCC (Table 3).
The single-step models were erroneously predicting PCC values (pres-
ence) where there was, in fact, absence. Single-stepmodels successfully
predicted zero values (absence) exactly zero times out of 865 chances in
the 10-fold cross-validation process (Table 3), while the zero-inflated
models successfully predicted zeroes on average 74% of the time. This
suggests the single-step models were attempting to balance out the
overestimations of zero data with underestimations of non-zero data.
This is obvious under visual inspection of the produced PCC maps
(Fig. 6b and d). Firstly, the single-stepmodelmaps identified themajor-
ity of the area as having PCC greater than zero, as opposed to the zero-
inflated model maps that showed a smaller area with PCC greater
than zero. Secondly, the single-step model maps identified the majority
of the pixels as having low PCC with relatively few pixels having high
PCC, as opposed to the zero-inflated model maps that had more pixels
identified as higher PCC. Visual inspection of the PCC maps displayed
over NAIP imagery (Fig. 6) demonstrated that the zero-inflated models
more closely matched the landscape. The single-step maps incorrectly
indicated trees (non-zero PCC) in non-forested areas, including moun-
tain tops and valley floors (blue ovals in Fig. 6) and the Douglas-fir
single-stepmap incorrectly showed Douglas-fir across nearly the entire
landscape (Fig. 6d).

The ranges of predicted PCC for each species are noticeably smaller
than the actual ranges from the 2013 field sites (Fig. 4) of PCC for
these species. While the zero-inflated models have successfully pre-
dicted locations with zero PCC (Table 3), their predictions of non-
zero data tended toward the mean and underrepresented extremely
high values, as is evidenced by the relatively high RMSE values in the
accuracy assessment. We expected the zero-inflated model to account
for the low and zero values – this is the primary reason we attempted
zero-inflated modeling – however the process was imperfect and did
not effectively account for the higher values of PCC. One reason for
this is that there were very few instances of high values in the 2013 ref-
erence data (Fig. 4) so there were relatively few observations available
for training for those high values. Additionally, there is a well-known
occurrence of “regression to the mean”, whereby variability in predic-
tions is reduced/the slope of the true relationship is underestimated
because of possible random error (both small-scale and systematic) in
the data (Kuchler, Ecker, Feldmeyer-Christe, Graf, & Waser, 2007;
Pierce, Ohmann, Wimberly, Gregory, & Fried, 2009; Smart & Scott,
2004).

Use of single-step SVMmodels, which often had the highest accura-
cy based on CI width (and p-value greater than zero) (See Appendix,
Table S2), was therefore problematic because of the consistent overesti-
mation of zeroes that resulted alongwith the frequent underestimation
of non-zero data. It might be better in the case of habitat mapping, for
example, to miss a small amount of vegetation when identifying a par-
ticular habitat or impacts to that habitat, than to have high levels of false
positives (Fielding & Bell, 1997). However, of utmost importancewas to
produce accurate maps, and our zero-inflated models, while possibly
missing critical habitat, were less biased than the single-step models
and produced better maps (visually) with high accuracy and precision.
Thus many of the zero-inflated models we produced that had wider
CIs but substantially fewer overestimates than the single-step models
appeared to, in fact, produce better predictionmaps for our task ofmap-
ping canopy cover for individual species.

5. Conclusions

MappingPCC-by-species as a continuous responsewithinmixed for-
est pixels has rarely been attempted using remote sensing, and Landsat
imagery in particular; however, we demonstrated that it can be done
with zero-inflatedmodeling, as evidenced in the results of the indepen-
dent accuracy assessment (mean differences of −3.84% to 2.26%), as
well as through visual inspection of the maps. We demonstrated that
zero-inflated methods were useful for predicting continuous PCC-by-
species in highly heterogeneous conifer forests. While both the zero-
inflated and single-step methods were successful in estimating contin-
uous canopy cover, the single-step models showed a substantial bias
by never (0/865 observations) correctly predicting the absence of the
target species, indicating a considerable bias. Conversely, the zero-
inflated models correctly predicted species absence 74% of the time
(644/865 observations). Using the zero-inflated process dramatically
reduced the bias of the results, allowing endusers tomakemanagement
decisions with greater confidence about where a target species is
absent, something not possible with traditional/single-step methods.
Further manipulation of zero-inflated models through different data
sources (such as hyperspectral data), field data collection methods
(more and better reference data, particularly formultiple species within
one genus), and/or predictionmodels (novel regression or classification
methods) might lead to even higher accuracies. The application of zero-
inflated predictionmodels to zero-rich vegetation data might be appro-
priate to many fields of study, especially those that have a continuous
response and are patchy in nature across the landscape, for example,
rare/threatened/endangered plant species and wildlife habitat.
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