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Abstract

Rule-based classification using classification tree analysis
(crA) is increasingly applied to remotely sensed data. CTA
employs splitting rules to construct decision trees using
training data as input. Results are then used for image
classification. Software implementations of CTA offer differ-
ent splitting rules and provide practitioners little guidance
for their selection. We evaluated classification accuracy from
four commonly used splitting rules and three types of
imagery. Overall accuracies within data types varied less
than 6 percent. Pairwise comparisons of kappa statistics
indicated no significant differences (p-value > 0.05).
Individual class accuracies, measured by user’s and pro-
ducer’s accuracy, however, varied among methods. The
entropy and twoing splitting rules most often accounted for
the poorest performing classes. Based on analysis of the
structure of the rules and the results from our three data
sets, when the software provides the option, we recommend
the gini and class probability rules for classification of
remotely sensed data.

Introduction
The classification of digital imagery to extract useful the-
matic information is one of the main objectives of environ-
mental remote sensing, and accurate classification is often
essential for the effective use of remote sensing products by
end users. A variety of classification algorithms are available
to analysts for image classification, such as maximum
likelihood, minimum distance to means, and parallelepiped
(Jensen, 1996). Additionally, more sophisticated methods
have been developed, including neural networks, machine
learning, and expert classifiers that have helped analysts
to markedly improve classification accuracy beyond that
obtainable with other methods (Quinlan, 1993; Hansen et al.,
1996; Friedl and Brodley, 1997; Lawrence and Labus, 2003).
In this study, we compared multiple decision-tree-based
classifications for three image types to assess the impacts of
different decision tree development rules on classification
results. This article is aimed at practitioners of remote
sensing and is not intended as a comprehensive survey of
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statistical methods associated with decision tree analysis for
rule-based classification. For a more theoretical discussion
of decision tree methods, the reader is referred to the
statistical and machine learning literature dedicated to this
topic (e.g., Breiman et al., 1984).

Rule-based classification of remotely sensed imagery
using classification tree analysis (CTA, sometimes referred to
as classification and regression tree analysis (CART), decision
trees, or binary recursive partitioning) has recently received
increasing attention. CTA methods have shown promise for
improving classification accuracy in several recent studies
(Hansen et al., 1996; Friedl and Brodley, 1997; Lawrence
and Wright, 2001; Lawrence and Labus, 2003). Decision
trees represent nonparametric methods that are especially
useful in analyzing large data sets with complex structure
(Cappelli et al., 2002). Decision tree analysis, such as CTA,
holds several advantages over traditional supervised meth-
ods such as maximum likelihood classification (Friedl and
Brodley, 1997). It does not depend on assumptions of
distributions of the data, can easily handle nonlinear
relationships and missing values, and can incorporate
categorical ancillary data as well as continuous variables.

Several software packages are available for performing
CTA, and the underlying implementations often vary among
packages with some software offering a variety of splitting
rules. Studies have been published addressing the choice
of the cTA algorithm, with the consistent conclusion that
selection of the CTA algorithm has little effect on overall
accuracy (Breiman et al., 1984; Pal and Mathers, 2003).
These studies, however, fail to address variations in individ-
ual class accuracies and might lead an analyst to believe
that choice of the algorithm is unimportant. We examined
four widely available CTA splitting rules applied to three
diverse remotely sensed data sets and found that, while
overall accuracies might be similar, the effect on individual
class accuracies was substantial. The choice of algorithm,
therefore, might significantly affect the results of individual
classes.

Four splitting rules that are widely available in current
software implementations of CTA for growing a decision tree
include: gini, class probability, twoing, and entropy. Each of
the splitting rules attempts to segregate data using different
approaches. The gini index is defined as:

Gini () = X p;(1 = p) (1)

where p; is the relative frequency (determined by dividing
the total number of observations of the class by the total
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number of observations) of class i at node ¢, and node ¢
represents any node (parent or child) at which a given split
of the data is performed (Apte and Weiss, 1997). The gini
index is a measure of impurity for a given node that is at a
maximum when all observations are equally distributed
among all classes. In general terms, the gini splitting rule
attempts to find the largest homogeneous category within
the dataset and isolate it from the remainder of the data.
Subsequent nodes are then segregated in the same manner
until further divisions are not possible.

An alternative measure of node impurity is the twoing
index:

= PLPL(S (ptile) = plilt)))
where L and R refer to the left and right sides of a given
split respectively, and p(ilt) is the relative frequency of class
i at node t (Breiman, 1996). Twoing attempts to segregate
data more evenly than the gini rule, separating whole groups
of data and identifying groups that make up 50 percent of
the remaining data at each successive node.

Entropy, often referred to as the information rule, is a
measure of homogeneity of a node and is defined as:

Twoing (t) (2)

Entropy (t) = — 2 p;log p; (3)
where p; is the relative frequency of class i at node t (Apte
and Weiss, 1997). The entropy rule attempts to identify
splits where as many groups as possible are divided as
precisely as possible and forms groups by minimizing the
within group diversity (De’ath and Fabricius, 2000). This
rule can be interpreted as the expected value of the mini-
mized negative log-likelihood of a given split result and
tends to identify rare classes more accurately than the
previous rules.

The last rule examined in this study, class probability,
is based on the gini Equation 1 and is not a different
splitting rule in the same way that the gini rule is different
than the towing rule or different than the entropy rule.
Although the class probability algorithm is based on the gini
equation, the results are focused on the probability structure
of the tree rather than the classification structure or predic-
tion success. The rule attempts to segregate the data based
on probabilities of response and uses class probability trees
to perform class assignment (Venables and Ripley, 1999).
Decisions are made based on probabilities of observations
belonging to a given class rather than node impurity like the
gini rule. A new observation to be categorized is compared
against all possible outcomes to calculate the resulting
classification probabilities for each leaf of the tree. The
observation is then assigned to the class that has the highest
probability for the considered observation to belong to this
class. It is possible to have a split with both terminal nodes
belonging to the same target class but having a substantial

difference in predicted class probabilities. Since the gini
Equation 1 is always used to grow the class probability tree,
resulting trees are generally very similar. Although the class
probability algorithm could employ the towing (Equation 2)
or entropy (Equation 3) instead of gini (Equation 1), we are
not aware of any such commercial implementation (Breiman
et al., 1984 provided more information on the theory and
implementation of this difference and the other rules
described above).

As a general rule, in spite of previous studies, statistical
software users are advised that the choice of splitting rule
can profoundly affect the structure of a particular classifica-
tion tree (Breiman et al., 1984). Image classifications devel-
oped using different CTA splitting rules, therefore, might
be dramatically different. Even if the overall accuracies
between two trees grown by different splitting rules are
similar, the data structure revealed might be very different.
Previous studies applying CTA to remotely sensed image
classification, however, have provided no guidance as
to which methods, if any, might be superior for such
applications.

We evaluated image classification accuracy using
various splitting rules available in CTA using a diversity of
remotely sensed imagery. Classification accuracy compar-
isons were made within image types to understand the
effects of splitting rules on results for each type of imagery.
The imagery selected had been previously used successfully
with CTA and represented a diversity of available image
options, including Landsat ETM+ imagery with ancillary
data, Ikonos imagery with ancillary data, and PROBE-1
hyperspectral imagery.

Methods

We used data from three previous studies in which cTA had
been implemented using S-Plus® statistical software, which
uses the class probability splitting rule. These data were
chosen due to their availability and diversity of data types
for comparison of CTA methods. These data types ranged
from moderate spatial resolution multispectral imagery to
fine spatial resolution hyperspectral imagery (Table 1).

The three data types and their associated study areas
included four Landsat 7 ETM+ scenes from the Greater
Yellowstone Ecosystem (Lawrence and Wright, 2001), a
four-band Ikonos scene and topographic data from Sequoia
National Park (Lawrence et al., 2004), and a hyperspectral
PROBE-1 scene of the Virginia City, Montana area (Driscoll,
2002). Each of these data sets, collected for purposes associ-
ated with previous studies, were used in this study only for
relative land cover classification comparisons based on the
methods described in this study.

The Landsat 7 ETM+ data, collected 13 July, 15 September,
and 04 December 1999, and 29 June 2000 included six

TaBLE 1. DiGITAL IMAGERY DATA TYPES AND CHARACTERISTICS

Data Location Dates Resolution Ancillary Data
Tkonos Sequoia National Park 19 July 2001 4 meter spatial 4-band slope
spectral (450—-850 nm)
Landsat Greater Yellowstone 13 July, 15 September, 30 meter spatial 6-band slope, aspect, elevation,
Ecosystem 04 December 1999; spectral (450-2350 nm) tasseled cap components,
and 29 June 2000 tasseled cap difference
components
PROBE-1 Virginia City, Montana 25 August 1999 5 meter spatial 128-band None
spectral (440-2500 nm)
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spectral bands with 30 meter spatial resolution (the thermal
band was not included). Also included in the Landsat
analysis were tasseled cap components for each of the dates
and tasseled cap difference components between the sum-
mer and fall dates and between the summer and winter
dates. Ikonos data, collected on 19 July 2001, had four
spectral bands, including a blue, green, red, and near
infrared (NIR) band, and 4 m spatial resolution. The PROBE-1
hyperspectral data acquired on 25 August 1999 consisted of
128 spectral bands, covering the visible through shortwave
infrared portions of the spectrum, with a spatial resolution
of 5 m.

Topographic data were used with the Landsat and
Ikonos imagery. Ancillary data for the area of the Landsat
imagery included slope, aspect, and elevation, extracted
from a 30 m digital elevation model (DEM) of this area.
Ikonos data analysis included a slope layer extracted from
a 10 m DEM of the area.

The number of classes and training pixels per class
varied for each image type. The Landsat data were classified
into six landcover types including conifer, hardwood,
herbaceous, mixed conifer/hardwood, mixed conifer/herba-
ceous, and burned. The PROBE-1 classification also had six
classes including conifer, deciduous, developed, range,
water, and disturbed land. The Ikonos image was classified
into four classes including tree, water, rock, and meadow.
Training pixels used for the Ikonos classification were
evenly distributed across each cover type and PROBE-1
training data were relatively even across classes, while the
training data for the Landsat scene varied greatly between
cover types with more rare classes having considerably
fewer pixels (Table 2).

We used CART software, version 5.0, which included
each of the splitting rules being tested, for our analysis.
Classification trees were developed for each data set using
each of the splitting rules. By default, these trees were
initially grown to over-fit the data and required pruning
to develop more robust and parsimonious trees for image
classification purposes (Venables and Ripley, 1999; Siciliano
and Mola, 2000).

Automated cross-validation methods in CART were used
to determine the optimal tree size for each run. This was

REFERENCE DATA PER CLASS USED FOR FINAL CLASSIFICATIONS
FOR EACH DATA TYPE

TABLE 2.

Independent

Data Type and Class Training Pixels Validation Pixels

Landsat Data

Conifer 172 88
Conifer/herbaceous 594 308
Burned 85 44
Conifer/hardwood 33 17
Hardwood 58 29
Herbaceous 180 92
Total 1122 578
Ikonos Data

Tree 1390 49
Water 1390 50
Meadow 1390 53
Rock 1390 106
Total 5560 258
PROBE-1 Data

Water 264 8
Conifer 376 46
Deciduous 305 16
Developed 354 22
Range 447 35
Disturbed 201 23
Total 1947 150

accomplished by dividing the data into ten groups with
a similar distribution of the dependant variable for each
group. Maximal tees were constructed using nine of the
groups, and the tenth group was used to estimate initial
error rates. This process was repeated until each of the ten
groups was used as the test sample. The results of the
ten tests were then combined into overall error rates and
applied to the tree using all the data. This provided reliable
estimates of the independent predictive accuracy of each
tree for selection of final tree results. The final trees were
used as a set of decision rules and incorporated into four
classifications for each of the data sets described.
Producer’s, user’s, and overall accuracy for each of
these classifications was assessed using randomly selected,
independent reference data and standard error matrix
procedures (Congalton and Green, 1999). Kappa statistics
were compared pairwise for significant differences using the
Delta method for Kappa comparisons from classification of
remotely sensed imagery. Variance of the Kappa statistics
was computed for each classification and Student’s t-tests
were performed for all pairs of Kappas within each data
type both at a standard p-value of 0.05 and at a more
conservative Bonferroni corrected p-value of 0.008. The
Bonferroni correction is appropriate for multiple compar-
isons tests as were conducted between our Kappas. Compar-
isons of class accuracies and Kappas were made only within
each data type and not between data types to assess the
relative effect of the various splitting rules for each image
classification. In this way, only the splitting rules changed
for each comparison, holding all other factors constant
within an image type.

Results

The overall accuracy results for the Ikonos data varied only
2 percent from the poorest performing splitting rule, entropy
at 82 percent, to the best performing splitting rule, and class
probability at 84 percent (Table 3). Overall accuracy for the
Landsat data results had a slightly larger range of 4 percent,
from 60 percent for the twoing rule to 64 percent for the
class probability rule. PROBE-1 overall accuracies had the
highest variability, from 78 percent for entropy to 84 percent
for the both gini and twoing splitting rules, a range of

6 percent.

Although overall accuracies were consistent, class
accuracies varied considerably (Tables 4 and 5). Producer’s
and user’s accuracies for the Landsat data performed poorest
in the mixed vegetation categories of conifer/herbaceous
(=49 percent) and conifer/hardwood (=34 percent), respec-
tively for all of the splitting rules. Also user’s accuracies for
the Landsat data were generally lower than producer’s for
most classes.

TABLE 3. CLASSIFICATION RESULTS FOR DATA TYPES AND SPLITTING RULES

Data Rule Overall Accuracy (%) Kappa
Ikonos Gini 83.3 0.772
Entropy 82.2 0.756
Class Prob. 83.7 0.778
Twoing 83.3 0.768
Landsat Gini 63.2 0.521
Entropy 60.6 0.485
Class Prob. 63.8 0.519
Twoing 60.4 0.489
PROBE-1 Gini 84.0 0.798
Entropy 78.0 0.721
Class Prob. 83.3 0.788
Twoing 84.0 0.796
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PRODUCER’S PERCENT ACCURACY FOR EACH DATA TYPE
AND SPLITTING RULE

TABLE 4.

TABLE 6. P-VALUES FOR PAIRWISE STATISTICAL COMPARISON OF KAPPA
ResuLTs. No P-VALUES WERE SIGNIFICANT AT a = 0.05 OR THE MULTIPLE
COMPARISON BONFERRONI CORRECTED a = 0.008

Class
Producer’s Accuracy Gini Entropy Probability Twoing Ikonos Data
Landsat Data Entropy Class Prob. Twoing
Conifer 92 94 90 98 Gini 0.72 0.90 0.93
Conifer/herbaceous 45 44 49 42 Entropy — 0.63 0.79
Burned 82 82 68 86 Class Prob. — 0.83
Conifer/hardwood 88 88 88 88
Hardwood 72 66 59 52 Landsat Data
Herbaceous 80 67 83 72 Entropy Class Prob. Twoing
Ikonos Data Gini 0.90 0.32 0.83
Tree 84 78 84 81 Entropy — 0.39 0.92
Water 94 96 96 94 Class Prob. — 0.45
Meadow 87 85 87 72
Rock 76 76 76 86 PROBE-1 Data
PROBE-1 Data
Water 71 71 71 71 Entropy Class Prob. Twoing
Conifer 96 93 96 96 Gini 0.17 0.86 0.98
Deciduous 50 44 50 50 Entropy - 0.23 0.18
Developed 73 86 95 91 Class Prob. — 0.88
Range 86 74 74 83
Disturbed 96 74 o 87 statistics for all data types at both the 0.05 and Bonferroni
corrected alpha levels (all p-values > 0.05).
TABLE 5. USER’S PERCENT ACCURACY FOR EACH DATA TYPE

AND SPLITTING RULE

Class
User’s Accuracy Gini Entropy Probability Twoing
Landsat Data
Conifer 60 58 59 57
Conifer/herbaceous 91 85 88 91
Burned 60 44 67 59
Conifer/hardwood 34 34 32 31
Hardwood 58 68 89 56
Herbaceous 49 50 48 45
Tkonos Data
Tree 82 84 82 71
Water 100 100 100 100
Meadow 61 58 61 73
Rock 94 92 95 88
PROBE-1 Data
Water 100 100 100 100
Conifer 85 86 85 85
Deciduous 89 88 89 89
Developed 80 58 78 69
Range 94 90 96 91
Disturbed 88 68 70 87

Class accuracies for the Ikonos data also varied consid-
erably, although less so than the Landsat results. The
poorest performing classes for producer’s and user’s were
the rock (=76 percent) and meadow (=73 percent) classes,
respectively. The results for remaining classes were consid-
erably higher for both producer’s and user’s accuracies.

Class accuracies for the PROBE-1 data were generally
high for both producer’s and user’s accuracy, with the main
exception of producer’s accuracy for the deciduous class,
which ranged from 50 percent to 44 percent. The poorest
performing classes for user’s accuracy were the developed
class (=80 percent) for most splitting rules and the dis-
turbed class (70 percent) for the class probability rule.

Kappa statistics for the Ikonos classifications covered a
similarly narrow range from 0.76 to 0.78, while Kappa
statistics for the Landsat data ranged from 0.49 to 0.52.
Kappa statistics for PROBE-1 covered the widest range, from
0.72 to 0.80. Results of the pairwise comparisons of the
kappa statistics for each data type (Table 6) indicated no
statistically significant differences between any of the kappa
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Discussion

Our results provided evidence that the selection of splitting
rules in CTA is not a critical factor for overall accuracy of
decision-tree-based classification of remote sensing imagery
supporting previously reported findings (Breiman et al.,
1984; Pal and Mathers, 2003). These results might be counter
intuitive because the different splitting rules partition the
data at each split in a different manner. Intuitively, this
should produce dichotomous trees with different structures
and result in differing classification results. Examination of
the dichotomous tree results for the PROBE-1 data set showed
that the main branches of these trees were very similar, often
using the same variables and values for data separation. The
differences in tree structures within a data type exist mainly
in the lower branches, further from the root node, where less
variation in the data was accounted for and more subtle
distinctions between classes were made. Data at these tree
levels tend to be observations that are not easily separated
into specific classes due to potential overlap of data distribu-
tions for given class assignments. Since these differences
existed in the lower branches, the effect of these differences
on image classifications were not substantial and thereby
result in similar classification accuracies and kappa statistics
among results from the different splitting rules for the
hyperspectral data.

Tree results for the Landsat and Ikonos multispectral
data sets showed greater variation in variable selection for
the upper branches of their respective trees. Although trees
for these data were overall quite similar among the different
splitting rules, the twoing rule for Ikonos used slope for the
first split compared to the other three splitting rules, which
used information from the blue spectral band. The consis-
tency of the overall accuracy results from these different
trees indicated that there is more than one pathway in cTA
that can produce similar results, especially with multispec-
tral data sets. Also, the class probability rule tended to
produce trees with fewer variables and simpler structure
than the other rules for these multispectral data sets, which
was not the case with the hyperspectral data. The fewer
number of spectral bands available in multispectral data sets
and the appropriateness of selected ancillary data could
account for this simpler tree structure. The greater number
of spectral bands in the hyperspectral data provides more
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information for class separation and can result in more
complex tree structures to arrive at specific class separation.
Overall though, results from this study showed that, in
terms of overall accuracy, CTA methods are reasonably
robust to variable selection for each of the data types
examined.

Although there was little difference in overall accura-
cies, the various rules achieve those accuracies in diverse
ways though individual class accuracies, a finding not
previously reported and a phenomenon that strongly affects
the final classification results. An examination of a portion
of the Landsat study area near Bozeman, Montana, for
example, demonstrated very different classification patterns
from the class probability and twoing splitting rules,
notwithstanding very similar overall accuracies (Figure 1).
This figure demonstrates the variation in results obtained by
different splitting rules. In particular, rare classes, such as
hardwood and conifer/hardwood, showed tremendous
differences between the two images. While the Landsat
producer’s accuracy for the hardwood class was similar
between splitting rules (59 percent for class probability and
52 percent for twoing), the user’s accuracy was strikingly
different (89 percent for class probability and 56 percent for
twoing).

These substantial variations in class accuracies present
the remote sensing practitioner with the obvious question of

how to select from among the alternative rules. An examina-
tion of the relative class accuracies shows that, with few
exceptions, the twoing and entropy rules resulted in the low-
est accuracies by class, although these results are sometimes
balanced by particularly high class accuracies. When results
are ranked 1 through 4 in order of performance by class,
with the lowest ranking indicating the highest accuracy,
twoing and entropy resulted in higher overall average
rankings. For both producer’s and user’s accuracies, gini
demonstrated the lowest average rankings (1.69 and 1.56,
respectively), followed closely by class probability (1.75

and 1.81, respectively). Entropy and twoing demonstrated
substantially higher average rankings for producer’s (2.69
and 2.19, respectively) and user’s accuracies (2.63 and 2.63,
respectively).

Although our sample size for testing the differences in
algorithm performance by class was small (three data sets),
these results are consistent with the structure of the respec-
tive rules. The gini and class probability rules operate
similarly by identifying records belonging to the single
largest homogeneous class at each split and combining the
remainder to be considered at the next split. Although, gini
focuses on the classification structure and prediction
success, and class probability focuses on the probability
structure of the tree, both produce similar results by identi-
fying a single class at each split. Although statistical theory

4 Kilometers

between the two images.

Figure 1. This image shows a portion of the Landsat study area near Bozeman, MT. Image (a) was
classified using the class probability splitting rule while image (b) was classified using the twoing
splitting rule. This graphic demonstrates the different results obtained by different splitting rules. In
particular, rare classes, such as hardwood and conifer/hardwood, show tremendous differences
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on these rules is scarce, we believe this approach effectively
isolates the conditions defining each class. Twoing and
entropy, on the other hand, seek to identify the structure

of the data by segregating groups that are not necessarily
homogeneous. This has increased potential of leaving
similar classes grouped (which can be advantageous for
other types of statistical analyses where similarities among
classes are explored) and likely results in certain classes
with especially low accuracies. While twoing and entropy
can uncover valuable information about the data structure
not evident from gini or class probability, we believe that
the approach of these latter rules is more appropriate for clas-
sification of remotely sensed data and that, when software
provides the option, gini or class probability should be
selected for such applications.

The observed variation in class accuracies for these
data sets and splitting rules might also be the result of the
difficulty in distinguishing certain classes from each other
using spectral and selected ancillary data. For example,
results of class accuracies for the Landsat data indicated a
fundamental difficulty in separating the mixed classes of
conifer/herbaceous and conifer/hardwood from each other
and from pure classes containing cover components of these
mixed classes. Results for the Ikonos image showed that cTA
generally performed well with these data but had difficulty
separating the meadow and rock classes. At the time of
data acquisition in late July, the high meadows in the scene
were composed predominantly of sparse, senescent grasses.
These meadows appear spectrally similar to the granitic
rock outcrops and sands in this region of the Sierra Nevada
Mountains, making them difficult to distinguish from each
other. The difficulty in separating the deciduous, developed,
and disturbed classes for the PROBE-1 data might stem from
much of the developed area in Virginia City containing
considerable deciduous vegetation. In addition, mining
disturbed areas are difficult to distinguish from developed
gravel streets, roads, and parking lots, lending to the spectral
confusion between these particular classes. The subtle
differences in the splitting rule methods, therefore, might
cause each rule to handle these class confusions differently,
resulting in the variation observed among rules.

The variation of classification accuracies also might be
reduced with different tree selection methods resulting from
different pruning procedures for these data. Since this study
was an effort to compare multiple tree growing procedures
through the use of splitting rules, multiple pruning methods
between and within data sets might confound the results of
the intended analysis. Consistent tree selection and pruning
procedures, therefore, were applied to all data sets. Pruning
and tree selection are critical to reliable results and should
be evaluated separately to determine optimum performance
of cTA methods (Pal and Mathers, 2003).

This study provides a degree of comfort to an image
analyst using CTA that use of a particular splitting rule
should not be a substantial concern for overall accuracy in
the classification process in spite of the variability observed
in individual class accuracies. The analyst is cautioned,
however, that the resulting classifications from different
rules are likely to be markedly different. In general, our
results indicate that gini or class probability are the more
appropriate rules for image classification, all other factors
being equal. If particular classes are important to the analyst,
however, splitting rule selection might become very impor-
tant, in which case multiple classifications using several of
the splitting options available could be examined to arrive at
the best classification for the given study objectives. Finally,
other software options available might well outweigh the
differences in splitting rules, such as the availability of
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boosting with the See5 software package (Lawrence et al.,
2004).
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